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Abstract

Restricted permutations are those constrained by having to avoid subsequences or-
dered in various prescribed ways. They have functioned as a convenient descriptor
for several sets of permutations which arise naturally in combinatorics and com-
puter science. We study the partial order on permutations that underlies the idea
of restriction and which gives rise to sets of sequences closed under taking subse-
quences. In applications, the question of whether a closed set has a finite basis is
often considered. Several constructions that respect the finite basis property are
given. A family of closed sets, called profile-closed sets, is introduced and used to
solve some instances of the inverse problem:– describing a closed set from its basis.
Some enumeration results are also given.
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1 General setting

The study of permutations which are constrained by not having one or more
subsequences ordered in various prescribed ways has been motivated both by
its combinatorial difficulty and by its appearance in some data structuring
problems in Computer Science. The fundamental relation that underpins this
study is involvement which captures the idea of one sequence being ordered
in the same way as a subsequence of another. Two numerical sequences π =
[p1, p2, . . . , pm] and ρ = [r1, r2, . . . , rm] of the same length are said to be order
isomorphic if, for all i, j, pi < pj if and only if ri < rj. Order isomorphism
is clearly an equivalence relation on sequences. Throughout this paper we
shall consider only sequences of distinct elements. Every such sequence of
length n is order isomorphic to a unique permutation of 1, 2, . . . , n and, for
this reason, most of our results are stated for permutations. Unless otherwise
stated “permutation” will always mean an arrangement of 1, 2, . . . , n for some
n. Generally, sequences will be denoted by Greek letters and their elements
by Roman letters.
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If π and σ are sequences then π is said to be involved in σ if π is order iso-
morphic to a subsequence ρ of σ; we write π � σ. For example, [2, 3, 1, 4] �
[6, 3, 5, 7, 2, 4, 1, 8] because of the subsequence [3, 5, 2, 8] in the second permu-
tation. For permutations on a small number of symbols it is often convenient
to omit the brackets and commas and write 2314 � 63572418.

A map α from {1, . . . ,m} to {1, . . . , n} is said to be monotonic if α(i) < α(j)
whenever i < j. Monotonic maps allow us to describe the terms ‘subsequence’
and ‘order isomorphism’ using functional composition (which we apply from
left to right). Suppose that π and σ are permutations. A sequence of positive
integers is order isomorphic to π if and only if it has the form πα where α is a
monotonic map. Furthermore a sequence is a subsequence of σ if and only if
it has the form βσ with β a monotonic map. In particular π � σ if and only
if there exist monotonic maps α, β such that πα = βσ

A set X of permutations is said to be closed if, whenever σ ∈ X and π � σ,
then π ∈ X . Closed sets are the principal object of study in this paper. Many
natural sets of permutations are closed (some examples are given below) and a
structure theory of closed sets would have many consequences. The beginnings
of such a theory are given in Section 2 but much remains to be done.

The archetypal example of a closed set is the set of stack sortable permutations.
A sequence is stack sortable if, when it is presented as input to a stack and
subjected to an appropriate series of ‘push’ and ‘pop’ operations, the stack
can produce the elements in ascending order. It is evident that if a sequence
is stack sortable then so is any sequence order isomorphic to it and also any
subsequence. In particular, if σ is a stack sortable permutation and π � σ
then π is also stack sortable.

Stack sortable permutations were first studied in [8] where two results were
proved which have continued to inspire the study of closed sets. The first
is that a permutation is stack sortable if and only if it does not involve the
permutation 231. The second is that the number of stack sortable permutations
of length n is

(
2n
n

)
/(n + 1). The first of these results motivates the definition

of the ‘basis’ of a closed set below and allows several combinatorial results in
the literature to be described uniformly. We shall survey some of these below
and give some new results in the next section. The second result has been
generalised to a number of other closed sets and we shall present some further
results in section 3. At this point however it is convenient to introduce the
terminology Xn to denote the subset of X whose permutations have length n.

If X is closed let X ? denote the set of permutations, minimal with respect to
�, that do not belong to X . In turn, X ? determines X as {α|β 6� α for all β ∈
X ?}. The set X ? is called the basis of X . In this terminology the set of stack
sortable permutations has the basis {231}.
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Many natural closed sets of permutations X ? have a very simple basis. For
example:

• If X is the set of permutations that can be sorted by a restricted input
deque then X ? = {4231, 3241} [8,11,15].

• If X is the set of permutations that can be expressed as the interleaving of
two increasing subsequences then X ? = {321} [8].

• If X is the set of permutations that can be expressed as the interleav-
ing of an increasing subsequence and a decreasing subsequence then X ? =
{3412, 2143} (see [7,15]).

• If X is the set of permutations that can be obtained by a ‘riffle’ shuffle of
a deck of cards 1, 2, . . . , n then X ? = {321, 2143, 2413} (see the proof of
Proposition 14 below).

• If X is the set of all ‘separable’ permutations [6] then X ? = {3142, 2413}
(see also [13] where these permutations are considered in the context of
‘bootstrap percolation’).

However, there are also many closed sets whose basis is not simple to describe
nor even finite; examples of closed sets with an infinite basis are given in
[17,11]. The converse problem of describing the closed set defined by a given
basis B has also attracted some study; we call this closed set A(B), the letter
A recalling that A(B) is the set of permutations of lengths 1 or 2 (A({1}) is
empty, A({21}) consists only of identity permutations, etc.). In [14] Simion
and Schmidt gave complete descriptions of closed sets whose bases consist of
sets of permutations of length 3. Bóna [2,3], West [18] and Stankova [15,16]
have begun the study of bases comprising permutations of length 4 but this
is still very incomplete.

Another theme running through the above works is enumeration:– finding the
number of permutations of each length in a closed set. We let An(B) be the set
of permutations in A(B) of length n. Occasionally it is necessary to consider
the permutations of length n of some set other than {1, 2, . . . , n} which avoid
B but this set has the same size as An(B).

In all this work it is very useful to take advantage of some natural symmetries
based on the following facts (which were first made explicit in [14]). If σ
is any permutation on {1, 2, . . . , n}, let σ̄ and σ?, respectively, denote the
permutations obtained from σ by replacing every element si by n+1− si and
reversing the elements of σ. Also, as usual, let σ−1 denote the permutation
inverse of σ. Then

(1) If π � σ then π̄ � σ̄
(2) If π � σ then π? � σ?

(3) If π � σ then π−1 � σ−1

These 3 symmetries generate the dihedral group D of order 8. It acts in a
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natural way on sets of permutations. As a direct consequence of the definitions
we have

Lemma 1 If λ is any element of the symmetry group D and X is any closed
set of permutations with basis X ? then λ(X ) is closed and has basis λ(X ?).
Furthermore, |Xn| = |λ(X )n| for all n.

As an example of the power of this lemma consider the problem of finding
A(σ) when σ has length 4. Although there are 24 such problems they fall into
7 symmetry classes under the action of D. According to the lemma |An(σ)| =
|An(τ)| whenever σ and τ are equivalent under D. Mysteriously, this equation
sometimes holds when σ and τ are not equivalent. Some reasons for this are
given in [15,16,18,19] which use generating trees but these do not furnish a
complete explanation. There are other equalities of this sort also [14,19]; again,
generating trees explain these in some cases.

In section 2 of the paper we give some constructions and results for combining
closed sets. We follow this with a discussion of a large family of closed sets each
of which has a finite basis and use them to solve a problem on riffle shuffles.
In section 3 we consider closed sets where the basis consists of a permutation
of length 3 and a permutation of length 4. West [19] has reported on some
enumeration results for this problem, omitting most of the proofs. Our results
confirm his (and are available electronically [1]). Here we give only some new
results obtained by the elementary structure theory in section 2 but they
suggest how effective a more general structure theory would be.

2 Some finitely based sets

2.1 Constructions

There are several ways in which one or more closed sets can give rise to another
closed set. This subsection reviews some constructions which respect the finite
basis property.

Theorem 2 Suppose that X and Y are closed sets. Then X ∩ Y and X ∪ Y
are also closed. Moreover if X and Y each have a finite basis then both X ∩Y
and X ∪ Y have a finite basis.

PROOF. That X ∩ Y and X ∪ Y are closed follows directly from the defi-
nitions. Now suppose that X = A(S) and Y = A(T ) for finite sets S and T .
Since, obviously, X ∩ Y = A(S ∪ T ) it follows that X ∩ Y has a finite basis.
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Finally consider a permutation α in the basis of X ∪ Y . Such a permutation
belongs neither to X nor to Y and so has subsequences σ and τ which are order
isomorphic to permutations in S and T respectively. However, α is minimal
and so no proper subsequence also has this property. Thus α must be the
union of σ and τ and so has bounded length. Therefore there are only finitely
many possibilities for α.

Theorem 3 Suppose that X and Y are closed sets each with a finite basis.
Let [X ,Y ] be the set of all permutations which are concatenations στ where
σ is order isomorphic to a permutation in X and τ is order isomorphic to a
permutation in Y. Then [X ,Y ] is closed. Moreover if X and Y are each finitely
based then so is [X ,Y ]

PROOF. It is evident that [X ,Y ] is closed. Suppose that X and Y are each
finitely based and that α is a permutation in the basis of [X ,Y ]. Let α = στk
where k is the last symbol of α and where (since α is minimal with respect to
not belonging to [X ,Y ]) we may presume that σ and τ are order isomorphic to
permutations of X and Y respectively. Among all such decompositions for α
choose the one with σ of maximal length. Then, if t is the first symbol of τ , σt
is not order isomorphic to a permutation in X and τk is not order isomorphic
to a permutation in Y .

It follows that σt has a subsequence σ′t order isomorphic to a permutation
in the basis S of X and τk has a subsequence τ ′k order isomorphic to a
permutation in the basis T of Y . But then the subsequence σ′tτ ′k (or σ′τ ′k if
t is a symbol of τ ′) of α cannot be order isomorphic to a permutation of [X ,Y ]
and, by minimality of α, must be α itself. Since σ′t and τ ′k are bounded in
length (since S and T are finite), the length of α is also bounded.

Noonan [9,10] and Bóna [4,5] have investigated classes of permutations which
are allowed to involve a finite set permutations (particularly 123 or 132) but
only a limited number of times. In general, given a finite list α1, . . . , αk of
permutations and a list m1, . . . ,mk of non-negative integers, we let

Y(α1, . . . , αk, m1, . . . ,mk)

denote the set of permutations σ which involve each αi at most mi times (i.e.
σ has at most mi subsequences order isomorphic to αi), and we let

Z(α1, . . . , αk, m1, . . . ,mk)
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denote the set of permutations σ which involve each αi exactly mi times.
Notice that

Y(α1, . . . , αk, m1, . . . ,mk) =
⋃

pi≤mi

Z(α1, . . . , αk, p1, . . . , pk)

It is conjectured in [10] that all Z-type sets have P -recursive enumeration
sequences. By inclusion-exclusion this is equivalent to all Y-type sets having
P -recursive enumeration sequences. The following theorem shows that this
conjecture would follow from the (apparently weaker) conjecture of Gessel
that all finitely based closed sets have P -recursive enumeration sequences.

Theorem 4 Y(α1, . . . , αk, m1, . . . ,mk) is closed and finitely based.

PROOF. Obviously Y(α1, . . . , αk, m1, . . . ,mk) is closed. Let π be a basis
permutation. Then π 6∈ Y(α1, . . . , αk, m1, . . . ,mk) and so, for some i, π has
at least mi + 1 subsequences order isomorphic to αi. But the union of these
mi+1 subsequences is a subsequence of π also not in Y(α1, . . . , αk, m1, . . . ,mk);
therefore, as π is minimal, this union must be π itself. Thus |π| is bounded.

All the theorems of this subsection are, in principle, constructive. For exam-
ple, the method of the last theorem gives that Y(123, 1) (see [9]) has basis
{1234, 1243, 1324, 2134, 14523, 34125, 351624, 356124, 451623, 456123}.

2.2 Profile classes

If A and B are sets or sequences we write A < B to denote that a < b
for all a ∈ A, b ∈ B. As a first use of this notation we define the profile of
a permutation. If ρ and π are permutations then ρ is said to have profile
π = [p1 . . . pm] if ρ has a partition into segments ρ = ρ1 . . . ρm where m is
minimal subject to

(1) each ρi is a non-empty sequence of increasing consecutive symbols
(2) ρi < ρj if and only if pi < pj

For example, 34597812 has profile 2431 because of its segments 345, 9, 78, 12.
Clearly, a permutation determines its profile uniquely. Not every permutation
can be a profile however; to be a profile the permutation must not contain any
segment t, t + 1.

Lemma 5 If π is a valid profile and has length m then the number of permu-
tations of length n which have profile π is

(
n−1
m−1

)
.
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PROOF. If ρ is a permutation with profile π (by way of a decomposition
ρ = ρ1 . . . ρm) then ρ is determined by the lengths of the ρi, i.e. by an ordered
set of m positive integers whose sum is n. Since every such composition of n
can arise in this way and there are

(
n−1
m−1

)
such compositions the result follows.

We define a set Σ of permutations to be profile-closed if all its members are
valid profiles and, whenever β is a valid profile with β � α ∈ Σ, then β ∈ Σ.
The profile closure of a set of profiles is defined to be the smallest profile-
closed set containing it. As an example, the profile closure of {2431} is the
profile-closed set {2431, 132, 321, 21, 1}.

Theorem 6 If Σ is a profile-closed set of permutations then P (Σ), the set of
permutations whose profile lies in Σ, is closed. Furthermore, if Σ is finite then
P (Σ) has a finite basis.

PROOF. It follows from the definitions that, if ρ has profile π and λ � ρ,
then λ has profile µ where µ � π. This proves the first part. For the second
part let β be a permutation on 1, 2, . . . ,m in the basis of P (Σ). Suppose that
β has two adjacent consecutive symbols t, t + 1; then β and β − t have the
same profile. However, β − t is order isomorphic to a permutation in P (Σ)
and so its profile lies in Σ. Thus β ∈ P (Σ) which is impossible. Hence no two
adjacent symbols of β can be consecutive.

The permutation β −m can have at most two adjacent consecutive symbols
(which, in β, were separated by m) and so β −m has length at most 1 more
than the length of its profile. But β −m ∈ P (Σ) and so its profile lies in Σ.
Therefore the length of β is bounded and the proof is complete.

We shall appeal to these results in the next section. They may be generalised in
several ways. We can, of course, consider profiles based on decreasing segments
rather than increasing segments. More interestingly we can consider profiles
where segments are allowed to be both increasing and decreasing; a similar
finite basis result can be proved. We can also consider permutations with a
profile where one or more of the increasing segments is of bounded length. In
particular, in the next section we require, at one point, profiles where one of
the segments has length 0 or 1; we shall show this by a superscript 1; so, for
example, permutations with the (generalised) profile 1312 would be structured
as [1, 2, . . . , k, n, k + 1, . . . , n− 1] for some k.
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2.3 Riffle shuffles

We have already mentioned, in section 1, the closed set of permutations ob-
tained by a standard riffle shuffle of a deck of n cards. These riffle shuffle
permutations are, of course, just merges of cards 1, 2, . . . ,m (for some m) and
cards m + 1, . . . , n. More generally we wish to consider Sr the set of r-shuffles
which are defined by cutting a deck into r sections and interleaving these sec-
tions in any way. The inverse of an r-shuffle π is, by definition, an ordering
of the deck of cards from which the r-shuffle π could restore the deck to its
original order.

Lemma 7 A permutation π of length n is an r-shuffle if and only if there
exist partitions

⋃r
k=1 Ak and

⋃r
k=1 Ik of {1, . . . , n} such that

(1) Ik < Ik+1 for all k
(2) π(Ak) = Ik for all k
(3) π|Ak

is monotonic increasing for all k

PROOF. An r-shuffle begins by dividing {1, . . . , n} into segments I1, . . . , Ir

satisfying property 1. When the segments are interleaved each set Ik is dis-
tributed, without disturbing its order, into a set of positions Ak of the resulting
permutation π and therefore conditions 2 and 3 hold. The converse is clear.

An immediate consequence of this lemma is a corresponding characterisation
of the inverses of shuffles.

Lemma 8 A permutation π of length n is the inverse of a t-shuffle if and
only if there exist partitions

⋃t
k=1 Bk and

⋃t
k=1 Jk of {1, . . . , n} such that

(1) Jk < Jk+1 for all k
(2) π(Jk) = Bk for all k
(3) π|Jk

is monotonic increasing for all k

Notice that π is the inverse of a t-shuffle if and only if π has at most t − 1
descents (positions i where πi > πi+1). The number St(n) of permutations of
this type is the classical Simon Newcomb’s problem (see p.213ff of [12]). Also
notice that S−1

t = [I, I, . . .] where I is the set of all identity permutations
and so S−1

t and St are finitely based by Theorem 3 and Lemma 1.

The main result of this subsection is a structure theorem for the closed set
Sr ∩ S−1

t .
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Theorem 9 Let Σ be the profile closure of the single permutation

[1, r + 1, 2r + 1, . . . , (t− 1)r + 1, 2, r + 2, . . . , (t− 1)r + 2, 3, . . . , n]

Then P (Σ) = Sr ∩ S−1
t .

PROOF. Suppose that π ∈ Sr ∩S−1
t . Let {Ai}r

k=1, {Ik}r
k=1, {Bk}t

k=1, {Jk}t
k=1

be the sets defined and guaranteed by the previous two lemmas. Let Chk =
Ah ∩ Jk and Dhk = Ih ∩Bk.

Since Chk, Ch+1,k ⊆ Jk, π|Jk
is monotonic increasing, and

π(Chk) = Dhk = Ih ∩Bk < Ih+1 ∩Bk = Dh+1,k = π(Ch+1,k)

we have Chk < Ch+1,k. Furthermore Crk = Ar ∩ Jk < A1 ∩ Jk+1 = C1,k+1.
Therefore

C11 < C21 < . . . < Cr1 < C12 < C22 < . . .

Also, by a similar argument,

D11 < D12 < . . . < D1s < D21 < D22 < . . .

It follows that the profile of π is in the set Σ. This proves one half of the
Theorem. The converse can be proved by reversing the foregoing argument.

In principle, this theorem allows the enumeration problem to be solved for any
fixed Sr ∩ S−1

t . We illustrate this for the standard riffle shuffles (2−shuffles)
in the next lemma.

Lemma 10 The number of riffle shuffles of a deck of n cards which can be
restored by a riffle shuffle is

(
n+1

3

)
+ 1.

PROOF. According to Theorem 9 S2∩S−1
2 = P (Σ) where Σ = {1324, 213, 132, 21, 1}

is the profile closure of 1324. Therefore, by Lemma 5,

|(S2 ∩ S−1
2 )n|=

(
n− 1

3

)
+ 2

(
n− 1

2

)
+

(
n− 1

1

)
+

(
n− 1

0

)

=

(
n + 1

3

)
+ 1
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3 Closed sets with a basis of two permutations of lengths 3 and 4

In this section we consider all closed sets which have a basis of two permu-
tations, α of length 3, β of length 4. Of the 144 = 3! × 4! pairs of such
permutations we may immediately reduce to a complete set of pairs inequiv-
alent under the symmetry group D. There are 30 such pairs but 12 of them
are degenerate in the sense that α � β and therefore {α, β} is not a basis of
a closed class. For the remaining 18 pairs the following table gives the values
of an = |An(α, β)| or a recurrence relation they satisfy. Every pair α, β with
α 6� β is equivalent to one of these pairs.

α, β an = |An(α, β)|

1 123, 4321 0 for n ≥ 7

2 321, 2134 n +
(

n
3

)
+
(

n+1
4

)
3 321, 1324 1 +

(
n
2

)
+
(

n+2
5

)
4 132, 4321 1 +

(
n+1

3

)
+ 2

(
n
4

)
5 123, 4213 3× 2n−1 −

(
n+1

2

)
− 1

6 123, 3412 2n+1 − 2n− 1−
(

n+1
3

)
7 132, 4312 (n− 1)2n−2 + 1

8 132, 4231 (n− 1)2n−2 + 1

9 132, 3214 an = 4an−1 − 5an−2 + 3an−3

10 123, 3214 an = 3an−1 − an−2

11 132, 1234 an = 3an−1 − an−2

12 132, 4213 an = 3an−1 − an−2

13 132, 4123 an = 3an−1 − an−2

14 132, 3124 an = 3an−1 − an−2

15 123, 2143 an = 3an−1 − an−2

16 123, 3142 an = 3an−1 − an−2

17 132, 2134 an = 3an−1 − an−2

18 132, 3412 an = 3an−1 − an−2

The table contains essentially the same information as the data given by West
in [19] which he obtained with a generating tree approach; he gave detailed
proofs for cases 5, 10, and 15 only. Rather than give the detailed proofs here we
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invite the reader to consult [1] where proofs which avoid the use of generating
trees are given. Instead, we shall look at those entries in the table where
the theory of the previous section allows us to derive structure theorems for
An(α, β) from which the corresponding enumeration result follows easily.

The following three propositions treat those cases where the enumeration for-
mula is a polynomial. Since the proof strategies are all similar we give details
for the last only.

Proposition 11 If α = 321 and β = 2134 then A(α, β) is the set of per-
mutations whose profiles are in the profile closure of 146271351. Moreover,
|An(α, β)| = n +

(
n
3

)
+
(

n+1
4

)
Proposition 12 If α = 321 and β = 1324 then A(α, β) is the set of permuta-
tions whose profiles are in the profile closure of 21354 and 351624. Moreover,
|An(α, β)| = 1 +

(
n
2

)
+
(

n+2
5

)
Proposition 13 If α = 132 and β = 4321 then A(α, β) is the set of permu-
tations whose profiles are in the profile closure of 32415 and 42135. Moreover,
|An(α, β)| = 1 +

(
n+1

3

)
+ 2

(
n
4

)

PROOF. Note first that the profile closure of 32415 and 42135 is the set of
profiles

P = {32415, 42135, 3214, 3241, 4213, 213, 321, 21, 1}

It is straightforward to verify that any permutation whose profile is in P must
avoid both 132 and 4321. To prove that any permutation of length n which
avoids both 132 and 4321 has profile in P we argue by induction on n. Let σ′

be the permutation obtained by removing n from σ. By induction, the profile
of σ′ is one of the profiles in P . We shall consider the different possibilities for
the profile of σ′ and verify that when n is inserted into such a permutation to
produce a permutation that avoids both 132 and 4321 then the result has a
profile that is also in P .

(1) σ′ = γ3γ2γ4γ1γ5. This is the case that σ′ has profile 32415; each γi is an
increasing sequence of consecutive symbols and the subscripts indicate
the relative values of symbols in different γi. Notice that n cannot be
inserted in the interior of any γi since that would introduce a subsequence
order isomorphic to 132 (this observation applies to all the cases). Also
n cannot be inserted before γ3 since that would introduce a subsequence
order isomorphic to 4321. Nor can n be inserted anywhere between γ3

and γ5 for that would produce a subsequence order isomorphic to 132.
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So the only valid place where n can be inserted is after γ5 and then the
result also has profile 32415

(2) σ′ = γ4γ2γ1γ3γ5. Again we need only consider insertion points for n which
fall between γ-strings and, just as above, the only possible place is at the
end of σ′ giving a permutation also of profile 42135.

(3) σ′ = γ3γ2γ1γ4. The argument is exactly the same.
(4) σ′ = γ3γ2γ4γ1. To avoid introducing a subsequence order isomorphic to

4321 or 132 the only possible places to insert n are between γ4 and γ1,
or after γ1. The former yields a permutation with profile 3214 and the
latter yields a permutation with profile 32415.

(5) σ′ = γ4γ2γ1γ3. Here the valid insertion points are between γ4 and γ2

which gives the profile 4213, and after γ3 giving the profile 42135.

For σ′ of the form γ2γ1γ3, γ3γ2γ1, γ2γ1, γ1 the argument is similar.

Finally, we apply Lemma 5 to each of the profiles in P . This shows that
|An(α, β)| = 2

(
n−1

4

)
+ 3

(
n−1

3

)
+ 2

(
n−1

2

)
+
(

n−1
1

)
+
(

n−1
0

)
= 1 +

(
n+1

3

)
+ 2

(
n
4

)

We end with a result that demonstrates that profile-closed classes are useful
even when the enumeration formula is not a polynomial.

Proposition 14 (1) A(321, 2143) = A(321, 2143, 3142)∪A(321, 2143, 2413)
(2) A(321, 2143, 3142) = S−1

2

(3) A(321, 2143, 3142)−1 = A(321, 2143, 2413) = S2

(4) |An(321, 2143, 3142)| = 2n − n

(5) |An(321, 2143)| = 2n+1 − 2n− 1−
(

n+1
3

)

PROOF. For part 1 we can confirm, by case checking, that any permutation
τ which involves 3142 and 2413 necessarily involves 321 or 2143; only a finite
number of cases have to be checked since we may presume that τ is a minimal
permutation involving 3142 and 2413 (and so of length at most 8). This implies
that a permutation which avoids 321 and 2143 must avoid at least one of 3142
and 2413.

For part 2 it is easy to see that the right-hand side set is contained in the
left-hand side set. Now let σ ∈ A(321, 2143, 3142) and write

σ = [1, 2, . . . ,m, a1, a2, . . . , ar, m + 1, b1, . . . , bs]

where m ≥ 0 and r ≥ 1. Since every ai > m + 1 and σ avoids 321 a1 < a2 <
. . . < ar. Moreover b1, . . . , bs must also be increasing since, if bi > bi+1 then
the subsequence [a1, m + 1, bi, bi+1] is either order isomorphic to 4132 which
involves 321 if a1 > bi, or order isomorphic to 3142 if bi > a1 > bi+1, or order
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isomorphic to 2143 if bi+1 > ai. Thus, σ = γδ where γ, δ are increasing and so
σ ∈ S−1

2 .

Part 3 is true because the permutation inverse of 3142 is 2413.

For part 4 a permutation σ = γδ (with γ, δ increasing) of An(321, 2143, 3142)
is defined once the subset of values in γ is determined. However, although
there are 2n such subsets, n + 1 of them (those of the form {1, 2, . . . , i}) all
give the same permutation σ and so there are 2n − n such permutations.

Finally, to prove part 5 we use

|An(321, 2143, 3142) ∪ An(321, 2143, 2413)|=
|An(321, 2143, 3142)|+ |An(321, 2143, 2413)| −
|An(321, 2143, 3142) ∩ An(321, 2143, 2413)|

However, by Theorem 9, A(321, 2143, 3142) ∩ A(321, 2143, 2413) = S2 ∩ S−1
2

and so, by Lemma 10, this means that

|An(321, 2143, 3142) ∩ An(321, 2143, 2413)| =
(
n + 1

3

)
+ 1

The result now follows using part 4.
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[4] M. Bóna:The number of permutations with exactly r 132-subsequences is P-
recursive in the size!, Advances in Applied Mathematics, 18 (1997), 510–522.

[5] M. Bóna:Permutations with one or two 132-subsequences. To appear in Discrete
Math.

[6] P. Bose, J.F. Buss, A. Lubiw: Pattern matching for permutations, WADS 93,
Lecture Notes in Computer Science 709, 200–209, Springer-Verlag (Berlin -
Heidelberg) 1993.

13
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Math. 146 (1995), 247–262.

[19] J. West: Generating trees and forbidden sequences, Discrete Math. 157 (1996),
363–374.

14


