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Abstract

Weak and strong sorting classes are pattern-closed classes that are also closed downwards under
the weak and strong orders on permutations. They are studied using partial orders that capture both
the subpermutation order and the weak or strong order. In both cases they can be characterised by
forbidden permutations in the appropriate order. The connection with the corresponding forbidden
permutations in pattern-closed classes is explored. Enumerative results are found in both cases.

1 Introduction

A permutation π is said to be a subpermutation of a permutation σ (or to be involved in σ) if σ has a
subsequence that is ordered in the same relative way as π. For example 231 is a subpermutation of 35412
because of its subsequence 351 which has the same pattern as 231. We say that σ avoids π if π is not
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a subpermutation of σ. The developing theory of permutation patterns is now a well-established part of
combinatorics (see, for example, [12]).

This theory was originally motivated by the study of the sortable permutations associated with various
computing devices (abstract data types such as stacks and deques [8], token passing networks [3], or
hardware switches [2]). All these devices have the property that, if they are able to sort a sequence σ,
then they are able to sort any subsequence of σ.

This subsequence property (that subsequences of sortable sequences are themselves sortable) is a very
natural one to postulate of a sorting device. It is exactly this property that guarantees that the set of
sortable permutations is closed under taking subpermutations. But there are other natural properties
that a sorting device might have. We are particularly interested in the following two. Both of them
reflect the idea that “more sorted” versions of sortable sequences should themselves be sortable.

1. If s1s2 . . . sn is sortable and si > si+1 then s1s2 . . . si−1si+1si . . . sn is sortable, and

2. If s1s2 . . . sn is sortable and si > sj where i < j then

s1s2 . . . si−1sjsi+1 . . . sj−1sisj+1 . . . sn

is sortable.

For the moment we call these the weak and strong exchange properties (the second obviously implies the
first). The weak exchange property would hold for sorting devices that operated by exchanging adjacent
out of order pairs while the strong exchange property would hold if arbitrary out of order pairs could
be exchanged. Our paper is about the interaction between each of these properties and the subsequence
property.

We shall study this interaction using various (partial) orders on the set Ω of all (finite) permutations.
Since we shall be considering several partial orders on Ω we shall write σ P τ when we mean that σ ≤ τ
in the partial order P; this avoids the confusion of the symbol “≤” being adorned by various subscripts.
In the same spirit we write σ P τ to mean σ 6≤ τ in P.

All the partial orders we study will satisfy the minimum condition (that is, all properly descending chains
are finite) and we shall assume this from now on.

If P is a partial order on Ω the lower ideals of P are those subsets X of Ω with the property

β ∈ X and α P β =⇒ α ∈ X.

Since P satisfies the minimum condition such a lower ideal can be studied through the set b(X) of minimal
permutations of Ω \X. Obviously b(X) determines X uniquely since

X = {β | α P β for all α ∈ b(X)}.

In the classical study of permutation patterns we use the subpermutation order that we denote by I
(standing for involvement). The lower ideals of I are generally the central objects of study and are called
closed classes. If X is a closed class then b(X) is called the basis of X. Indeed the most common way of
describing a closed class is by giving its basis (and therefore defining it by avoided patterns). We write
av(B) to denote the set of permutations which avoid all the permutations of the set B. If a closed class is
not given in this way then, often, the first question is to determine the basis. A second question, perhaps
of even greater interest, is to enumerate the class; in other words, to determine by formula, recurrence or
generating function how many permutations it has of each length.

However, these questions can be posed for any partial order on Ω and much of our paper is devoted
to answering them for orders that capture the subsequence property and the weak or strong exchange
properties.
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A closed class is called a weak sorting class if it has the weak exchange property and a strong sorting
class if it has the strong exchange property.

Our aim is to set up a framework within which these two notions can be investigated and to exploit this
framework by proving some initial results about them. We shall begin by investigating the two natural
analogues of the subpermutation order that are appropriate for these two concepts. In particular there
are natural notions of a basis for each type of sorting class; we shall explore how the basis of a sorting
class is related to the ordinary basis and use this to derive enumerative results. In the remainder of this
section we set up the machinery for studying sorting classes and then survey the main results of Sections
2 and 3 on weak and strong sorting classes respectively.

The terms ‘weak’ and ‘strong’ have been chosen to recall two important orders on the set of permutations
of length n: the weak and strong orders. For completeness we shall give their definitions below (extended
to the set Ω of permutations of all lengths). In these definitions and elsewhere in the paper we use
Roman lower case letters for the individual symbols within a permutation and Greek lower case letters
for sequences of zero or more symbols.

The weak order W on Ω can be defined as the transitive closure of the set of pairs

W0 = {(λrsµ, λsrµ) | r < s}.

The strong order S on Ω can be defined as the transitive closure of the set of pairs

S0 = {(λrµsν, λsµrν) | r < s}.

Notice that, for both W and S, only permutations of equal length can be comparable.

The subpermutation order I on Ω can be defined as the transitive closure of the set of pairs

I0 = {(λµ, λ′rµ′)}

where λ′µ′ is order isomorphic to λµ.

Weak (respectively, strong) sorting classes are the lower ideals in the partial order defined by the transitive
closure of I ∪W (respectively I ∪S) and so can be studied using the same machinery that has been used
for arbitrary closed classes, adapted to the appropriate order.

We begin by giving a simple description of these transitive closures. In this description we denote the
relational composition of two partial orders by juxtaposition.

Lemma 1 The transitive closure of I ∪ W is IW while that of I ∪ S is IS. In fact WI = IW while
SI is strictly included in IS.

Proof: Suppose that α I β W0 γ represents a pair (α, γ) of the relation IW0. Let α = a1a2 . . . and
let a′1a

′
2 . . . be a subsequence of β order isomorphic to α. Let xy be the two adjacent symbols of β that

become yx in γ. If none or one of these is one of the a′i then α I γ. If both of them are among a′1a
′
2 . . .

then they must be a′i and a′i+1 for some i. Let β′ be the result of exchanging ai and ai+1 in α; then we
have α W β′ I γ. This proves that IW0 ⊆ WI and it follows readily that IWt

0 ⊆ WI for all t and hence
that IW ⊆ WI.

To prove the opposite inclusion suppose that α W0 β I0 γ represents a pair (α, γ) of the relation W0I0.
Then we have

α = θabφ

β = θbaφ

and γ is obtained from β by inserting an extra symbol x (with appropriate renumbering of the symbols
larger than x).
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If x does not occur between b and a then we can consider γ to be obtained from α by first inserting x
and then swapping a and b; so, in this case, αI0Wγ. If x occurs between b and a then, depending on the
value of x, we define ξ as either θxabφ, θaxbφ, θabxφ so that the three symbols a, b, x come in increasing
order. Then

θabφ I0 ξ W θbxaφ

and so, again, α I0W γ.

We have proved that W0I0 ⊆ I0W and it readily follows that WI0 ⊆ I0W, and then that WI ⊆ IW.
The transitive closure of I ∪W is, by definition,

∞⋃
i=0

(I ∪W)i.

However, I and W are transitively closed and WI ⊆ IW, and so this expression simplifies to IW.

Suppose now that α S0 β I γ represents a pair (α, γ) of the relation S0I. Put α = λrµsν with r < s and
β = λsµrν. Let λ′s′µ′r′ν′ denote a subsequence of γ order isomorphic to β. Consider the permutation
γ′ obtained from γ by interchanging s′ and r′. Clearly α I γ′ S γ. This shows that S0I ⊆ IS. But then
it follows, as above, that SI ⊆ IS. However 321 I 1432 S 3412 yet there exists no permutation θ with
321 S θ I 3412; therefore the inclusion is strict.

It follows as above that IS is the transitive closure of I ∪ S.

The orders IW and IS have fewer symmetries (2 and 4 respectively) than the subpermutation order
(which has 8). In the following elementary result, if ζ = z1, . . . , zn, ζ∗ denotes the ‘reverse complement’
of ζ

ζ∗ = n + 1− zn, n + 1− zn−1, . . . , n + 1− z1.

Lemma 2 Let ξ, ζ be permutations. Then

1. ξ IW ζ ⇐⇒ ξ∗ IW ζ∗, and

2. ξ IS ζ ⇐⇒ ξ−1 IS ζ−1 ⇐⇒ ξ∗ IS ζ∗.

We have already noted that every closed class X can be described by a forbidden pattern set T as

av(T ) = {σ | β I σ for all β ∈ T}.

We can describe weak and strong sorting classes in a similar way using the orders IW and IS. In other
words, given a set T of permutations we define

av(T, IW) = {σ | β IW σ for all β ∈ T}.
av(T, IS) = {σ | β IS σ for all β ∈ T}.

which are weak and strong sorting classes respectively. Every weak and strong sorting class X can
be defined in this way taking for T that set of permutations minimal with respect to IW or IS not
belonging to X. If T is the minimal avoided set then it is tempting to call it the basis of the class it
defines. Unfortunately that leads to a terminological ambiguity since both av(T, IW) and av(T, IS) are
pattern closed classes and so have bases in the ordinary sense. To avoid such confusion we shall use the
terms weak basis and strong basis. However, two significant questions now arise. If we have defined a
weak sorting class by its weak basis, what is its basis in the ordinary sense? Similarly for strong sorting
classes, what is the connection between the strong basis and the ordinary basis?

In the next section, on weak sorting classes, we shall see that the first of these questions has a relatively
simple answer. In that section we also give a general result about the weak sorting class defined by a
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basis that is the direct sum of two sets. We go on to enumerate weak sorting classes whose weak basis is
a single permutation of length at most 4.

In the final section, on strong sorting classes, we shall see that the ordinary basis is not easily found from
the strong basis. Nevertheless we can define a process that constructs the ordinary basis from the strong
basis; and we prove that the ordinary basis is finite if the strong basis is finite. We have used this process
as a first step in enumerating strong sorting classes defined by a single strong basis element of length at
most 4. We shall give a summary of these results and some remarks on their proofs.

We also introduce a 2-parameter family of strong sorting classes denoted by B(r, s). These classes are
important because every (proper) strong sorting class is contained in one (indeed infinitely many) of
them. We shall show how the B(r, s) can be enumerated and give a structure theorem that expresses
B(r, s) as a composition of very simple strong sorting classes.

2 Weak sorting classes

Proposition 3 Let T be a set of permutations and let

T ′ = {σ | τ W σ for some τ ∈ T}

(the upper weal closure of T ). Then

av(T, IW) = av(T,WI) = av(T ′).

Proof: The first equality is immediate from Lemma 1. To prove the second, first suppose that σ 6∈
av(T,WI). Then, for some τ ∈ T , we have τ WI σ. Hence there exists τ ′ ∈ T ′ with τ W τ ′ I σ. The
final relation says that σ 6∈ av(T ′).

Conversely, suppose that σ 6∈ av(T ′). Then, for some τ ′ ∈ T ′, we have τ ′ I σ. By definition of T ′ there
exists τ ∈ T with τ W τ ′. But then τ WI σ which means that σ 6∈ av(T,WI).

Corollary 4 The class av(T ) is a weak sorting class if and only if every permutation in the upward weak
closure of T involves a permutation of T .

Proof: Let T ′ be the upward weak closure of T . Then, by the previous proposition, av(T, IW) = av(T ′)
and so av(T ) is a weak sorting class if and only if av(T ) = av(T ′). The Corollary now follows.

Corollary 5 If a weak sorting class has a finite weak basis then its ordinary basis is also finite.

Proof: Let T be the weak basis of a weak sorting class and let T ′ be its upward weak closure. Obviously,
T ′ is finite if T is finite. While T ′ may not be the ordinary basis of av(T ′) (since it might not be an
antichain) this ordinary basis just consists of the minimal elements of T ′ and so is finite.

To state the next result we need to recall the notion of the direct sum of two sets of permutations and
some related terms. If α and β are permutations of lengths m and n then α ⊕ β is the permutation of
length m+n whose first m symbols are all smaller than the last n symbols, the first m symbols comprise
a sequence isomorphic to α, and the last n symbols comprise a sequence isomorphic to β. We extend this
notion to sets X and Y of permutations by defining

X ⊕ Y = {α⊕ β | α ∈ X, β ∈ Y }.

We also recall that a permutation is said to be indecomposable if it cannot be expressed as α⊕ β. Every
permutation has a unique expression in the form α1 ⊕ · · · ⊕ αk where each αi is indecomposable, and
the αi are called the components of α. Closed classes whose basis elements are all indecomposable are
somewhat easier to handle than arbitrary ones. This is because they have the property of being closed
under direct sums and can be enumerated if their indecomposables can be enumerated [4].
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Theorem 6 Let R,S be the weak bases of weak sorting classes A,B and let C be the weak sorting class
whose weak basis is T = R ⊕ S. Let (an), (bn), (cn) be the enumeration sequences for A,B, C and let
a(t), b(t), c(t) be the associated exponential generating functions. Then

c(t) = (t− 1)a(t)b(t) + a(t) + b(t).

Proof: Let R′, S′, T ′ be the upward weak closures of R,S, T . By Proposition 3, we have A = av(R′),
B = av(S′), and C = av(T ′). We can compute the structure of the permutations of T ′ using the property
that they are in the upward weak closure of some ρ⊕ σ (ρ ∈ R, σ ∈ S). Such permutations must be the
union of two sequences ρ′, σ′ where

1. ρ′ < σ′, and

2. ρ′, σ′ are (order isomorphic to) permutations of R′, S′.

Conversely, every such permutation is in the upward weak closure of some ρ ⊕ σ ∈ R ⊕ S and so lies in
T ′.

From this description we can determine the structure of permutations in C. We describe them using
a temporary notation: if π is a permutation then π‖[i···j] denotes the subsequence of π whose values
comprise the interval [i · · · j]. All permutations in C of length n will belong to one of the following two
types:

• permutations belonging to A;

• permutations π not belonging to A which have the property that if k is the minimum value such
that π‖[1···k] 6∈ A then π‖[(k+1)···n] ∈ B.

Consider the collection of permutations not belonging to A but which have the property that the per-
mutation resulting from the deletion of their maximum symbol does lie in A. If we define ân to be the
number of permutations of this type of length n then it is easy to see that:

ân = nan−1 − an

since the first term on the right hand side counts the number of ways of adding a new maximum to a
permutation in A of length n − 1 while the second term subtracts the number of ways to do this which
still result in a permutation in A.

The description of the permutations in C then shows that:

cn = an +
n∑

k=0

(
n

k

)
âkbn−k

and the theorem follows by comparison of series.

So far as we know this is the first appearance of exponential generating functions in pattern class enu-
meration. Notice from the form of the result that av(R⊕ S, IW) and av(S ⊕R, IW) are equinumerous.

Proposition 3 shows that we can enumerate weak sorting classes using the various techniques that have
been developed for ordinary closed classes. We shall begin these enumerative studies by looking at classes
with a single basis permutation of length 3 or 4. The length 3 case is virtually trivial. By Lemma 2 we
may restrict our attention to the permutations 123, 132, 231, 321 and we have

Proposition 7 The classes av(123, IW), av(132, IW), av(231, IW), av(321, IW) are enumerated by, re-
spectively
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1. an = 0 for all n ≥ 3,

2. n,

3. 2n−1,

4. the Catalan numbers.

For length 4 there is considerably more to do but Theorem 6 handles many of the cases. To within
symmetry we have 16 permutations which, for discussion purposes, we have grouped into 4 families:

(i) 1234;

(ii) 2134, 1324, 2314, 3124, 3214, 2143;

(iii) 4231, 3421, 4321;

(iv) 2341, 2413, 3142, 2431, 3241, 3412.

The single permutation of the first family defines a finite class. The permutations of the second family
are all handled by applying Theorem 6 and this gives the following enumerative formulae (valid for all
n ≥ 2):

2134 1324 2314 3124 3214 2143
n(n− 1) n(n− 1) n2n−2 n2n−2

(
2n−2
n−1

)
n2n−1 − 2n + 2

The third family requires that we solve the enumeration problem for the closed classes with bases
{4231, 4321}, {3421, 4321}, {4321}. The first of these (sequence A053617 of [11]) has an enumeration
scheme in the sense of [14], the second gives the large Schröder numbers [9] and the third has been
computed in [7].

The permutations in the last family present a series of different challenges. The easiest are 2341 and 3412.
In these cases the classes are (in the notation of the next section) B(3, 1) and B(2, 2), and Proposition 20
gives us the recurrence relations an = 3an−1 and an = 4an−1 − 2an−2 respectively. We treat the others
in a series of lemmas.

Lemma 8 The class av(2413, IW) is enumerated by 1
4 (3n − 2n + 3).

Proof: The upward weak closure of 2413 is the set {2413, 4213, 2431, 4231, 4321} but it is convenient
instead to enumerate the class whose ordinary basis is {3142, 3241, 4132, 4231, 4321} (the inverse class,
which is not a weak sorting class). These basis elements tell us that if we have two disjoint descents
then the latter lies entirely above the former; they also tell us that we can have at most two immediately
adjacent descents.

Now it follows that two disjoint descents must lie in different components and so the indecomposables of
the class begin with an increasing sequence, then have at most two down steps and end with an increasing
sequence. The number of such having length n is n2n−3 if n ≥ 3. The ordinary generating function of
the indecomposables is therefore

g(t) = 1 + t + t2 +
∞∑

n=3

n2n−3tn

and the full generating function is 1
1−g(t) from which the result follows.

Lemma 9 The class av(3142, IW) is enumerated by 1
4 (3n − 2n + 3).
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1

n

Figure 1: Indecomposable permutations in av(2413, IW) and av(3142, IW)

Proof: Let bn be the number of indecomposable permutations of length n avoiding the 5 permutations
3142, 3412, 3421, 4312, 4321 of the upward weak closure of 3142. We shall show that bn = 2bn−1 + 2n−3

from which follows bn = n2n−3. Then the proof can be completed as in the previous lemma.

First note that, to avoid the permutations 3412, 3421, 4312, 4321, implies that symbol 1 or symbol 2 must
occur in the first two positions. Therefore we can divide the indecomposable permutations into subsets
(disjoint if n > 2) as follows:

1. F1 = {π | π = 1 . . .},

2. F2 = {π | π = 2 . . .},

3. S1 = {π | π = t1 . . .},

4. S2 = {π | π = t2 . . .}.

If n > 1 then, by the indecomposability, F1 is empty. Furthermore, if the initial symbol 2 is removed from
a permutation of F2 then the result remains indecomposable. Moreover, any indecomposable permutation
of the class can be prefaced by a symbol 2 (incrementing the symbols larger than 2) and the result is not
only in the class but is indecomposable. This shows that |F2| = bn−1. A similar argument proves that
|S2| = bn−1.

Consider now a permutation t1 . . . ∈ S1. Notice that t 6= 2 by indecomposability. We shall prove that
t = n. If not, let s be the rightmost symbol smaller than t and write the permutation as t1αsβ. The
avoidance of 3142 shows that α has no symbols larger than t, and β, by definition, has no symbols smaller
than t. So β consists precisely of the set {t + 1, . . . , n} in some order, contradicting indecomposability as
t < n.

Hence S1 is the set of permutations n1 . . . in the class which is in 1−1 correspondence with permutations
of length n − 2 that avoid 3142, 3412, 3421, 312, 321. These avoidance conditions amount to avoiding
312, 321 alone and so this set has size 2n−3.

The equality of the enumerations in the last two lemmas appears to be no more than a coincidence. From
the proofs of these lemmas it is not hard to determine the structures of the indecomposable permutations
in both cases and we display these in Figure 1.
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Figure 2: Structure of a permutation in av(2431, IW)

Lemma 10 For av(2431, IW) we have the enumeration formula
n∑

k=0

(
n

k

)
fn−k

where (fn) is Fine’s sequence A000957 in [11] (see also [6]).

Proof: Let D = av(2431, IW) = av(2431, 4231, 4321). We shall determine the structure of a permu-
tation π ∈ D. Consider any left to right maximal m of π, that is, any symbol larger than all of its
predecessors. Since π avoids 4231 and 4321, the subsequence of those symbols that follow m in π and are
also less than m avoids 231 and 321.

Moreover, if m′ < m is a right to left maximal preceding m in π then, because π avoids 2431, all the
symbols following m and less than m′ must occur before any of the symbols following m and greater than
m′ but less than m.

Let the sequence of left to right maximals in π be m1, m2, . . . , mk, and let Bi for 1 ≤ i ≤ k be the
symbols of π to the right of mi and between mi and mi−1 in value (take m0 = 0 conventionally). Since the
m’s are the left to right maximals, they, together with the sets Bi partition the symbols of π. Moreover,
the observation above shows that if i < j then all the symbols Bi must precede all of the symbols Bj .
Figure 2 illustrates these conditions.

Every permutation of this form belongs to D and we can construct them all as follows. Choose an increas-
ing sequence mi from among 1 through n. For each i, let Bi be the set of values strictly between mi−1 and
mi and choose a {231, 321}-avoiding permutation βi of Bi. Now merge the sequences m1m2 · · ·mk and
β1β2 · · ·βk subject only to the condition that mi precedes βi for each i. Then the resulting permutation
belongs to D.

We say that mi is bound if Bi is not empty. Otherwise, mi is free. A permutation in D is completely
bound if all of its left to right maximals are bound. Consider first the completely bound permutations in
D. We associate to each of these a word in the alphabet a,b,c as follows:

• Each left to right maximal is encoded by the letter c.

• The last symbol of each Bi is encoded by the letter b.

• All remaining symbols are encoded by the letter a.

We note that, read left to right, the number of c’s minus the number of b’s is always non-negative, ends at
0, and that an a may not occur when the count is 0. All sequences meeting these criteria can occur, and
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the number of permutations of D having all left to right maximals bound, corresponding to a sequence
containing k a’s is just 2k (since each block of a’s between two b’s represents, together with the symbol
for its final b, a {231, 321}-avoiding permutation and there are 2j−1 such of length j). So, we can obtain a
one to one correspondence between encodings and this subset of D if we allow the a symbols to be either
a1 or a2 arbitrarily (or by using a natural encoding of the corresponding B over a two letter alphabet).

This gives a correspondence between the subset of D in which all left to right maximals are bound, with
Motzkin paths where the horizontal steps can have either of 2 types, but may not occur on the axis, and
these are enumerated by Fine’s sequence [6, 11]. Let fn denote its nth symbol.

It remains only to insert the free left to right maximals. Now observe that if we take an arbitrary π ∈ D
and delete the free left to right maximals, what remains is indeed a completely bound permutation.
Moreover, if we take such a permutation and nominate places in which left to right maximals are to be
inserted freely, then there is a unique way to do so. That is, in a permutation belonging to D of length
n we are free to choose the number of free maximals, and their positions, and then the structure of the
remaining bound permutation. This gives

dn =
n∑

k=0

(
n

k

)
fn−k

as required.

Lemma 11 For av(3241, IW) we have the generating function

3− 13t + 2t2 + 5t
√

1− 4t−
√

1− 4t

2(1− 4t− t2)

Proof: The WILFPLUS package [13] is able to produce an enumeration scheme for this class from
which, in principle, one could obtain the stated generating function. However, we have derived it using
techniques developed in [1].

3 Strong sorting classes

For weak sorting classes Proposition 3, Corollary 4 and Corollary 5 describe how the weak basis is related
to the ordinary basis. The situation for strong sorting classes is considerably more complex. For example,
the direct analogue of Corollary 4 is false since, for example, it would imply av(321, IS) = av(321);
however, 321 I 3214 S 3412 and therefore 3412 ∈ av(321) \ av(321, IS). Despite this we shall prove that
a strong sorting class with a finite strong basis has a finite ordinary basis and our proof will show how
this ordinary basis may be computed from the strong basis.

We begin these investigations by defining three types of operation on permutations τ or their subse-
quences:

Switch. Exchange two symbols of τ that are currently correctly ordered.

Left. Move a symbol t of τ to the left and insert some new symbol s smaller than t in the original position
of t (with appropriate renumbering of all original symbols greater than or equal to s).

Right. Move a symbol t of τ to the right and insert some new symbol larger than t in the original position
of t (also with appropriate renumbering of symbols).

It is helpful to represent a permutation τ by its graph (the set of points (x, τ(x)) plotted in the (x, y)
-plane) to show the effect of these operations. Our first use of this graphical representation occurs in
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right

left

switch

Figure 3: The operations switch, left, and right

Figure 3 which shows the effect of a single operation. We shall make heavier use of these diagrams in the
proof of Theorem 14.

Suppose that T is some set of permutations. Then T is said to be complete if, for any τ ∈ T , applying any
of the types of operation switch, left, or right to τ results in a permutation that contains some permutation
in T as a subpermutation.

Proposition 12 T is complete if and only if av(T ) is a strong sorting class.

Proof: To begin with, assume that T is complete. By definition, av(T ) is closed under taking subper-
mutations and so we must prove that it is also closed downwards in the strong order; in other words, we
must prove

σ ∈ av(T ) and π S σ =⇒ π ∈ av(T )

and it is clearly sufficient to prove this in the case that π and σ differ by an exchange.

So let σ ∈ av(T ) and π S σ where π and σ differ by an exchange. For a contradiction suppose that π
contains a subsequence p1p2 . . . order isomorphic to an element of T . Now σ and π differ only in that two
symbols properly ordered in π are in the other order within σ. If neither of these two swapped symbols
are among p1p2 . . . then σ also contains this subsequence, and this is impossible. If both of the swapped
symbols are among p1p2 . . . then σ contains a subsequence obtainable from p1p2 . . . by swapping two
symbols currently in the right order. But a switch operation on an element of T results in a permutation
that involves an element of T , so this is also impossible.

If only one of the swapped symbols (p say) is among p1p2 . . . and the other symbol is, say, q then consider
the subsequence ξ of σ on the symbols p1, p2, . . . , q. If, in π, q was to the left of p then we must have
q < p. But that means that ξ has been obtained from p1p2 . . . by a left operation. Similarly if, in π, q
was to the right of p then we must have q > p and ξ has been obtained from p1p2 . . . by a right operation.
In either case, the completeness property tells us that ξ involves an element of T which is impossible.

For the converse, assume that av(T ) is a strong sorting class. Let τ be an arbitrary element of T and
suppose that τ∗ is the result of applying a switch, left, or right operation to τ . Since strong sorting classes
are lower ideals in the order IS, τ∗ 6∈ av(T ). Hence τ∗ involves an element of T and therefore T is
complete.

Now suppose that X is a strong sorting class with strong basis R. Let c(R) denote the ordinary basis of
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X. Our aim is to describe c(R) in terms of R. Let X̄ denote the complement of X. Then, by definition

X̄ = {θ | ρ IS θ for some ρ ∈ R}.

Also, by definition, c(R) is the set of minimal permutations in X̄ (minimal with respect to I). The
following result shows that c(R) can be constructed from R by using switch, left, and right operations.

Lemma 13 Let θ ∈ c(R). Then there exists a sequence of permutations

θ0, θ1, . . . , θk = θ

where θ0 ∈ R, each θi ∈ c(R), and each θi is obtained from θi−1 by a switch, left, or right operation.
Furthermore, in any sequence beginning at a permutation of R and ending at θ where each term arises
from the previous one by a switch, left, or right operation, all permutations in the sequence are in c(R).

Proof: We shall prove the first part of the lemma by induction over X̄ with respect to the order IS.
If θ happens to be minimal under IS then, by definition, θ ∈ R and the result is vacuously true. This
establishes the base of the induction and we now take θ to be non-minimal under IS. In that case there
exists some θ′ ∈ X̄ with θ′ IS θ where this relation between θ′ and θ is a covering relation. Since θ is
a minimal element for the order I we cannot have θ′ I θ and so we have θ′ S θ; furthermore, θ can be
obtained from θ′ by a switch operation (exchanging the symbols a and b say).

If θ′ ∈ c(R) then we can conclude the proof by induction; therefore assume that θ′ 6∈ c(R). Then there
is some permutation θ′′ ∈ X̄ with θ′′ I0 θ′; in other words, θ′ has been obtained from θ′′ by inserting a
new symbol c (with appropriate renumbering). If c is neither a nor b then we can interchange the switch
of a with b, and the insertion of c, to obtain θ by first switching a and b and then inserting c. However,
that is impossible since θ is a minimal element of X̄ under involvement.

It is now easy to see that, if c = a, then θ is formed from θ′′ by a left operation while, if c = b, then θ is
formed from θ′′ by a right operation.

If θ′′ ∈ c(R) then, again, we can conclude the proof by induction. Hence, for a final contradiction, we
shall assume that θ′′ 6∈ c(R). In that case there is some θ′′′ ∈ X̄ with θ′′′ I0 θ′′ and θ′′ is the result
of inserting some new symbol d into θ′′′. If d is neither a nor b then we can obtain θ from θ′′′ by an
appropriate left or right operation followed by an insertion of d and, as before, this is impossible by the
minimality of θ.

Therefore {c, d} = {a, b} (or, more precisely, the symbols that have been inserted to form θ′ from θ′′′

become a, b after renumbering) and now we can obtain θ from θ′′′ by inserting a and b directly into their
proper places within θ. Again this implies that θ is not minimal and the proof of the first part is complete.

For the second part, suppose we have a sequence of permutations beginning at a permutation of R and
ending at θ each being generated from its predecessor by a switch, left, or right operation. Let φ be a
permutation in this sequence that is not minimal under involvement because it has some subpermutation
φ′ ∈ X̄. The switch, left, and right operations that transform φ into θ also transform φ′ and preserve the
involvement property. Ultimately, this contradicts the minimality of θ.

This lemma indicates how c(R) can be computed from R using a breadth-first search strategy. We begin
from R itself and apply switch, left, and right operations discarding any results that contain previously
found permutations as subpermutations; and we continue using any new permutations found. We generate
new permutations in order of length (by applying the operations to the smallest permutations first, and
applying switch operations before left and right operations). Clearly this process will examine and not
discard every I-minimal permutation of X̄. On the other hand, any permutation σ which is not I-minimal
will contain a (shorter) I-minimal permutation τ which, by Lemma 13 and the choice of search strategy,
will have been examined before σ (and not discarded). By virtue of the presence of τ , σ will be discarded.
Once no new permutations can be generated we will have found a complete set and, by Lemma 13, this
will be c(R). Our next result shows that this process terminates if R is finite.
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leftswitch

Figure 4: A switch operation followed by a left operation

Theorem 14 Let X be a strong sorting class with strong basis R and suppose that R is finite. Then
c(R) is also finite.

Proof: We shall be relying on Lemma 13 which proves that every permutation θ ∈ c(R) can be
constructed from some permutation in R by a sequence of switch, left, and right operations. In the first
part of the proof we shall show that θ can be constructed by a sequence in which all the left operations
precede all the right operations and, in turn, all the right operations precede all the switch operations.
The graphical representations of switch, left, and right introduced previously will be used extensively.

Suppose in the sequence of operations that has realised θ we have a switch operation followed by a left
operation. If the left operation was applied to neither of the two symbols that took part in the switch
operation then it is evident that the same effect can be achieved by a left operation followed by a switch.
However, if the left operation was applied to one of the two switched symbols, we must argue more
carefully. Diagrammatically we have one of four different cases as shown in Figure 4. Each of these cases
can be modified as shown in Figure 5 so that the same effect is obtained by a left operation followed by
a switch operation.

A similar argument shows that any switch operation followed by a right operation may also be replaced
by a right operation followed by a switch. Therefore the sequence of operations may be assumed to have
all the switch operations at the end.

Now suppose that in the realisation of θ there is a right operation followed by a left operation. If the two
symbols generated by the right operation are not affected by the left operation then these two operations
can obviously be interchanged. In the contrary case there are, again, four cases as shown in Figure 6.
The second and fourth of these are impossible because their result is not a minimal permutation: they
each involve a permutation arising from a different right operation on the initial configuration. The first
and third can be achieved by a left operation then a right operation; the intermediate configurations are
shown in Figure 7.

Now suppose that θ ∈ c(R). We take a sequence of left, right and switch operations that generate θ from
some ρ ∈ R. By the results above we may assume that all the left operations are applied first, followed
by all the right operations, and finally the switch operations. We can regard each left operation as one
which splits a point of the diagram into two, moves one of them to the left and the other one down. If we

the electronic journal of combinatorics 12 (2005), #R00 13



switchleft

Figure 5: The same effect with left followed by switch

right left

Figure 6: right followed by left: different cases (two impossible)

left right

Figure 7: The same effect with left followed by right
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left left

Figure 8: Two left operations

have two left operations, the second of which splits one of the points created by the first left (as in Figure
8) the result is not minimal since it involves a permutation formed by performing one left operation only.
On the other hand two left operations that are not so linked can be commuted. Thus, no new point gets
split by another left operation and so the number of left operations cannot be more than the original
number of points present. Hence the series of left operations cannot increase the length by more than a
factor of 2. The same is true of the right operations and so |θ| ≤ 4|ρ| which completes the proof.

We turn now to the enumeration problem for strong sorting classes whose strong basis is finite and give
some sample results. Our general method is to first determine the ordinary basis of the class by the
process described above and use our experience in closed class enumeration.

As an example of a fairly typical situation we note that

c({4231}) = {4231, 4321, 35142, 45312, 42513, 45132, 35412,

45213, 43512, 456123, 351624, 451623, 356124}.

The next two results summarise the enumerations of all strong sorting classes with a single strong basis
permutation of length 3 or 4 (omitting trivial cases or cases that follow from symmetry).

Proposition 15 For a single strong basis permutation of length 3

Basis permutation Ordinary basis Enumeration
312 {321, 312} 2n−1

321 {321, 3412} an = 3an−1 − an−2 for n ≥ 3

Proof: The ordinary basis can be confirmed using Proposition 12 and the enumerations are well-known.

Proposition 16 For a single strong basis permutation of length 4
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Name Basis permutation Enumeration
I 1234 0 for n ≥ 4
II 1243 6 for n ≥ 4
III 1324 4 for n ≥ 4
IV 1342 3× 2n−2 for n ≥ 3
V 1432 an = 3an−1 − an−2 for n ≥ 4
VI 2143 an = 4n− 6 for n ≥ 2
VII 2341 2× 3n−2 for n ≥ 2
VIII 2413 an = 3an−1 − 2an−2 + 2an−3 for n ≥ 4
IX 2431 an = 4an−1 − 3an−2 + 2an−3 for n ≥ 4
X 3412 an = 4an−1 − 2an−2 for n ≥ 3
XI 3421 (4n + 2)/3 for n ≥ 2
XII 4231 an = 4an−1 − 2an−2 + 4an−3 − an−5 for n ≥ 6
XIII 4321 an = 4an−1 + an−2 + an−3 − 4 for n ≥ 5

Proof: We give a sketch of the proof of the last of these only. The form of the other proofs is similar
although the details vary considerably. First of all we use the completion process to determine the basis
of av(4321, IS). This turns out to be

{4321, 45132, 45231, 35412, 53412, 45213, 43512, 45312, 456123, 451623, 356124}.

Next we observe that the basis elements 4321, 45132, 45231, 45213, 45312, 456123 show every permutation
of the class has a 1 or 2 or 3 in the first 3 places. Denote the number of permutations of length n in the
class by an. In the following case analysis we use the letter c to stand for any symbol larger than 2, and
the letter d for any symbol larger than 3.

The situation for the permutations that have 1 or 2 in their first or second positions is summarised by

Type Enumeration Explanation
1α an−1 α can be arbitrary
2α an−1 α can be arbitrary
c1α an−1 − an−2 cα is arbitrary but cannot start with 2
c2α an−1 − an−2 cα is arbitrary but cannot start with 1

From now on we assume the first two places do not contain a 1 or a 2. The next cases are those where
3 also does not occur in the first two positions but one of 1, 2, 3 is in the third position. Their forms are
as follows
Type Enumeration Explanation
dd1α 2an−3 − 2 Discussed below
dd2α 0 Uses 4321, 45213 and 45231
dd3α 0 Uses 4321 and 45312

With symbol 3 in second place we have the cases:

Type Enumeration Explanation
d31α an−2 − an−3 By removing 1, in correspondence with the type c2α
d32α 0 Uses 4321
d3dα 0 Uses 4321, 43512 and 53412

With symbol 3 in first place we have the cases:

Type Enumeration Explanation
3d1α an−2 − an−3 By removing 1, in correspondence with the type c2α
3d2α an−2 − an−3 By removing 2, in correspondence with the type c2α
3ddα 2an−3 − 2 Discussed below

The explanations above are straightforward except for the two where we promised further discussion.
For the first of these (the type dd1α) we can prove (by a quite lengthy case by case examination whose
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details we omit) that α starts with 2. Let bn be the number of permutations of this type. By removing
the symbol 2 we obtain a correspondence with the type cc1α of length n− 1. The latter sequences have
one of the forms 3d1α (an−3 − an−4 of them), d31α (also an−3 − an−4 of them), or dd1α (bn−1 of them).
Hence bn = bn−1 + 2(an−3 − an−4). Iterating this recurrence leads to bn = b5 + 2an−3 − 2a2 and since
b5 = a2 = 2 the required result follows. The second case where further discussion was promised is the
3ddα case. Here we can prove that the sequences are of the form 34dα and then we argue in a similar
way.

Adding together all these contributions we obtain an = 4an−1 + an−2 + an−3 − 4.

The tenor of the above results hints that the theory of strong sorting classes is going to be more complex
than that for weak sorting classes. However, in the remainder of this section we give some compensatory
results which go some way to proving that it may actually be less complex.

Consider the following family of closed classes. The closed class B(r, s) is defined by the r!s! (ordinary)
basis permutations βα where |β| = r, |α| = s and every symbol of β is greater than every symbol of α. It
follows directly from the definition that, for a permutation π of length n to be a member of B(r, s), there
must not exist subsets I, J ⊆ {1, . . . , n} such that |I| ≥ r, |J | ≥ s, I < J and π(I) > π(J). Two other
readily checked properties are

B(r, s)∗ = B(r, s)−1 = B(s, r).

As a first application of Proposition 12 we have

Lemma 17 B(r, s) is a strong sorting class. Indeed, if

θrs = s + 1, s + 2, . . . , s + r, 1, 2, . . . , s

then
B(r, s) = av(θrs, IS).

Proof: It is readily checked that the basis of B(r, s) is complete so the first part follows from Proposition
12. For the second part we note that, as B(r, s) is a strong sorting class not containing θrs (which is one
of its basis permutations), B(r, s) ⊆ av(θrs, IS). On the other hand every basis permutation β of B(r, s)
satisfies θrs S β and hence cannot be involved in any permutation of av(θrs, IS); so av(θrs, IS) ⊆ B(r, s).

The importance of the strong sorting classes B(r, s) stems from

Proposition 18 Every proper strong sorting class is contained in some B(r, r).

Proof: Let X be a strong sorting class contained in no B(r, r). Then X contains permutations of the
form βα where β > α and |α| = |β| = r for all values of r. But, if X contains say b1 . . . bra1 . . . ar with
all bi > aj , then by a series of exchanges of the form bi ↔ aj we can produce a permutation with any
rearrangement of a1 . . . ar in the first r positions. Thus X contains every permutation of length r and so
contains every permutation.

This proposition indicates that the classes B(r, s) are going to be fundamental in the understanding of
strong sorting classes. Obviously, B(1, 1) consists only of identity permutations. The first non-trivial
cases are B(1, 2) and B(2, 1) whose structure is given next. Subsequently, in Theorem 23, we shall give a
complete description of the classes B(r, s).

Lemma 19 B(1, 2) consists of permutations whose cycle structure is

(1, 2, . . . , k1)(k1 + 1, k1 + 2, . . . , k2)(k2 + 1 . . .) . . .

and B(2, 1) is the class of their inverses.
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Proof: B(1, 2) is the class of {321, 312}-avoiding permutations whose structure is well-known. The
second statement follows from B(2, 1) = B(1, 2)−1.

The classes B(r, s) were also defined (somewhat differently) by Mansour and Vainshtein [10] who enu-
merated them by generating functions. The following result gives an elementary method of enumerating
them.

Proposition 20 Let xn be the number of permutations of length n in B(r, s). Then

xn = rsxn−1 − 2!
(

r

2

)(
s

2

)
xn−2 + 3!

(
r

3

)(
s

3

)
xn−3 − . . .

Proof: Suppose we have a permutation of {1, 2, . . . , n} \ {t} where t is one of {n, n− 1, . . . , n− r + 1}
and that the permutation is in (i.e. order isomorphic to a permutation of) B(r, s). If we insert the
symbol t anywhere within the final s symbols of this permutation we cannot introduce a subpermutation
isomorphic to a basis permutation of B(r, s), so the result is still in B(r, s).

Now consider the possible forms of a permutation of length n in B(r, s). Such a permutation must have
at least one of the r largest symbols somewhere within its last s positions. The choice of the value of
this symbol together with its positions, and the results of the previous paragraph, would appear to give
rsxn−1 permutations in B(r, s) of length n. However, this overcounts the permutations which have two
or more of their r largest symbols in their final s positions. So we seem to have rsxn − 2!

(
r
2

)(
s
2

)
xn−2

permutations. However, this undercounts by 3!
(
r
3

)(
s
3

)
xn−3 the permutations with three or more of their

r largest symbols in their final s positions. Continuing by inclusion-exclusion we obtain the formula.

In [2] it was observed that, for closed classes X ,Y, the set of permutation products

X ◦ Y = {α ◦ β | α ∈ X , β ∈ Y}

was also a closed class. A similar result holds for strong sorting classes.

Proposition 21 If X and Y are strong sorting classes so also is X ◦ Y.

Proof: A class Z is closed under the strong order if and only if for all ζ ∈ Z and all i, j with i < j and
iζ > jζ we have (using cycle notation for transpositions)

(i, j) ◦ ζ ∈ Z.

Now let α ∈ X and β ∈ Y and put γ = α ◦ β. Suppose i < j and iγ > jγ . Then (i, j) ◦ γ = (i, j) ◦ α ◦ β.
Either iα > jα in which case (i, j) ◦ α ∈ X or iα < jα in which case

(i, j) ◦ α ◦ β = α ◦ α−1 ◦ (i, j) ◦ α ◦ β = α ◦ (iα, jα) ◦ β

and (iα, jα) ◦ β ∈ Y since iαβ > jαβ .

Lemma 22 B(1, q) ⊇ B(1, 2)q−1 and B(p, 1) ⊇ B(2, 1)p−1.

Proof: If the first part were false there would be some basis element of B(1, q) which was expressible as
a product of q− 1 elements of B(1, 2). Such a basis element has length q + 1 and maps 1 to q + 1 (i.e. as
a sequence it begins with q + 1). However each element of B(1, 2) maps symbols t either to t + 1 or to a
smaller symbol (Lemma 19) and so a product of q − 1 of them cannot map 1 to q + 1. The second part
follows by taking inverses.

Theorem 23
B(p, q) = B(2, 1)p−1 ◦ B(1, 2)q−1

and
B(p, q) ◦ B(r, s) = B(p + r − 1, q + s− 1)
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Proof: We prove a series of results from which we then deduce the theorem.

A: (X ◦ Y )∗ = X∗ ◦ Y ∗.

If α, β have length n and ρ is the reverse identity permutation then

(α ◦ β)∗ = ρ ◦ α ◦ β ◦ ρ

= ρ ◦ α ◦ ρ ◦ ρ ◦ β ◦ ρ

= α∗ ◦ β∗.

B: B(p, q) ⊇ B(p, 1) ◦ B(1, q).

If this is false there would exist a permutation π = αβ with α ∈ B(p, 1), β ∈ B(1, q) and sets I, J with
|I| ≥ p, |J | ≥ q, I < J and π(I) > π(J). Then, as β(α(I)) > β(α(J)) we have

β(r) > β(s)

for all r ∈ α(I), s ∈ α(J). For each fixed r ∈ α(I), r < α(J) is impossible since β ∈ B(1, q). Thus, for all
r ∈ α(I), we have r > s0 where s0 is the minimal value in α(J). But now, writing j = α−1(s0) we have
I < j and α(I) > α(j) contradicting that α ∈ B(p, 1).

C: B(p, q) ⊆ B(2, 1) ◦ B(p− 1, q).

We say that a subsequence of length r + s is of type (r, s) if its initial r symbols are all greater than the
final s symbols. Let σ ∈ B(p, q). By definition σ has no subsequences of type (p, q). A subsequence γ of
σ is defined to be critical if

1. |γ| = p− 1, and

2. the set S(γ) of symbols that follow γ and are less than every symbol of γ has size at least q.

The critical subsequences γ together with the q-symbol subsequences of S(γ) comprise all the subsequences
of σ of type (p− 1, q).

Notice that two distinct critical sequences γ1, γ2 cannot have the same last symbol. For then γ1∪γ2 would
have size at least p and the minimal symbol of this subsequence would be one of min(γ1) and min(γ2)
and so this subsequence, together with either S(γ1) or S(γ2) would contain a subsequence of type (p, q).
We can therefore order the critical sequences by the position in σ of their final symbols.

Let γ be any critical sequence with final symbol g and let xr, xr−1, . . . , xq, . . . , x1 be the symbols of S(γ)
in order of their occurrence in σ. There can be no symbols of σ between g and xq except for xr, . . . , xq+1.
For if there were such a symbol it could not be smaller than min(γ) (or, by definition, it would be in S(γ))
and, if it were larger than min(γ) then together with γ and xq, . . . , x1 we would have a subsequence of
type (p, q). Notice now that if the segment gxrxr−1 · · ·xq was replaced by xrxr−1 · · ·xqg then we would
destroy all the subsequences of type (p − 1, q) that stemmed from γ; moreover no further subsequences
of type (p− 1, q) would be introduced. This replacement can be effected by pre-multiplication of σ by a
cycle (i, i + 1, . . . , j) where i and j are the initial and final positions of the segment gxrxr−1 · · ·xq.

Now, the next critical sequence γ′ (which ends after g) cannot have final symbol one of xr, xr−1, . . . , xq.
If it did then γ ∪ γ′ together with S(γ′) would contain a subsequence of type (p, q). Therefore the next
critical sequence has a final symbol which occurs after xq. That shows that the subsequences of type
(p − 1, q) that stem from γ′ can be destroyed by pre-multiplication by a similar cycle disjoint from the
one defined above.

Hence all the subsequences of type (p − 1, q) can be destroyed by pre-multiplication by a product of
disjoint cycles of the form given above. But such a product is, by Lemma 19, a permutation α ∈ B(1, 2).
So there exists some α ∈ B(1, 2) for which ασ ∈ B(p − 1, q) and, as B(1, 2)−1 = B(1, 2) we have
σ ∈ B(2, 1) ◦ B(p− 1, q) as required.
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D: B(p, q) = B(p, 1) ◦ B(1, q) = B(2, 1)p−1 ◦ B(1, 2)q−1.

By repeated application of C we have

B(p, q) ⊆ B(2, 1)p−1 ◦ B(1, q) ⊆ B(p, 1) ◦ B(1, q)

(the second inclusion following from Lemma 22) and the result follows from B.

E: B(p, 1) ◦ B(r, 1) = B(p + r − 1, 1) and B(1, q) ◦ B(1, s) = B(1, q + s− 1).

This follows immediately from D since B(1, 1) is the class of identity permutations.

F: B(p, 1) ◦ B(1, q) = B(1, q) ◦ B(p, 1).

The left hand side is B(p, q) (by D) and the right hand side is

B(1, q) ◦ B(p, 1) = B(q, 1)∗ ◦ B(1, p)∗

= (B(q, 1) ◦ B(1, p))∗

= B(q, p)∗

= B(p, q).

We can now complete the proof since

B(p, q) ◦ B(r, s) = B(p, 1) ◦ B(1, q) ◦ B(r, 1) ◦ B(1, s)
= B(p, 1) ◦ B(r, 1) ◦ B(1, q) ◦ B(1, s)
= B(p + r − 1, 1) ◦ B(1, q + s− 1)
= B(p + r − 1, q + s− 1).

Finally we mention another respect in which strong sorting classes are more tractable than weak sorting
classes. It is no accident that the enumerations in Propositions 15 and 16 were all rational since in
[1] techniques are given to show that every finitely based subclass of B(r, s) has a rational generating
function. Consequently, using Theorem 14 we have

Theorem 24 Every strong sorting class whose strong basis is finite has a rational generating function.
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