
Algorithms for pattern involvement in

permutations

M. H. Albert
Department of Computer Science

R. E. L. Aldred
Department of Mathematics and Statistics

M. D. Atkinson
Department of Computer Science

D. A. Holton
Department of Mathematics and Statistics

University of Otago

Abstract

We consider the problem of developing algorithms for the recognition
of a fixed pattern within a permutation. These methods are based upon
using a carefully chosen chain or tree of subpatterns to build up the entire
pattern. Generally, large improvements over brute force search can be
obtained. Even using on-line versions of these methods provides such
improvements, though these are often not as great as for the full method.
Furthermore, by using carefully chosen data structures to fine tune the
methods, we establish that any pattern of length 4 can be detected in
O(n log n) time. We also improve the complexity bound for detection of
a separable pattern from O(n6) to O(n5 log n).

Keywords pattern containment, permutations

1 Introduction

The relation of “pattern containment” or “involvement” on finite permutations
has become an active area of research in both computer science and combi-
natorics. In computer science, pattern containment restrictions are used to
describe classes of permutations that are sortable under various conditions
[1, 5, 6, 10]. In combinatorics the focus has been more on enumerating per-
mutations under various pattern containment restrictions [7, 8, 9, 11]. In both
these areas it is difficult to gather computational data because of the difficulty
of testing for pattern containment.

1

Formally, we say that two sequences are isomorphic (or order isomorphic)
if the permutations required to sort them are the same. For example, the two
sequences 3, 4, 7, 1 and 5, 7, 9, 2 are isomorphic. We say that one permutation
σ = s1 . . . sm is involved in another permutation τ = t1 . . . tn when t1, . . . , tn
has a subsequence that is isomorphic to s1, . . . , sm. We write σ � τ to express
this.

It appears to be a difficult problem to decide of two given permutations σ, τ
whether σ � τ and in this generality the problem is NP-complete [2]. In this
paper we study the case that σ is fixed, of length k say, and τ is the input
to the problem. This is the situation that arises when we wish to run many
“σ � τ” tests with τ varying and σ fixed. In practice most pattern containment
investigations are of this type. A brute force approach which simply examines
all subsequences of τ of length k would have a worst case execution time of
O(nk), where n is the length of τ . Therefore the problem lies in the complexity
class P but of course, for all but small values of k, this execution time will
generally be unacceptable.

To the best of our knowledge no previous work has been published on im-
provements to this upper bound. The best implementation of brute force search
that we know of is the program forbid.c [4] which uses a tree search approach
based on the generating trees defined in [11]; in general however this program
does not improve the asymptotics of the worst case.

A few particular cases of the problem have been attacked successfully. There
is an O(n log log n) algorithm for finding the longest increasing subsequence of a
given sequence of length n [3] so this solves the problem for the cases σ = 12 · · · k.
The permutations 132, 213, 231, 312 can all be handled in linear time by stack
sorting algorithms. Also, an algorithm of time complexity O(n6) was given in
[2] for the case of an arbitrary separable permutation.

In this paper we develop general algorithms whose worst case complexity is
considerably smaller than O(nk) and we look at a number of cases where even
further improvement is possible.

In the next section we set up a general apparatus for searching for the pattern
σ. As will be seen we are prepared to invest a considerable amount of time
(exponential in k) in preprocessing σ in the expectation that we shall then be
able to solve instances of the “does τ involve σ” problem much faster than
by brute force. We identify an integer c(σ) that controls the complexity of
our recognition algorithm and report on a statistical study that gives insight
into the variation of c(σ) as σ varies. This study indicates that the algorithms
are never worse than O(n2+k/2 log n) (although that remains unproved) and
in some cases are considerably better. We give an example to show that c(σ)
may be much smaller than the apparent worst case and we briefly discuss how
the algorithms solve the associated counting problem. The section ends with a
glimpse of an even more general family of algorithms and a minor improvement
to the algorithm in [2] for detecting a separable permutation.

Section 3 investigates a special case of our general approach. This special
case is particularly suitable for ‘on-line’ algorithms (where τ can be scanned
once only). Moreover it avoids the expensive preprocessing stage and is simple

2

enough that upper bounds can be proved analytically. We give examples of
infinite families of permutations that can be detected quickly by an on-line
algorithm.

In the final section we examine permutations σ of length 4. We refine our
general approach and describe O(n log n) algorithms to recognise whether σ � τ .

2 A General Recognition Framework

In this section we develop a general algorithm for testing whether σ � τ and
illustrate its power by a number of case studies. Throughout, σ is a fixed
permutation of length k and τ a variable permutation of length n.

Before giving the technical notation we sketch the general idea behind our
approach. In the first stage of the algorithm we shall identify a suitable sequence

σ0 � σ1 � σ2 � . . . � σk = σ (1)

of subsequences of σ (with σi of length i). This sequence will be chosen so that
the subsequences of τ that are isomorphic to one of the σi can be identified and
used without being stored in their entirety. This stage of the algorithm may
have a cost that is exponential in k but it is independent of the input τ and is
not repeated.

The second stage of the algorithm identifies all subsequences of τ that are
isomorphic to σi, for increasing values of i. Because these subsequences are not
stored in their entirety this part of the algorithm is of much lower complexity
than näıve search.

In order to handle subsequences of both σ and τ we represent them as sets
of pairs. If σ = s1 . . . sk is the permutation that maps i to si, then σ itself will
be represented as the set S = {(i, si) | 1 ≤ i ≤ k}. Every subset of S defines
a subsequence of σ and vice versa. Subsequences of τ are defined similarly as
subsets of the set of pairs T that defines τ itself.

A sequence such as (1) above is then just a sequence of subsets

∅ = S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sk = S (2)

in which each subset Si is obtained from the previous one by adding a new pair
(ai, bi). For the moment we shall defer the explanation of how to choose these
subsets; once we have described how they are used it will be clear how to choose
them optimally. Making this choice is the first step of the algorithm.

Let π1 and π2 be the projections that map a pair to its first and second
component (respectively). With this view of subsequences, an isomorphism
between a subsequence of σ and a subsequence of τ is simply a bijection β
between the two corresponding sets of pairs for which the induced maps

p = π1(p, v) 7→ π1(β(p, v))

v = π2(p, v) 7→ π2(β(p, v))

3

are both order preserving. Note that when an isomorphism exists it is unique.
Let Σi denote the set of subsets of T that are isomorphic to the set Si. The

second stage of the recognition algorithm is modelled on the following loop:

Algorithm 1 Basic form of the recognition algorithm
for i := 0 to k − 1 do

for each (p, v) ∈ T and each θ ∈ Σi do
if θ ∪ {(p, v)} is isomorphic to Si+1 then

add it to Σi+1

end if
end for

end for

As it stands, of course, this is simply another version of brute force search
crippled by the worst case size of Σi. To make significant improvements we need
a way of handling many elements in Σi simultaneously. We shall introduce a
concise form of an element θ ∈ Σi, denoted by R(θ), called its registration. The
key idea is to process all elements with the same registration simultaneously.

Before giving the technical definition of R(θ) it will be helpful to consider
an example. Let us suppose that S3 = {(2, 4), (5, 3), (3, 6)} and that S4 = S3 ∪
{(4, 5)}. Suppose also that we have some subsequence θ = {(14, 4), (6, 9), (10, 15)}
of τ . Because of the bijection

(2, 4) 7→ (6, 9), (5, 3) 7→ (14, 4), (3, 6) 7→ (10, 15)

we see that S3
∼= θ. The necessary and sufficient condition that this bijection

can be extended to an isomorphism between S4 and θ ∪ (p, v) is 10 < p < 14
and 9 < v < 15.

The point of this is that the isomorphism test depends only on 4 items
of θ rather than the entire 6 items. In this small case the saving is not very
dramatic but it is enough to illustrate the general idea. In general, if Si+1 =
Si∪{(ai+1, bi+1)} we identify in Si the two first components which most closely
enclose ai+1 and the two second components which most closely enclose bi+1.
The corresponding items in θ then define the range in which p and v must
lie in order that θ ∪ {(p, v)} ∼= Si+1. Notice that this idea still applies if ai+1

(respectively bi+1) is smaller than or greater than any first (respectively second)
component; in such a case the range in which p or v must lie is unbounded on
one side.

In practice we often need to store considerably more than just these four
enclosing components since we must anticipate being able to test isomorphisms
with subsets of size greater than i + 1. To describe precisely what needs to be
stored at each stage we define the registration type r(Si) of each Si as

r(Si) = (Pi, Vi)

where

Pi = {j ∈ π1(Si) | either j + 1 6∈ π1(Si) or j − 1 6∈ π1(Si)}

4

and
Vi = {j ∈ π2(Si) | either j + 1 6∈ π2(Si) or j − 1 6∈ π2(Si)}

Lemma 2.1 1. If w, x are the two symbols in π1(Si) which most closely
enclose ai+1 (as w < ai+1 < x) then w, x ∈ Pi. Similarly, if y, z are the
two symbols in π2(Si) which most closely enclose bi+1 then y, z ∈ Vi.

2. Pi+1 ⊆ Pi ∪ {ai+1} and Vi+1 ⊆ Vi ∪ {bi+1}.

Proof: For the first part, if w 6∈ Pi then w−1 and w+1 ∈ π1(Si). Therefore
w + 1 and x are a closer enclosing pair for ai+1, a contradiction. The other
statements follow similarly.

The second part follows from the definition of Pi and Vi.

We shall see later that the sizes of Pi and Vi determine the complexity of
a refined version of the algorithm above for recognising whether σ � τ . The
following example is meant to illustrate that “clever” choices of the sets Si can
control these values effectively.

Example 2.2 Suppose that k = 4m and consider the permutation:(
1 2 3 4 5 · · · 2m− 1 2m · · · 4m
1 2m 4m− 1 2m− 2 4m− 3 · · · 2m + 3 2 · · · 2m + 2

)
(in the second row, the odd values decrease by 2 each time, cyclically, beginning
from 1, while the even ones decrease by 2 each time beginning from 2m). If we
simply take the set Si to consist of the pairs making up the first i columns of
this permutation then although |P2m−1| = 1, we have |V2m−1| = 2m − 1. On
the other hand, by simply reordering the pairs as follows:(

1 2m + 1 2 2m + 2 3 2m + 3 4 2m + 4 · · ·
1 2m + 1 2m 4m 4m− 1 2m− 1 2m− 2 4m− 2 · · ·

)
we obtain an arrangement where |Pi| ≤ 3 and |Vi| ≤ 4 for all i.

The registration type r(Si) specifies how much of each θ ∈ Si should be
stored by the algorithm. The part that is stored is called the registration of
θ and is denoted by R(θ): R(θ) is the image of r(Si) under the natural maps
induced by the order isomorphism between θ and Si. Let Ri = {R(θ) | θ ∈ Σi}.

The second stage of the recognition algorithm, incorporating the concept of
registration, is specified in Algorithm 2.

Proposition 2.3 When the second stage of algorithm 2 terminates we have
Ri = Ri for i = 1, 2, . . . , k. In particular σ � τ if and only if |Rk| > 0.

Proof: Notice that Lemma 2.1 guarantees that wθ, xθ, yθ, zθ are present in
R(θ) and that all the symbols needed to compute R(φ) are available either from
R(θ) itself or from {p, v}. Note also that the stipulated ranges for p and v are
precisely those for which the isomorphism between Si and θ can be extended
to an isomorphism between Si+1 and φ. Therefore each R(φ) is an element of
Ri+1. Finally, observe that every R(φ) ∈ Ri+1 is computed by the algorithm;
this follows by induction on i.

5

Algorithm 2 Recognition algorithm with registration
Ri := ∅ {Ri holds elements of Ri; initially none are known}
for i := 0 to k − 1 do

for each (p, v) ∈ T and each R(θ) ∈ Ri do
Let w, x, y, z be defined as in Lemma 2.1
Let wθ, xθ, yθ, zθ be the elements of R(θ) that correspond to w, x, y, z
if wθ < p < xθ and yθ < v < zθ then {hence φ = θ ∪ {(p, v)} ∈ Σi+1}

compute R(φ) and insert it in Ri+1

end if
end for

end for

Next we discuss the run-time of the algorithm. The outer ‘for’ loop is ex-
ecuted k times but k is independent of n. In a typical iteration of the inner
‘for’ loop we have to consult each of the n pairs of T and each R(θ) ∈ Ri.
The computation that is done with a typical (p, v) and R(θ) incurs a cost that
depends on how the sets Ri are stored; by standard data structuring devices we
can contain each of the operations that access and update the set Ri to a time
O(log |Ri|).

Taking all this into account the total cost of this stage of the algorithm is
O(n maxi(|Ri| log |Ri|)).

The elements of Ri are sequences of integers in the range 1..n and the length
of these sequences is |Pi|+|Vi|. It will therefore be advantageous to keep |Pi|+|Vi|
as small as possible. To this end we define

c(σ) = minmax
i

(|Pi|+ |Vi|)

where the minimum is taken over all orderings of the pairs of S. This discussion
has proved:

Proposition 2.4 If the ordering on S is chosen so as to minimise maxi(|Pi|+
|Vi|) the second stage of the algorithm requires time O(n1+c(σ) log n).

It is now evident what the first stage of the algorithm must do: find the
ordering on S that minimises maxi(|Pi| + |Vi|). The cost of this first stage of
the algorithm will be independent of n so it will not contribute to the asymptotic
upper estimate of the time complexity. Nevertheless it is not easy to compute
the optimal ordering of S; we have found a method based on a shortest path
algorithm to do this in O(2k) steps.
Statistics

We have generated some thousands of random permutations of degrees up
to 17 and computed c(σ). In all of them we have found that c(σ) ≤ 1 +
k/2. The following table summarises the values of c(σ) for samples of random
permutations of lengths 8 through 17. In each row, we exhibit the number of
permutations observed for each value of c(σ) (blanks denoting no observations),

6

and we also provide an example of a particular permutation from the sample
which achieved the maximum observed value of c(σ). In these examples, two
digit numbers 10, 11, and so on, are denoted by the letters A, B, and so on.

c(σ)
k 2 3 4 5 6 7 8 9 Example
8 157 769 74 52814673
9 1 57 682 260 921745863
10 13 469 515 3 72936A5184
11 1 262 676 61 B52A7481639
12 126 662 212 72A419B538C6
13 48 533 412 7 B4159D6C2A738
14 23 365 582 30 3E68BC41927A5D
15 3 55 201 41 2D7CE5A6913F84B
16 1 38 167 83 1 A4F51C9G7D3B82E6
17 25 145 125 5 6AFDH842G93EC751B

Counting
Our general approach can easily be modified to count the number of oc-

currences of σ in τ . The only change we have to make is to keep, with every
χ ∈ Ri, an integer tχ which records the number of θ for which R(θ) = χ. Then,
whenever we detect that φ = θ ∪ {(p, v)} ∈ Σi+1 we increment tω by tχ, where
ω = R(φ) and χ = R(θ).
A more general algorithm

Our general paradigm can be extended so that (2) is replaced by a ‘union’
tree. The leaves of the trees are labelled by singleton pairs and the internal
nodes are labelled by subsets of S which are the disjoint unions of the subsets
labelling their subtrees. The recognition algorithm processes the nodes of the
tree in any order so long as each node is processed after its subtree nodes. To
process a node labelled by a subset U of S means to find (and store implicitly
by registration) all the subsets of T isomorphic to U . When we do this we shall
have available the corresponding information for the subtrees.

In order to get a comparatively efficient algorithm it will be necessary to
have short registrations (as we have previously discussed). But the registration
information has to be sufficient that we can successfully recognise the subsets of
T isomorphic to U . It is clearly going to be complicated to examine all possible
union trees (although independent of n of course) so we have yet to explore the
full potential of this idea. Neverthless we offer one example of the power of this
approach in the following sketch which improves on the algorithm given in [2].

Suppose that σ is any separable permutation. By definition σ may be written
as a concatenation σ = αβ where either every entry of α is less than every entry
of β or every entry of α is greater than every entry of β; moreover, α, β are
isomorphic to separable permutations. Then S can written as a union L ∪M
where every member of π1(L) is less than every member of π1(M), and where
either every member of π2(L) is less than every member of π2(M) (the positive
case) or every member of π2(L) is greater than every member of π2(M) (the
negative case). The sets L and M are structured in a similar fashion and so we

7

have a natural way of defining a union tree for S. The nodes of this tree are
positive or negative according to how they were defined.

The registration type of a node U is a quadruple that we structure as an
ordered pair of ordered pairs ((m1,m2), (M1,M2)) where m1 and m2 are the
minimum values in π1(U) and π2(U), and M1 and M2 are the maximum values.
Thus the registration of a subset of T isomorphic to U is the quadruple which
corresponds to the registration type under the isomorphism. It follows that each
node is associated with at most n4 registrations.

The central problem is to compute the set of registrations R(U) at a node U
given the registration sets R(V), R(W) for the child nodes V,W. For definiteness
assume that U is a positive node (the negative case is similar). A quadruple
((m1,m2), (M1,M2)) is easily seen to belong to R(U) if and only if there exist
pairs (a, b) and (c, d) for which

((m1,m2), (a, b)) ∈ R(V) and ((c, d), (M1,M2)) ∈ R(W) and (a, b) < (c, d)

To compute these quadruples we proceed as follows. First, for every (m1,m2)
we search R(V) and determine the set of all (w, x) for which ((m1,m2), (w, x)) ∈
R(V) and we find the set Pm1,m2 of all minimal pairs in this set. Since the pairs
of Pm1,m2 are incomparable we can order them increasingly by first component
and have the second components decrease. Next, for every (M1,M2) we search
R(W) and determine the set of all (y, z) for which ((y, z), (M1,M2)) ∈ R(W)
and we find the set QM1,M2 of all maximal pairs in this set. Again, the pairs of
QM1,M2 are incomparable so we can order them increasingly by first component
and have the second components decrease.

Now, for each ((m1,m2), (M1,M2)) we have to test whether there exist pairs
(w, x) ∈ Pm1,m2 and (y, z) ∈ QM1,M2 for which (w, x) < (y, z). Since the com-
ponents are ordered as explained above this test can be made in time O(n log n).
As there are O(n4) quadruples each node requires time O(n5 log n). There are
k nodes in all so the total time is still O(n5 log n).

3 On-line algorithms

In this section we study a simpler version of the algorithm presented in the
previous section. This simpler version avoids the preprocessing stage (which
was exponential in k) while the second stage may be somewhat slower (but still
provably better than brute force search). The resulting algorithm only has to
scan the input τ once and so is referred to as an ‘on-line’ algorithm.

The simplification is to take the ordering of S in which the first components
come in the order 1, 2, . . . , k. The order in which the second components come
is then, by definition, the sequence s1, . . . , sk in the original description of σ
and, indeed, the entire algorithm can be presented in the more familiar setting
of subsequences of images of σ and τ . Furthermore the first components of
registrations need not be kept (indeed it is easily seen that Pi = {i}) since we
shall be processing τ = t1 . . . tn in left to right order. This form of recognition
is described in Algorithm 3.

8

Algorithm 3 On-line form of the recognition algorithm
for j := 1 to n do

for i := 0 to k − 1 do
for each R(θ) ∈ Ri do

Let y, z be defined as in Lemma 2.1
Let yθ, zθ be the elements of R(θ) that correspond to y, z
if yθ < tj < zθ then {φ = θtj ∈ Σi+1}

add R(φ) to Ri+1

end if
end for

end for
end for

We define d(σ) = max |Vi|. Arguing as in the previous section the execution
time of this algorithm is O(n1+d(σ) log n).

Lemma 3.1 c(σ)− 1 ≤ d(σ) ≤ 2k/3

Proof: Observe that Vi does not contain 3 consecutive values j − 1, j, j + 1
since, by definition, the condition j ∈ Vi implies that one of j − 1 and j + 1
does not belong to π2(Si) and so does not belong to Vi. So, in each triple
3j − 2, 3j − 1, 3j, at most two members can belong to Vi and the result follows.

Corollary 3.2 The decision problem σ � τ can be solved in time O(n1+2k/3 log n).
More generally, the number of occurrences of σ as a pattern within τ can be
computed in this time bound.

Proof: The algorithm above stores registrations R(θ) where θ is now a
subsequence of τ that is isomorphic to some σi. The registration is a subsequence
of θ with enough information that we can determine whether θtj is isomorphic
to σi+1. As we saw in the previous lemma |R(θ)| ≤ 2k/3 and the results follow
as in the previous section.

In many cases the upper bound given in the corollary can be greatly improved
since d(σ) is smaller than the upper bound in Lemma 3.1. In addition, we can
often exploit special information about σ that is unavailable in general. As an
example of such analyses we consider some classes of permutations σ for which
very significant improvements can be made. These classes are ‘closed sets’ in
the sense of [1] defined by their avoiding particular permutations. In general,
let A(ω1, ω2, . . .) denote the set of permutations which do not involve any of
ω1, ω2,

We begin by considering the set A(132, 312). It is easily seen that a per-
mutation σ belongs to this set if the values of any initial segment of σ form a
single interval. Equivalently, any initial segment of σ ends with its minimum or
maximum value.

9

Proposition 3.3 If σ ∈ A(132, 312) then d(σ) ≤ 2.

Proof: The result is almost immediate from the preceding description of
A(132, 312). Since the initial segment of length i consists of an interval of
values, Vi simply consists of the endpoints of that interval, or only one of the
endpoints if 1 or k already occur among the first i positions, and hence has size
at most 2. Thus d(σ) = maxi |Vi| ≤ 2.

This proposition establishes that there is an O(n3 log n) algorithm for recog-
nising whether σ � τ when σ ∈ A(132, 312). In fact, by a small modification
of the registration procedure we can reduce the complexity of this algorithm to
O(n2 log n).

With notation as in the proposition above, consider the elements of Vi as
pairs (a, b) representing the lower and upper endpoints of the corresponding
interval. In the näıve version of the algorithm we might well register two such
pairs (a, b) and (a′, b′) where

a′ < a < b < b′.

In this case the pair (a′, b′) can never be useful in the recognition of σ, since
any extensions which they allow will also be allowed by the (a, b) pair.

It follows that the registration information which we need to store for Vi can
be thought of as a sequence of pairs (a1, b1), (a2, b2), . . . (aj , bj) where

a1 < a2 < · · · < aj and
b1 < b2 < · · · < bj

In particular there can be at most n such pairs, rather than the O(n2) which are
budgeted for in the standard on-line algorithm. This modification reduces the
time complexity as claimed. It transpires that a further reduction to O(n log n)
is possible by the use of the data structures mentioned in the following section.

To within order isomorphism there are only three other infinite sets defined
by two length 3 restrictions. By analysing the structure of the permutations σ
in these classes we can prove fairly easily

Proposition 3.4 If σ is a permutation that satisfies at least two length 3 re-
strictions then d(σ) ≤ 3.

4 Permutations of length 4

We consider now the problem of finding efficient algorithms for recognising
whether σ ≤ τ in all cases where |σ| = 4. At first it seems that there are
24 individual problems of this type to be solved. However, the operations of:
reversing a permutation; taking the complement of a permutation; and taking
the inverse of a permutation, all respect the ordering �, and can be carried out
in O(n log n) time. So, if we can find an efficient algorithm for σ we also have

10

one for its reverse, complement, etc. This reduces the number of cases that we
need to consider in the present instance to 7, exemplified by:

σ = 1234, 2134, 2341, 2314, 1324, 2143, 2413.

In the first two cases d(σ) = 1 and so the on-line algorithms are of complexity
O(n2 log n). In both cases, and in general when d(σ) = 1, this is easily reduced
to O(n log n). This is accomplished by storing the registration information Ri

as a sorted list in such a way that we can search and insert in O(log n) time.
In the remaining cases d(σ) = 2, and so the on-line algorithms are of com-

plexity O(n3 log n). As in the case of A(132, 312) though, it is possible to
“prune” the registration information when it consists of pairs, to a set of size
O(n), and thereby gain an improvement in the running time of the algorithm to
O(n2 log n). In fact, in each case the running time can be reduced to O(n log n).
To accomplish this, requires the use of a tree-based data structure which permits
answering queries of a form similar to:

What is the smallest y > x which occurred between position q and
the present position?

for arbitrary parameters x and q, in O(log n) time. To take the case of 1324 as
an example, such a structure essentially allows registering the “best 3” in a 132
pattern up to the present position (where best in this case means minimum) in
O(log n) time. So the amount of time spent at each element of τ is O(log n),
and the total running time is O(n log n).

References

[1] M. D. Atkinson: Restricted permutations, Discrete Math. 195 (1999), 27–
38.

[2] P. Bose, J. F. Buss, A. Lubiw: Pattern matching for permutations, Inform.
Process. Lett. 65 (1998), 277–283.

[3] M.-S. Chang, F.-H. Wang: Efficient algorithms for the maximum weight
clique and maximum weight independent set problems on permutation
graphs, Inform. Process. Lett. 43 (1992), 293–295.

[4] O. Guibert: Personal communication.

[5] D.E. Knuth: Fundamental Algorithms, The Art of Computer Programming
Vol. 1 (First Edition), Addison-Wesley, Reading, Mass. (1967).

[6] V. R. Pratt: Computing permutations with double-ended queues, parallel
stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5
(1973), 268–277.

[7] R. Simion, F. W. Schmidt: Restricted permutations, Europ. J. Combina-
torics 6 (1985), 383–406.

11

[8] Z. E. Stankova: Forbidden subsequences, Discrete Math. 132 (1994), 291–
316.

[9] Z. E. Stankova: Classification of forbidden subsequences of length 4, Euro-
pean J. Combin. 17 (1996), 501–517.

[10] R. E. Tarjan: Sorting using networks of queues and stacks, Journal of the
ACM 19 (1972), 341–346.

[11] J. West: Generating trees and forbidden sequences, Discrete Math. 157
(1996), 363–374.

12

