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Subclasses of the separable permutations

Michael H. Albert, M. D. Atkinson and Vincent Vatter

Abstract

The separable permutations are those that can be obtained from the trivial permutation by two
operations called direct sum and skew sum. This class of permutations contains the class of stack
sortable permutations, Av(231), which are enumerated by the Catalan numbers. We prove that
all subclasses of the separable permutations which do not contain Av(231) or a symmetry of this
class have rational generating functions. Our principal tools include partial well-order (the lack
of an infinite antichain), atomicity (the joint embedding property), and the theory of strongly
rational permutation classes which is introduced here for the first time.

1. Introduction

The separable permutations are those that can be built from the trivial permutation 1 by
repeatedly applying two operations, known as direct sum (or simply, sum) and skew sum (or
simply, skew) which are defined, respectively, on permutations π of length m and σ of length
n by

(π ⊕ σ)(i) =

{
π(i) if 1 � i � m,

σ(i − m) + m if m + 1 � i � m + n,

(π � σ)(i) =

{
π(i) + n if 1 � i � m,

σ(i − m) if m + 1 � i � m + n.

In this introductory section, we recapitulate some known results about the separable permu-
tations and some related sets of permutations. The operations ⊕ and � are best understood
by considering the plots of the permutations, as in Figure 1.

While the term ‘separable permutation’ dates only to the work of Bose, Buss, and Lubiw [6],
these permutations have a long history, going back at least to Avis and Newborn’s work
on pop stacks [5]. Separable permutations are the permutation analog of two other well-
studied classes of object: complement-reducible graphs (also called cographs, or simply P4-free
graphs), and series-parallel (or N -free) posets. A folkloric result (which also follows from the
characterizations of these analogous classes) characterizes the separable permutations.

Proposition 1.1. A permutation π is separable if and only if it contains neither 2413 nor
3142.

In Proposition 1.1, we say that the permutation π of length n contains the permutation σ of
length k (written σ � π) if π has a subsequence of length k order isomorphic to σ. For example,
π = 34918672 (written in a list, or one-line notation) contains σ = 51342, as can be seen by
considering the subsequence 91672.
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Figure 1. An example of a direct sum and a skew sum.

Our interest is with sets of permutations which are closed downwards under this containment
order, which we call permutation classes (or just classes). Thus, C is a class if, for all π in C
and all σ � π, σ is also in C. One way to specify classes is as closures: if X is any set of
permutations, then its closure is the permutation class

Cl(X) = {σ : σ � π for some π ∈ X}.

It is also occasionally useful to specify classes by what they do not contain; for any permutation
class C there is a unique (and possibly infinite) antichain B such that

C = Av(B) = {π : π � β for all β ∈ B}.

This antichain B is called the basis of C, so the basis of the separable class is {2413, 3142}.
Another way to characterize the separable permutations is provided by the next result; in this
result, we write C ⊕ D for the set of permutations of the form π ⊕ σ, where π lies in C and σ
lies in D, and extend this definition to C � D analogously. (If C and D are permutation classes,
then so are C ⊕ D and C � D.)

Proposition 1.2. The class of separable permutations is the smallest nonempty class C
that satisfies both C ⊕ C ⊆ C and C � C ⊆ C.

Any class satisfying C ⊕ C ⊆ C is called sum closed, while any class satisfying C � C ⊆ C is
called skew closed.

The separable permutations contain a notable subclass Av(231), which Knuth [11] showed
are precisely the permutations that can be sorted by a stack (a last-in first-out list). A result
similar to Proposition 1.2 holds for Av(231) as well.

Proposition 1.3. The class Av(231) is the smallest nonempty class C that satisfies both
C ⊕ C ⊆ C and 1 � C ⊆ C.
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In fact, since both basis elements (2413 and 3142) of the separable class contain every
nonmonotone permutation of length 3, all four of the classes Av(132), Av(213), Av(231), and
Av(312) are contained in the separable permutations, and each of these has a characterization
similar to the one given by Proposition 1.3. These four classes are all symmetric images of one
another under the operations of reversal, inverse, and complementation (or compositions of
these), each of which preserves the containment order.

For any class C (or more generally any set of permutations), we denote by Cn the set of
permutations in C of length n, and say that the generating function for C is

∑
|Cn|xn. Whether

this sum includes the empty permutation (n = 0) is a matter of taste and convenience, and we
generally elect to omit it.

Note that every separable permutation of length at least 2 (and by extension, every
permutation in Av(231) of length at least 2) is either sum decomposable, meaning that it
is equal to π ⊕ σ for two shorter permutations π and σ, or is skew decomposable, which is
defined analogously. No permutation is both sum and skew decomposable, so the separable
permutations may therefore be partitioned into three disjoint sets: {1}, the sum decomposable
separable permutations, and the skew decomposable separable permutations. This observation
allows one to easily enumerate the class.

Proposition 1.4. The generating function for the separable permutations is

1 − x −
√

1 − 6x + x2

2
,

and thus the number of separable permutations of length n is the nth large Schröder number.

Proof. Let f denote the generating function for the class of separable permutations, f⊕-dec

the generating function for its sum decomposable elements, and f�-dec the generating function
for its skew decomposable elements. As observed above, we have f = x + f⊕-dec + f�-dec.
Any sum decomposable permutation may be written uniquely as the direct sum of a sum
indecomposable permutation and another permutation, so since the separable class is sum
closed, we have f⊕-dec = (f − f⊕-dec)f . Solving this shows that f⊕-dec = f2/(1 + f), and then
by symmetry f�-dec = f2/(1 + f), so f = x + 2f2/(1 + f). Solving this quadratic yields the
desired generating function.

A similar approach gives the generating function for Av(231).

Proposition 1.5. The generating function for Av(231) is

1 − 2x −
√

1 − 4x

2x
,

and thus the number of 231-avoiding permutations of length n is the nth Catalan number.

Proof. Again let f denote the generating function for Av(231), and let f⊕-dec and f�-dec,
respectively, count the sum and skew decomposable permutations in this class. Since Av(231)
is sum closed, by the same logic as in the proof of Proposition 1.4, f⊕-dec = f2/(1 + f). Now
note that π � σ ∈ Av(231) if and only if π is decreasing and σ ∈ Av(231). Thus, every skew
decomposable permutation in Av(231) may be written uniquely as 1 � σ for σ ∈ Av(231),
so f�-dec = xf . Substituting these values into the equation f = x + f⊕-dec + f�-dec yields that
f = x(1 + f)2, and solving this quadratic gives the generating function claimed.
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Note that both of these generating functions are nonrational. While it may happen by
accident that a particular superclass C ⊇ Av(231) has a rational generating function, we expect
‘typical’ superclasses to have nonrational generating functions. Our main result establishes the
converse: if C is a subclass of the separable permutations that does not contain any of Av(132),
Av(213), Av(231), or Av(312), then C has a rational generating function.

2. Partial well-order and atomicity

Many of our arguments depend on the partial well-order (pwo) property. In the context of the
containment order on permutations, a permutation class has the pwo property if it does not
contain an infinite antichain. This property has the following well-known consequence which is
important to us because it allows us to consider minimal counterexamples within a pwo class.

Proposition 2.1. The subclasses of a pwo class C satisfy the minimum condition, that is,
every family of subclasses of a pwo class C has a minimal subclass under inclusion.

Proof. If there were a family of subclasses with no minimal element, then we could,
inductively, find a strictly descending chain

C1 � C2 � . . .

of subclasses of C. For each i � 1, choose βi ∈ Ci \ Ci+1. The set of minimal elements of
{β1, β2 . . .} is an antichain and therefore finite. Hence, there exists an integer n such that
{β1, β2, . . . , βn} contains these minimal elements. In particular, βm � βn+1 for some m � n,
but Cn+1 is a class, and therefore βm ∈ Cn+1 ⊂ Cm+1, which is a contradiction.

For any class C, we define its sum completion ⊕C as the smallest sum-closed class containing
C, and we define its strong completion sc(C) as the smallest sum and skew-closed class
containing C. In this notation, [2, Theorem 2.5] states the following proposition.

Proposition 2.2. The sum completion and the strong completion of a pwo class are pwo.

Because the separable permutations are the strong completion of the set {1}, the separable
class is pwo.

Another key concept that we shall require is atomicity. A permutation class is called atomic
if it cannot be written as the union of two proper subclasses. The notion of atomicity was first
studied (in the more general context of relational structures) by Fräıssé [10], who established
several alternative characterizations of this property. The only characterization we require
features in our next proposition. For a proof of this result in the context of permutations, we
refer to Atkinson, Murphy, and Ruškuc [3, Theorem 1.2].

Proposition 2.3. If C is an atomic class, then there is a chain α1 � α2 � . . . of
permutations in C such that C = Cl({α1, α2, . . .}).

We refer to such a chain as a spine for the class.
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3. Strongly rational classes

Our main goal is to prove that if a subclass of the separable permutations does not contain
Av(231) or any of its symmetries, then it and each of its subclasses have rational generating
functions. In this section, we study this powerful property in its own right, beginning by naming
it: the permutation class C is strongly rational if it and each of its subclasses have rational
generating functions. While strongly rational classes are naturally defined and appear to be
the ‘correct’ context in which to state and prove the tools of this section, they have received
virtually no attention before, and many conjectures remain.

Proposition 3.1. The union and intersection of two strongly rational classes are strongly
rational.

Proof. The intersection of two strongly rational classes is contained in both of them, and
so is strongly rational by definition. Now suppose that C and D are strongly rational and
that E ⊆ C ∪ D. Since E = (C ∩ E) ∪ (D ∩ E), we can enumerate it by inclusion–exclusion: the
generating function for E is the generating function for C ∩ E plus the generating function for
D ∩ E minus the generating function for C ∩ D ∩ E . As C and D are strongly rational, each of
these three generating functions are rational, so E has a rational generating function, verifying
that C ∪ D is strongly rational.

We note that Proposition 3.1 does not hold for classes with rational generating functions in
general. Neither does our next proposition, which follows from an argument of Atkinson and
Stitt [4] first formalized by Murphy [13, Chapter 9] (although not in this context).

Proposition 3.2. Strongly rational classes are partially well ordered.

Proof. Suppose that the class C is not pwo. Therefore, it contains an infinite antichain, and
in particular contains an infinite antichain A ⊆ C with at most one member of each length. If
A(1) �= A(2) are two subsets of A, then the two subclasses C ∩ Av(A(1)) and C ∩ Av(A(2)) have
different enumerations; in particular, if A(1) and A(2) agree up to permutations of length n − 1
but disagree on permutations of length n, then C ∩ Av(A(1)) and C ∩ Av(A(2)) will have the
same enumeration up to length n − 1 but will differ on length n permutations. Because A is
infinite, it follows that C has uncountably many subclasses with different generating functions.
These generating functions cannot all be rational, so C is not strongly rational.

Our next step on the path to more powerful tools is the following proposition.

Proposition 3.3. If the class C is strongly rational, then each of the following sets have
rational generating functions:

(1) the sum indecomposable permutations in C;
(2) the sum decomposable permutations in C;
(3) the skew indecomposable permutations in C and
(4) the skew decomposable permutations in C.

Proof. It suffices to prove the claim for the sum indecomposable permutations in C as
the remaining cases follow by symmetry or subtraction. If the claim were false, then, because
strongly rational classes are pwo by Proposition 3.2, the minimum condition of Proposition 2.1



Page 6 of 12 MICHAEL H. ALBERT, M. D. ATKINSON AND VINCENT VATTER

shows that any counterexample would have a minimal subclass that was also a counterexample.
Choose C to be such a minimal counterexample. By Proposition 2.2, the class ⊕C is pwo and
so the antichain of minimal elements of the difference (⊕C) \ C is a finite set, say {β1, . . . , βm}.
(These βi are nothing other than the sum decomposable basis elements of C.) Now decompose
each βi as

βi = βi,1 ⊕ βi,2 ⊕ . . . ⊕ βi,ni
,

where each βi,j is sum indecomposable. For any permutation π, we define b(π) = (b1, . . . , bm)
where each bi is chosen so that π contains βi,1 ⊕ . . . ⊕ βi,bi

but avoids βi,1 ⊕ . . . ⊕ βi,bi
⊕ βi,bi+1 .

Note that b(π) � n − 1 = (n1 − 1, . . . , nm − 1) for all permutations π ∈ C. (Here and in what
follows we partially order vectors by the dominance order, meaning that (q1, . . . , qm) �
(p1, . . . , pm) if and only if qi � pi for all 1 � i � m.)

We need to define a variety of generating functions:
(1) f denotes the generating function for the class C;
(2) for a vector p of natural numbers, fp denotes the generating function for all permutations

in C which avoid βi,pi+1 ⊕ . . . ⊕ βi,ni
for all i;

(3) f⊕-dec denotes the generating function for the sum decomposable permutations in C;
(4) f⊕-ind denotes the generating function for the sum indecomposable permutations in C

and
(5) for a vector p of natural numbers, fp

⊕-ind denotes the generating function for the sum
indecomposable permutations in C with b(π) = p.

Note that f⊕-ind, the generating function we wish to prove rational, is the sum of the
generating functions fp

⊕-ind for all 0 � p � n − 1. We begin by claiming that fp
⊕-ind is rational

for all 0 � p < n − 1. We establish this claim by induction on the sum of the entries of p. It
is clearly true for the base case f0

⊕-ind, as this function counts sum indecomposable elements
of the proper subclass {π ∈ C : b(π) = 0} of C. For larger p, fp

⊕-ind can be expressed as the
difference between the generating function for sum indecomposable elements of the proper
subclass {π ∈ C : b(π) � p} of C (which is rational by our choice of C) and the sum of the
generating functions fq

⊕-ind for all 0 � q < p (which are rational by induction). With this claim
established, our goal is only to show that fn−1

⊕-ind is rational.
We now enumerate C, thereby expressing f , which is known to be rational, in terms of the

fp
⊕-ind and fp functions. In the resulting equation, fn−1

⊕-ind will be the only term not already
known to be rational, yielding a contradiction and completing the proof.

Consider the sum decomposable permutations of C. Each of these can be expressed uniquely
as σ ⊕ τ , where σ is sum indecomposable and so, counting how many of the summands in βi

are contained in σ, we see that f⊕-dec is the sum of fp
⊕-indfp for all vectors 0 � p � n − 1. As

f⊕-ind is the sum of the generating functions fp
⊕-ind, we obtain the equation

f = f⊕-ind + f⊕-dec =
∑

0�p�n−1

fp
⊕-ind +

∑
0�p�n−1

fp
⊕-indfp =

∑
0�p�n−1

fp
⊕-ind(fp + 1).

Solving for fn−1
⊕-ind shows that

fn−1
⊕-ind =

f −
∑

0�p<n−1 fp
⊕-ind(fp + 1)

fn−1 + 1
.

We have shown that fp
⊕-ind is rational for all 0 � p < n − 1, and the fp generating functions

enumerate subclasses of C, so they are rational by the strong rationality of C. Therefore, every
term on the right-hand side is rational, so fn−1

⊕-ind and thus f⊕-ind must be rational as well. This
contradiction to our choice of C completes the proof.

Proposition 3.3 is a stepping stone to a general enumerative result we will need in the
proof of our main result. A permutation is said to be skew-merged if it is the union of an
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Figure 2. The permutation 7253461 can be drawn on an X.

increasing subsequence and a decreasing subsequence. The class of skew-merged permutations
was first studied by Stankova [14] in one of the earliest papers on permutation patterns, and
later enumerated by Atkinson [1]. Stankova proved that the skew-merged permutations have
the basis {2143, 3412}, a result which can also be seen to follow from Földes and Hammer’s
characterization of split graphs [9]. Our interest lies with the class of separable skew-merged
permutations:

X = Av(2143, 2413, 3142, 3412).

We label this class X because, in his thesis, Waton [15] showed that these are precisely the
permutations that can be ‘drawn on an X’ via the following procedure: choose, from an X made
of right angles which form 45◦ angles with the axes in the plane, n points, no two lying on a
common vertical or horizontal line, and label these points 1, . . . , n reading bottom to top, then
record these values reading left to right, as depicted in Figure 2. We may also define the class
X in a manner similar to Propositions 1.2 and 1.3.

Proposition 3.4. The class X is the smallest nonempty class C that contains C ⊕ 1, 1 ⊕ C,
C � 1, and 1 � C.

Waton enumerated the class X , obtaining the generating function (1 − 3x)/(1 − 4x + 2x2).
Later, Elizalde [8] constructed a bijection between the class X and the set of ‘almost-increasing
permutations’ considered by Knuth [12, Section 5.4.8, Exercise 8].

For the proof of our main result, we are interested not in the class X but rather in the
X -inflation of a strongly rational class U . This inflation, denoted by X [U ], can be visualized
by taking any permutation in X , drawing it on the X as above, and then replacing each point
in this drawing with a set of points corresponding to a permutation in U in such a way that
the relationships between elements belonging to different points (of the permutation from X )
are the same as those between the original points. Thus, each point on the original drawing is
‘inflated’ into a permutation from U . As we show below, such inflations are strongly rational.

Theorem 3.5. If U is a strongly rational class, then X [U ] is also strongly rational.

Proof. Let U be a strongly rational class. It is instructive to first consider the enumeration
of X [U ] itself. Given a sum decomposable permutation in X [U ], it may decompose in one of
two ways, either as a member of U⊕-ind ⊕X [U ], or as a member of X [U ] ⊕ U⊕-ind, or both, where
U⊕-ind denotes the set of sum indecomposable elements of U . The intersection of these two sets
is U⊕-ind ⊕ {X [U ] ∪ ε} ⊕ U⊕-ind, where ε denotes the empty permutation. Doing the same for
skew decomposable elements of X [U ] leads us to the equation

g = x + 2f⊕-indg − f2
⊕-ind(g + 1) + 2f�-indg − f2

�-ind(g + 1), (†)
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where g denotes the generating function for the nonempty permutations in X [U ], f⊕-ind the
generating function for U⊕-ind, and f�-ind the generating function for U�-ind. Solving for g
shows that it is indeed rational in f⊕-ind and f�-ind, which are themselves elements of Q(x)
by Proposition 3.3. Specifically,

g =
x − f2

⊕-ind − f2
�-ind

1 − 2f⊕-ind + f2
⊕-ind − 2f�-ind + f2

�-ind

.

Reassuringly, substituting f⊕-ind = f�-ind = x gives us the generating function (x − 2x2)/
(1 − 4x + 2x2), which, upon adding 1 to count the empty permutation, agrees with Waton’s
enumeration of X = X [1].

To complete the proof, that all subclasses of X [U ] have rational generating functions,
we adapt some notation of Brignall, Huczynska, and Vatter [7]. A property is any set of
permutations, and we say that π satisfies the property P if π ∈ P . Given a set of properties
P, we say that P is separable query-complete if, for all nonempty permutations σ and τ (not
necessarily lying in any class) and P ∈ P, it can be decided whether σ ⊕ τ and σ � τ satisfy
P given only the knowledge about what properties in P are satisfied by σ and τ . For example,
letting ⊕-dec denote the set of sum decomposable permutations, we see that {⊕-dec} is trivially
separable query-complete: assuming that σ and τ are nonempty, σ ⊕ τ always satisfies ⊕-dec,
while σ � τ never satisfies ⊕-dec. Similarly, letting �-dec denote the set of skew decomposable
permutations, {�-dec} is separable query-complete. Also note that, for any permutation β, the
set {Av(δ) : δ � β} is separable query-complete: σ ⊕ τ lies in Av(δ) if and only if σ ∈ Av(γ)
or τ ∈ Av(ι) for all γ, ι � δ � β satisfying γ ⊕ ι = δ.

Returning to the situation at hand, consider an arbitrary subclass D ⊆ X [U ]. As U is strongly
rational it is pwo by Proposition 3.2. Thus, X [U ] is contained in the strong completion of a
pwo class, and so is itself pwo by Proposition 2.2. Hence, X [U ] \ D has only a finite number
of minimal elements. This set, say B, of minimal elements (which is not a true basis, but
rather a ‘relative basis’) completely defines D as a subclass of X [U ] because X [U ] \ D is the
set of permutations of X [U ] that contain one or more permutations of B. It follows that
{Av(δ) : δ ∈ Cl(B)} is a finite separable query-complete set, since it is the union of a finite
number of separable query-complete sets. Slightly more generally,

P = {⊕-dec,�-dec} ∪ {Av(δ) : δ ∈ Cl(B)}

is also a finite separable query-complete set of properties.
For any permutation π, let P(π) denote the set of properties in P satisfied by π. We introduce

three families of generating functions which are defined for any subset Q ⊆ P:

(1) fQ, the generating function for the set {π ∈ U : P(π) = Q};
(2) gQ, the generating function for the set {π ∈ X [U ] : P(π) ⊇ Q};
(3) hQ, the generating function for the set {π ∈ X [U ] : P(π) = Q}.

Our goal, with this notation, is to show that all functions of the form gQ are rational, since it
will then follow that the generating function for D, namely g{Av(β):β∈B}, is rational.

First we claim that the f generating functions are rational. Suppose that Q contains ⊕-dec.
Then if Q also contains �-dec, we have that fQ is either x (counting the trivial permutation)
or 0, and trivially rational, so we may suppose that Q does not contain �-dec. The remaining
properties in Q specify exactly which elements of Cl(B) the permutations must contain and
avoid. Therefore, fQ can be expressed using inclusion–exclusion as a linear combination of
generating functions which count sum decomposable permutations in subclasses of U . It then
follows from Proposition 3.3 that each fQ is rational.

Also note that gQ is the sum of all hR with Q ⊆ R ⊆ P. Thus, we can establish that the
g generating functions are rational, which will prove the theorem, by showing that the h
generating functions are rational.
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We are now ready to describe the analogs of the terms of (†) which relate the h generating
functions to the f generating functions and to each other. Consider any subset Q ⊆ P of
properties containing ⊕-dec. The permutations satisfying Q must be sum decomposable, and
thus can be expressed as σ ⊕ τ where at least one of σ or τ is a sum indecomposable permutation
in U . Following our derivation of (†), such an hQ can be expressed as a linear combination of
terms of three forms:

(1) fRhS with ⊕-dec /∈ R, which count permutations from U⊕-ind ⊕X [U ];
(2) hSfT with ⊕-dec /∈ T , which count permutations from X [U ] ⊕ U⊕-ind and
(3) fRhSfT with ⊕-dec /∈ R, T , which count permutations from U⊕-ind ⊕X [U ] ⊕ U⊕-ind;

the latter occurring with negative coefficients to correct for over-counting. Similarly, if Q ⊆ P
contains �-dec, then hQ can be expressed as a linear combination of terms of the form fRhS
with �-dec /∈ R, hSfT with �-dec /∈ T , and fRhSfT with �-dec /∈ R, T . As no permutation
can be both sum decomposable and sum indecomposable, there is only one more case, where
neither ⊕-dec nor �-dec lie in Q. However, in this case the only permutations in X [U ] that
can satisfy precisely the properties Q are those of U , so here hQ = fQ.

Therefore, letting h denote the column vector consisting of the hQ generating functions, there
is some matrix M of rational functions in Q(x) and some constant vector v over Q(x) such
that h = Mh + v. Since all of our generating functions enumerate nonempty permutations,
the entries of M all have zero constant term. Hence, I − M is invertible over Q(x), and thus
each entry of h is a rational function, proving the theorem.

We now have the following immediate corollary.

Corollary 3.6. If C is a strongly rational class, then ⊕C and �C are strongly rational,
and if C and D are strongly rational, then C ⊕ D and C � D are strongly rational.

Proof. The statements about skew sums follow by symmetry, so we prove only the
statements for direct sums. Since ⊕C ⊆ X [C], the first part of the corollary follows from
Theorem 3.5. For the second part of the corollary, Proposition 3.1 shows that C ∪ D is strongly
rational, so ⊕(C ∪ D) is strongly rational by the first part of the corollary, and the result follows
from observing that C ⊕ D ⊆ ⊕(C ∪ D).

4. Proof of the main result

With the machinery of Sections 2 and 3 developed, we are now ready to state and prove our
main result.

Theorem 4.1. If C is a subclass of the separable permutations that does not contain any
of Av(132), Av(213), Av(231), or Av(312), then C has a rational generating function.

Proof. Suppose otherwise. Because the separable class is partially well ordered, its sub-
classes satisfy the minimum condition of Proposition 2.1, and we can therefore choose among
all the counterexamples a minimal class C. We use two properties of C repeatedly:

(i) all proper subclasses of C have rational generating functions because C is a minimal
counterexample, and thus

(ii) C is atomic because otherwise it would be the union of two strongly rational classes and
hence strongly rational by Proposition 3.1.
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Our proof that C does not exist begins by ruling out some easy cases. The easiest possibility
to rule out is when C is either a sum or skew of two proper subclasses, which is eliminated by
Corollary 3.6.

Next we dispense with the case where C is sum closed (the case where C is skew closed
is similar). In this case, we define C⊕-ind as the set of sum indecomposable elements of C. It
must be the case that Cl(C⊕-ind) = C, for otherwise it would be a proper subclass of C and so
strongly rational; but then, again by Corollary 3.6, the sum closure of Cl(C⊕-ind) would also be
strongly rational and so its subclass C would be strongly rational, which is a contradiction. In
the same way, Cl(C�-ind) = C. In other words, every permutation in C is contained in both a
sum indecomposable permutation and a skew indecomposable permutation of C.

Consider any spine α1, α2, . . . of C (in the sense of Proposition 2.3). Clearly, 1 ⊕ α1, 1 ⊕ α2, . . .
is also a spine for C because we are assuming that C is sum closed, and since Cl(C⊕-ind) = C, each
of these permutations is contained in a sum indecomposable element of C. However, because
C contains only separable permutations, the sum indecomposable permutations in C (of length
at least 2) are precisely the skew decomposable permutations. The only way that 1 ⊕ αi can
be contained in a sum indecomposable element of C is if it embeds completely into a single
skew component† of such a permutation. Thus, for all i, either (1 ⊕ αi) � 1 or 1 � (1 ⊕ αi) lies
in C. As one or the other of these possibilities must occur infinitely often, we see that either
C = 1 � C or C = C � 1. Proposition 1.3 now shows that C contains Av(231) or a symmetry,
Av(312), which contradicts our choice of C. Similarly, we reach a contradiction if C is skew
closed.

For the remainder of the proof, we may therefore take C to be neither a sum or skew of
two proper subclasses nor to be sum or skew closed. To complete the proof, we shall find a
proper subclass U � C for which C ⊆ X [U ]. This will indeed be a contradiction because, by the
minimality of C, U will be strongly rational and therefore, by Theorem 3.5, X [U ] will also be
strongly rational.

We now construct a finite collection of proper subclasses of C whose union will yield the
desired U . To do this, we shall rely on the following characterization of subclasses of X [U ],
which follows trivially from Proposition 3.4.

Proposition 4.2. Given classes C and U , we have C ⊆ X [U ] if and only if, for every π ∈ C,
one of the following holds (for nonempty γ and τ) :

(1) π ∈ U ;
(2) π = γ ⊕ τ with γ ∈ U or τ ∈ U or
(3) π = γ � τ with γ ∈ U or τ ∈ U .

With the aim of mimicking the structural decomposition provided by this proposition, we
begin by defining

CSW = {σ ∈ C : σ ⊕ C ⊆ C}.

Note that CSW is a proper subclass of C because C is not sum closed. In fact, CSW is the
maximum subclass F of C such that F ⊕ C ⊆ C. We similarly define CNW maximal such that
CNW � C ⊆ C, CNE maximal such that C ⊕ CNE ⊆ C, and CSE maximal such that C � CSE ⊆ C.
As C is neither sum nor skew closed, these are all proper subclasses of C (and may indeed be
empty). These are the first four classes that will be placed within U .

Consider any sum decomposable element π of C and write π = γ ⊕ τ in an arbitrary fashion.
If γ ∈ CSW or τ ∈ CNE , then the conditions of Proposition 4.2 are already met. So suppose

†If π = σ1 � . . . � σm, where each σi is skew indecomposable, σ1, . . . , σm are the skew components of π.



SUBCLASSES OF THE SEPARABLE PERMUTATIONS Page 11 of 12

now that we have γ /∈ CSW and τ /∈ CNE with γ ⊕ τ ∈ C. Define

Eγ = {σ ∈ C : γ ⊕ σ ∈ C}.

Clearly, Eγ is a subclass of C, and it is proper because γ /∈ CSW , so γ ⊕ C � C. Also note that
τ ∈ Eγ . Now define

Dγ = {σ ∈ C : σ ⊕ Eγ ⊆ C}.

Again, Dγ is a subclass of C and it is proper since τ ∈ Eγ and τ /∈ CNE , so C ⊕ Eγ � C. From
our definitions, it follows that Dγ ⊕ Eτ ⊆ C, and this containment is proper because C is not
the sum of two proper subclasses. Lastly, but importantly, note that π = γ ⊕ τ ∈ Dγ ⊕ Eγ .

While there may be infinitely many permutations γ of this type, the number of distinct
classes Dγ is finite. To see this, let B denote the (finite) basis of C and consider the sets
Cl(γ) ∩ Cl(B), of which there are but a finite number. Suppose that we have two of them that
happen to be equal, say Cl(γ) ∩ Cl(B) = Cl(γ) ∩ Cl(B). Now a permutation σ fails to lie in
Eγ if and only if γ ⊕ σ /∈ C. But this happens if and only if γ ⊕ σ contains some β1 ⊕ β2 ∈ B
with β1 � γ and β2 � σ. This means that β1 ∈ Cl(γ) ∩ Cl(B) = Cl(γ) ∩ Cl(B) and so β1 � γ.
In turn this implies that γ ⊕ σ /∈ C and hence σ fails to lie in Eγ also. In other words Eγ = Eγ .
But then Dγ = Dγ also.

Therefore, in addition to CSW , CSE , CNW , and CNE , we include in U the finitely many
classes Dγ ⊕ Eγ arising from decompositions of this type. By repeating an analogous argument
for skew decompositions γ � τ with γ /∈ CNW and τ /∈ CSE , we again find finitely many classes,
and also include these in U . Since C is atomic, C cannot be equal to a finite union of proper
subclasses, so U �= C. This choice of U ensures that the conditions of Proposition 4.2 are met,
and thus that C ⊆ X [U ], establishing the desired contradiction, and proving the theorem.

5. Open problems

The most obvious question is the converse to our main result: is there a subclass of the separable
permutations containing Av(231) which has a rational generating function? In fact, we are not
aware of any finitely based permutation class, separable or otherwise, which contains Av(231)
and has a rational generating function.

More generally, we are hopeful that the notion of strongly rational classes introduced herein
will prove relevant to future investigations of permutation classes. One question, inspired by
Theorem 3.5, would be: is there a natural characterization of the classes C such that C[U ] is
strongly rational for all strongly rational classes U? A positive answer to this question would
lend hope to the possibility of a characterization of the strongly rational classes themselves.
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