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Abstract

The substitution closure of a pattern class is the class of all permutations ob-
tained by repeated substitution. The principal pattern classes (those defined by
a single restriction) whose substitution closure can be defined by a finite number
of restrictions are classified by listing them as a set of explicit families.
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1. Introduction

A pattern class of permutations is a set of permutations closed under taking
subpermutations. We recall that a permutation α is a subpermutation of a
permutation β if β contains a subsequence which is isomorphic to α (its terms are
ordered relatively the same as those of α). It is convenient to have a phrase for
the opposite condition: β avoids α if α is not a subpermutation of β. Similarly,
it is convenient to refer to permutations β which have α as a subpermutation
as extensions of α.

A very common way of specifying a pattern class X is to give it as the set of
permutations that avoid a given set B, in which case we write X = Av(B).
Indeed, every pattern class X may be defined in this way and if the avoided set
B is taken to be minimal it is called the basis of X. Not every pattern class
has a finite basis and distinguishing the finitely based classes from the infinitely
based classes is one of the most common pattern class questions.
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As a classical example of these notions we have the class S of all stack-sortable
permutations. This class may be defined as S = Av(231), an example of a
pattern class whose basis is a single permutation.

In this paper we consider pattern classes with an additional property – being
closed under substitution, defined as follows. Suppose that σ, α1, . . . , αn are
permutations where n = |σ|. Then σ[α1, . . . , αn] denotes the permutation in
which the ith term of σ is substituted by αi. In other words σ[α1, . . . , αn]
consists of n consecutive subsequences isomorphic to α1, . . . , αn whose relative
order is the same as the relative order of the terms of σ. For example

231[21, 321, 12] = 4376512

A pattern class X is said to be substitution-closed or wreath-closed if, whenever
σ, α1, . . . , αn ∈ X with n = |σ|, we have σ[α1, . . . , αn] ∈ X. It is evident that
the intersection of substitution-closed pattern classes is also substitution-closed
and therefore every pattern class is contained in a smallest substitution-closed
class called its substitution closure. The substitution closure of a pattern class
X can equivalently be defined as the set of all permutations obtained from X
by repeated substitution operations. For example, the substitution closure of
S = Av(231) is the class Av(2413, 3142) of all separable permutations.

Substitution-closed classes were first defined in [1] where it was shown that
their structure can be defined in terms of simple permutations. We recall the
basic concepts. An interval of a permutation θ is a (non-empty) subsequence of
consecutive terms of θ whose values form a set of consecutive integers. Thus, in
2645173 the subsequence 645 is an interval. Every permutation has itself and
singletons as intervals; other intervals are said to be proper. A permutation with
no proper intervals is said to be simple. The connection with substitution-closed
classes is provided by the following result from [1]:

Proposition 1.1. A pattern class is substitution-closed if and only if its basis
consists of simple permutations.

Simple permutations and substitution-closed classes have been much studied.
It was shown in [1] that the enumeration of a substitution-closed class is deter-
mined by the enumeration of its simple permutations; and if the substitution-
closed class has only finitely many simple permutations then it and every sub-
class has an algebraic generating function. Very recently, simple permutations
have been used to answer a wide range of questions about pattern classes
[4, 5, 6, 7]. The number of simple permutations of length n is approximately
n!/e2 and more exact asymptotics are given in [2].

This paper is about the substitution closure of pattern classes of the form Av(ψ)
and particularly about whether these substitution closures are finitely based.
If the substitution closure of Av(ψ) is finitely based we shall say that ψ has
finite type, otherwise that ψ has infinite type. If two permutations α and β are
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equivalent up to symmetry, then α and β have the same type. As we shall see,
simple permutations are the key to determining the type of ψ.

An extension ξ of a permutation ψ is a minimal simple extension of ψ if

1. ξ is simple, and

2. among all simple extensions of ψ, ξ is minimal under the subpermutation
order.

In other words, if any set of terms of ξ is removed the resulting permutation
either avoids ψ or is not simple. The following result is crucial for the rest of
the paper.

Proposition 1.2. The basis of the substitution closure of Av(ψ) is the set of
minimal simple extensions of ψ.

Proof: Let X = Av(ψ) and let Y be its substitution closure. Since permu-
tations in Y arise from permutations in X by iterated substitution, X and Y
contain the same set of simple permutations. Therefore, the set of minimal sim-
ple permutations not in X is the same as the set of minimal simple permutations
not in Y . But then Proposition 1.1 and the fact that permutations not in X
are precisely the extensions of ψ completes the proof. �

We now recall a few other definitions that will be used frequently in this pa-
per. A permutation is plus-decomposable if it can be expressed as 12[α1, α2]
(which we also write as α1⊕α2) and minus-decomposable if it can be expressed
as 21[α1, α2] (written also as α1 	 α2). A decomposable permutation is one
that is either plus-decomposable or minus-decomposable. Naturally, permuta-
tions that are not (respectively) plus-decomposable, minus-decomposable, or
decomposable are called plus-indecomposable, minus-indecomposable, or inde-
composable. These notions feature in the following result from [1].

Proposition 1.3. Let ψ be any permutation. Then there is a unique simple
permutation σ together with permutations α1, α2, . . . , αn (which correspond to
intervals of ψ) such that

ψ = σ[α1, α2, . . . , αn]

If σ 6= 12, 21, then α1, α2, . . . , αn are also uniquely determined by ψ. If σ = 12
or 21, then α1, α2 are unique so long as we require that α1 is plus-indecomposable
or minus-indecomposable respectively.

The simple permutation σ appearing in this result is called the skeleton of ψ.

Our main objective is to explicitly determine the permutations of finite type.
Similar notions have recently been studied in graph theory [3, 8, 9, 10, 12, 13, 14,
15]. For graphs there are natural analogues of the notions of ‘basis’, ‘interval’
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and ‘simple’ and the substitution closure has been a tool in graph theory since
Lovász’s work [11] on perfect graphs. In the last decade much work has been
done on determining the graphs of finite type and this recently culminated in a
complete characterisation [10]. There is a connection between permutations and
graphs in that every permutation determines a graph with the set of permuted
points as vertices and the inversions as edges; then, in the terminology of [8, 9,
10], intervals correspond to modules and simple permutations to prime graphs.
However two different permutations (such as 4123 and 2341) can give rise to the
same graph (a star graph on 4 vertices in this case, sometimes called a 3-claw)
and so the connection is quite weak. In particular the finite type property is
not preserved (for example, 4123 and 2341 both have infinite type whereas the
3-claw has finite type [3]).

Our paper is organised as follows. The next section sets up some terminology,
reviews some basic results from [5], and refines some others. Then, in Section 3,
we discuss ways in which permutations can be extended to simple permutations.
Section 4 gives conditions in terms of the decomposition in Proposition 1.3 to
guarantee that a permutation has finite type and Section 5 treats permutations
of infinite type. Taken together these results give an explicit description of all
permutations of finite type and make it readily decidable to find the type of
any given permutation. In Section 6 we give first a table of the low degree
finite type permutations ψ together with the basis of the substitution closure
of Av(ψ); then we give tables that summarise our characterisation according
to the different types of skeleton. Finally we make some remarks about the
substitution closure of pattern classes with more than one basis element.

2. Permutation diagrams and pin sequences

We shall often find it convenient to describe a permutation σ = (s1, s2, . . . , sn)
by its diagram – the set of points (i, si) plotted in the (x, y)-plane. In such plots
Rect(A) denotes the axes-parallel rectangular region that bounds the points of
a subset A of σ. A point that lies outside Rect(A) but between either its first
and last point or between its greatest and smallest point is said to cut A. For
example, if σ = 317296485 and A is the subset of image points {1, 7, 6, 4} then
σ together with Rect(A) and its cut points (shown as stars) are displayed in
Figure 1.

Notice that the rectangle of an interval is a square and no points outside the
square cut it either by position or by value.

If p1, p2 are two points of a permutation then a proper pin sequence from {p1, p2}
is a sequence of points p1, p2, p3, . . . such that, for each i ≥ 3,

1. pi+1 lies outside Rect(p1, p2, . . . , pi),

2. pi+1 cuts Rect(p1, p2, . . . , pi) either to the left (L), right (R), below (B)
or above (A) it,
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Figure 1: The permutation 317296485 and Rect(1, 7, 6, 4) with cut points

3. pi+1 separates pi from Rect(p1, p2, . . . , pi−1) by lying in position or in
value between pi and Rect(p1, p2, . . . , pi−1).

The letters L,R,B,A of condition 2 may be used to describe the points p3, p4, . . .
and occasionally we shall describe proper pin sequences by words in these letters.
Notice that, in these words, letters from {L,R} alternate with letters from
{A,B}. Proper pin sequences were first defined in [5]. There conditions 1, 2
were the defining properties of a pin sequence and the additional condition 3
defined a proper pin sequence; however, in this paper, all our pin sequences
will be proper and so we shall simply refer to them as pin sequences. They
are usually drawn with horizontal and vertical guide lines displaying property
3 (see, for example, Figure 2). Two properties of pin sequences that we shall
require from [5] (Proposition 3.2 and Lemma 3.6) are:

Proposition 2.1. If P = p1, p2, . . . , pm with m ≥ 5 is a pin sequence in a per-
mutation σ then the only subsets of P that can be proper intervals are {p1, pm},
{p2, pm}, {p1, p3, . . . , pm}, and {p2, p3, . . . , pm}.

Proposition 2.2. If p1, p2 are points of a simple permutation σ, with p1 not the
last point of σ, then there is a pin sequence P = p1, p2, . . . , pm whose final point
is the last point of σ (a right-reaching pin sequence). Analogous statements hold
for left-, top- and bottom-reaching pin sequences.

In addition we shall need the following further properties of pin sequences:

Lemma 2.3. Let α be any permutation except for 1, 12, 21, 132, 213, 231, 312.
Then there are arbitrarily long pin sequences not containing α as a subsequence.

Proof: Consider the pin sequences in Figure 2. The left hand pin sequence P1

avoids both 321 and 3412 so its reverse avoids 123 and 2143. So, if α contains
any of 123, 321, 3412, 2143, then P1 or its reverse will avoid α. On the other
hand, if α avoids all of 123, 321, 3412, 2143 then α is easily seen to be one of the
permutations in the statement of the lemma or it is 2413 or 3142. However, the
right hand pin sequence avoids 2413, and its reverse avoids 3142. �
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Figure 2: Two pin sequences; the corresponding words are (AR)6 and (ALBR)3A

Lemma 2.4. Let P = p1, p2, . . . be any pin sequence of length 5 or more and
let pa, pa+1, pa+2, pa+3, pa+4 be five consecutive points of P . Let θ be any of
12, 21, 132, 213, 231, 312. Then P has a subset Q which is a pin sequence in its
own right with the following properties:

1. Q ⊆ {pa, pa+1, . . .},
2. Regarded as a pin sequence Q ends with the points pa+5, pa+6, . . .,

3. Q ∩ {pa, pa+1, pa+2, pa+3, pa+4} contains a subset θ′ isomorphic to θ,

4. the unique two points of θ′ that form an interval of θ′ are consecutive
points of the pin sequence Q.

Proof: We consider the case θ = 231; the other permutations are similar. As
described above we represent each pi by a directional letter L,R,A,B according
to its placement with respect to Rect(p1, . . . , pi−1). Then the 5 point sequence
pa, pa+1, pa+2, pa+3, pa+4 can be described by its initial points pa, pa+1 followed
by three directional letters. These three directional letters either begin or end
with AL, BL, LA, or RA, or they are one of ARB, BRB, LBR or RBR.
The pin sequence fragments corresponding to these are shown in Figure 3. In
each diagram the arrows indicate the order of points in P , the points drawn as
squares display the pattern 231, the dotted line shows the two possible directions
in which the pin sequence P and Q can continue, and the initial points of Q
are explicitly labelled. In every case we have a pin sequence Q with the desired
properties. �

3. Hook points and unique embeddings

We have seen in Proposition 1.2 that the basis for the substitution closure
of a pattern class Av(ψ) is closely related to the simple extensions of ψ. A
helpful technique for constructing such extensions is to add hook points to a
permutation. Suppose that we want to construct a simple extension of some
permutation ψ. We consider its minimal non-singleton intervals and for each
of them we define a new point outside Rect(ψ) that cuts the interval either by
position or by value; such a point is called a hook point of the interval. Hook
points that cut an interval to its left or right are called H-hook points while
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Figure 3: Pin sequence fragments containing 231

those that cut it from above or below are called V -hook points. Usually we shall
take the hook points in each direction out of ψ to be monotonically increasing or
decreasing (see Figure 4). By a judicious choice of the directions we can usually
ensure that the new permutation will be simple. In diagrams of permutations
we shall, for clarity, connect each H-hook point (respectively, V -hook point) to
a horizontal (respectively, vertical) line pointing to the interval it cuts.

Figure 4: 4 minimal intervals of a permutation extended by 4 hook points

Ultimately, however, we are interested in minimal simple extensions ξ of ψ and
to verify the minimality property it is useful to have an additional property: that
ξ contains a unique subpermutation isomorphic to ψ. In Proposition 3.1 we show
that such extensions exist while Lemma 3.2 prepares the way for constructing
infinitely many such extensions (when this is possible – see Section 5).

Proposition 3.1. Let α be any permutation. Then it has a minimal simple
extension χ that contains no other copy of α. Furthermore
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1. For every point h ∈ χ− α there is an interval of α that is cut only by h,

2. If |α| > 2, χ may be written as a juxtaposition λµ where neither λ or µ is
empty and where every interval of α is contained within λ or µ.

Proof: The proof divides into two main cases depending on whether the
skeleton of α is of length 2 or of length at least 4. We begin with the former
case and, by symmetry, we may assume that α is minus-decomposable.

Figure 5 illustrates simple extensions χ of such a minus-decomposable permuta-
tion α. The centre diagram shows the case that α is decreasing while the right
hand diagram shows the case that α has two increasing components. In these
diagrams the points of α itself are depicted by squares whilst the hook points
are depicted by circles. In these two cases we leave the (elementary) check to
the reader that the displayed permutations are minimal simple extensions of α
containing no other subpermutation isomorphic to α, and that the auxiliary con-
ditions hold. All remaining cases, when α is minus-decomposable, are handled
by the left hand diagram of Figure 5. In that diagram we have α = θ1	· · ·	θn
where the blocks θ1, . . . , θn are of two types: each block is either decreasing or
it is minus indecomposable; and no two decreasing blocks are consecutive. The
minimal intervals of these blocks are cut by hook points as shown. The H-hook
points are in a monotone order different from the order of the last two points
of α and the V -hook points are in a monotone order different from the order of
the top two points of α.

θ1
θ2

θn

Figure 5: Simple extensions of a minus-decomposable permutation α

The permutation χ is simple because the hook points have cut all the inter-
vals within blocks, there are no intervals across two blocks, and no intervals
containing hook points exist. Furthermore, as every point of χ − α is a hook
point cutting a unique interval the first auxiliary condition holds. The second
auxiliary condition holds because we may take λ = θ1 · · · θn−1. The next task
is to show that χ contains no other copy of α.
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Suppose that χ contains another subpermutation α′ isomorphic to α. Then α′

can contain only one H-hook point; for if it contained two, the final two points
of α′ would be H-hook points, and would be ordered incorrectly. Similarly, α′

can contain at most one V -hook point.

If α′ contains an H-hook point h but not a V -hook point then h is its final
point. Consider the sequence β = αh = b1b2 · · · bp which has the property that,
for some bi (the unique point not in α′), β− bi = α′ is isomorphic to β− bp = α.
In particular, the rank of bp (the number of terms less than or equal to bp)
within β − bi is equal to the rank of bp−1 within β − bp; let this common rank
be called r. Therefore the rank of bp within β itself is either r or r + 1 and
the same is true for the rank of bp−1 within β. These ranks are obviously not
equal but nor can they differ by one since bp = h is a hook point of a block of
α different from the one that contains the final point bp−1 of α.

If α′ contains a V -hook point v but not an H-hook point then v is its largest
point, and therefore lies in the first block θ′1 of α′. On the other hand, v together
with the points of α to the right of v number at most k where k = |θn|. These
must all lie in the last block θ′n of α′ and so v is simultaneously in θ′1 and
θ′n. Hence α and α′ have one block only. This single block is either minus
indecomposable (a contradiction) or is decreasing which is a case that we left
to the reader (centre diagram of Figure 5).

Suppose now that α′ contains both an H-hook point h and a V -hook point v.
The points of α′ between v and h by position all lie (except for v, h themselves)
within θn and so including v and h, there are at most |θn| + 1 of these points
since the first point of θn precedes v. Hence all of these points except possibly
v must lie in θ′n, since they are rightmost points of α′. If v ∈ θ′n, then θ′n is the
top block of α′ and so α and α′ have one block only; then we can argue as in
the previous paragraph. The only alternative is that v is not contained in θ′n
and is therefore forced by position to lie in θ′n−1. This would mean that α has
two blocks only. Moreover θ′1 would end with v, its maximum, and θ′2 would
end with h, also its maximum. Furthermore θ′1 ⊂ θ1v and θ1v − θ′1 contains
only the smallest element t1 of θ1 (t1 6∈ θ′1 since t1 < h). Thus, as θ1 and θ′1 are
isomorphic, they must be increasing; likewise θ2 is increasing. This is the other
case that we left to the reader (right-hand diagram of Figure 5).

There remains the case that α = σ[θ1, . . . , θn] where the skeleton σ has size 4 or
more, in which case (because it is simple) it does not end in its largest element.
Consider the extension χ of α shown in Figure 6. In this figure the intervals θi
of α are shown as squares, and the minimal intervals of the θi are cut by hook
points as shown. We use H-hook points for all intervals except the last, and
V -hook points for the last. The ordering of the hook points is monotone in each
case; the H-hook point monotone order is the opposite of the ordering of the
final two points of α and the V -hook point monotone order is opposite to the
ordering of the top two points of α. This is illustrated in the first diagram of
Figure 6 where it is implicitly assumed that the final two points of α, and its
top two points, are decreasing. There is one exception to the direction in which
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the V -hook points are positioned: when θn−1 is the top interval of α. In that
case, we will instead take the V -hook points to cut θn from below, with their
monotone order being different from the order in which the bottom two points
of α are ordered. This is illustrated in the second diagram of Figure 6.

It is easy to see that the resulting permutation χ is simple. Moreover the
auxiliary conditions hold. For the first one, notice that every point of χ−α is a
hook point and the interval it cuts is cut by no other point of χ. For the second
condition, inspection of the diagrams in Figure 6 shows that the sequences λ and
µ may be chosen in many ways. Therefore only the unique embedding of α in
χ needs to be verified. Suppose χ contained another copy α′ = σ[θ′1, θ

′
2, . . . , θ

′
n]

of α. As in the first case, α′ can contain at most one H-hook point and at most
one V -hook point.

θn-1  is not the top interval θn-1  is the top interval

Figure 6: Simple extension of σ[θ1, . . . , θn]

Consider first the case that α′ contains both a V -hook point v and an H-hook
point h. By exactly the same argument as in the first case we have v ∈ θ′n or
v ∈ θ′n−1. But, if v ∈ θ′n, then θ′n is an interval of α′ that contains both its
rightmost point (namely h) and v which is either its top or bottom point; hence
θ′n is the rightmost interval of α′ and also either its topmost or bottommost
interval; but this contradicts that σ is simple. On the other hand if v ∈ θ′n−1
then θ′n−1 is either the highest or lowest interval of α′ and the V -hook points
were chosen to extend downwards or upwards respectively in these two cases,
giving again a contradiction.

If α′ contains an H-hook point h but not a V -hook point then we can derive a
contradiction by exactly the same argument as in the case that the skeleton of
α is of length 2. The case that α′ contains a V -hook point but not an H-hook
point is treated analogously.
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In all cases the constructions clearly produce minimal simple extensions of α
because any proper subpermutation β that extended α would fail to contain
some hook point and one of the intervals of α would then be an interval of β. �

Lemma 3.2. Let α be the permutation 123, or 321, or any permutation of
length at least 4. Then there are infinitely many permutations α̂ which can be
expressed as a union α∗ ∪ P , where:

1. α∗ is a fixed minimal simple extension of α and all points of α∗ − α cut
α,

2. P is a pin sequence,

3. Only the first point of P cuts α∗ and, except when α = 2413 or 3142, all
others lie above α∗,

4. The final point of P is an A-pin point and hence the largest point (by
value) of α̂,

5. α̂ is simple,

6. α̂ contains a unique copy of α, and

7. If α � β � α̂ and β 6= α̂ then β has an interval M such that |M | > 1 and
such that M does not contain the final point of P .

Proof: Suppose first that α = a1 · · · am is neither of the permutations 2413
or 3142. By applying the reverse symmetry if necessary we may assume that
a1 > am. Then we define a minimal simple extension α∗ of α having the
properties guaranteed by Proposition 3.1. Next we define α̂ by the diagram in
Figure 7 using a pin sequence that ascends to the right. In this diagram the first
pin point is between the sequences λ and µ (where α∗ = λµ as in Proposition
3.1).

α* λ μ

Figure 7: The permutation α̂ when α 6= 2413, 3142 and a1 > am

Property 1 follows from Proposition 3.1 and properties 3, 4 and 5 follow by
inspection.
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Figure 8: The permutations α̂ for α = 3142 and α = 2413

Property 6, the fact that α is uniquely embedded in α̂, follows because it is
embedded once only in α∗, not at all in P (because of the conditions on α), and
not with points in both α∗ and P because a1 > am.

Finally we check property 7. Suppose that α � β � α̂ and β 6= α̂. Let t ∈ α̂−β.
If t ∈ α∗ then there is a minimal interval M of α that is cut by no point of
α∗ except for t, nor by any point of P (from Proposition 3.1). Therefore M is
also an interval of β and M does not contain the final point of P confirming the
property in this case. We may therefore assume that α∗ � β, and we may take
t to be the first point of P not in β. Then, by inspection, α∗ together with all
points of P that precede t forms an interval with the desired properties.

In the cases that α = 2413 and 3142, we let α∗ = α and we define α̂ as in Figure
8. The required properties all follow by inspection. �

4. Finite types

In this section we describe permutations of finite type. We will divide these per-
mutations into three families: ‘generic’ indecomposable permutations, ‘generic’
decomposable permutations, and the ‘sporadic’ family of spiral permutations
defined in Subsection 4.3 below.

4.1. Indecomposable permutations of finite type

Theorem 4.1. Suppose that the permutation ψ has the form σ[α1, . . . , αn] where
σ is the skeleton of ψ and |σ| = n ≥ 4. If every interval αi lies in the set
{1, 12, 21, 132, 213, 231, 312} then ψ has finite type.

Proof: We shall prove that every minimal simple extension of ψ has length at
most 7n. Let ξ be an arbitrary minimal simple extension of ψ.

There may be several embeddings of ψ in ξ and, in due course, we shall choose
one to minimise a certain parameter. For now let ψ = σ[α1, α2, . . . , αn] be any
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of these embeddings (where, with the usual abuse of notation, we use αi to
mean the corresponding subsequence of ξ also).

If |αi| ≥ 2 let pi1, pi2 be two points that form an interval of αi. Consider a
pin sequence Pi = pi1, pi2, pi3, . . . in ξ whose first two points are pi1 and pi2.
Since ξ is simple we may, by Proposition 2.2, take Pi to be either left-reaching
or right-reaching. If i 6= n we take Pi to be right-reaching, and for i = n
left-reaching.

Let πij denote the subpermutation of ξ formed by αi, pi3, . . . , pij (provided
that all these points exist). Then, by definition, πi2 = αi always exists and
{πi2 | 1 ≤ i ≤ n} is a collection of subpermutations of ξ which do not overlap
either by position or by value and the relative order of these subpermutations
is the simple permutation σ. We can therefore choose v1, v2, . . . , vn such that
{πi,vi | 1 ≤ i ≤ n} is a collection of subpermutations of ξ which do not overlap
either by position or by value (and therefore whose relative order is the simple
permutation σ) such that

∑
vi is maximal.

Consider any one of the subpermutations πi,vi for which |αi| ≥ 2. Note first
that pi,vi is not the last point on the pin sequence Pi. This follows for i < n
because Pi is right-reaching and so its final point is inside αn or separated from
αi by αn; and it follows for i = n because Pn is left reaching and so its final
point is inside α1 or separated from αn by all of α1, . . . , αn−1. So there is a
point fi = pi,vi+1 and, by the maximal choice of

∑
vi, there must be a point in

some πj,vj
with j 6= i that separates fi from πi,vi .

Put F = {fi : |αi| ≥ 2}. Furthermore let χi = πi,vi if |αi| ≥ 2 and χi = αi if
|αi| = 1. Then, clearly, the subpermutation β of ξ defined by

β = F ∪
n⋃

i=1

χi

is an extension of ψ.

The above series of definitions can be made starting from any embedding of
ψ. We now choose and fix an embedding for which the length of the resulting
permutation β is as small as possible. Our aim is to prove

1. |β| ≤ 7n, and

2. β is simple.

To prove the first assertion suppose that vi > 5 for some i. Then we may
apply Lemma 2.4 to the 5 points pi,vi−4, pi,vi−3, . . . , pi,vi of the pin sequence
pi1, . . . , pi,vi+1. The lemma shows that there is a copy α′i of αi contained in the
sequence pi,vi−4, pi,vi−3, . . . , pi,vi and a pin sequence beginning from the unique
interval of size 2 in α′i that ends at pi,vi+1. Thus, replacing αi by α′i would give
another embedding of ψ with a shorter pin sequence associated with α′i and this
would contradict the minimality of |β|. Hence vi ≤ 5 for all i. This implies that
|χi| ≤ 6 and so
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|β| ≤
∑
i

|χi|+ |F | ≤ 6n+ n = 7n

For the second statement let M be any non-trivial interval of β.

If M ⊆ F then we could replace all the points in M by a single point; this point
would have the separating properties previously enjoyed by the points of M ,
and this would contradict the minimality of |β|.
We next suppose that M intersects two distinct χi. The permutation defined
by the relative order of those χi that do intersect M is an interval of the simple
permutation σ; therefore M intersects every χi. But again, by the simplicity of
σ, every χi lies between (by value or position) two other χk, and so every χi is
contained in M . Now, since fi separates pi,vi from all pij with j < vi, we have
fi ∈M and hence M = β.

From now on we may suppose that M intersects one χt only. Recall that
χt consists of a single point if |αt| = 1 but otherwise consists of αt together
with a sequence of pin points. If |αt| = 2 then, in fact, χt = {pt1, . . . , pt,vt}.
Furthermore if |αt| = 3 then χt consists of pt1, . . . , pt,vt together with another
point at, the point of αt not in its interval of size 2 (it is however possible that
at is among pt1, . . . , pt,vt).

Suppose that ft ∈ M . Then, by construction, there would be a point of some
πj,vj = χj with j 6= t that separates ft from χt. Since M is an interval, this
point would belong to M . Now M would intersect the distinct χt and χj which
is a contradiction.

If |αt| ≥ 2 and M contains two or more points from pt1, . . . , pt,vt then, by
Proposition 2.1, M must contain pt,vt and some prior point, hence M contains
ft which we have just excluded.

If |αt| = 3 and M contains at and a point ptj 6= at then, by removing at and
considering ptj in its stead, we could obtain an embedding of ψ with smaller |β|
which is impossible.

This proves that M intersects χt in exactly one point z and so M must also
contain a point of F . We have seen that M cannot contain ft and so it must
contain some fs with s 6= t. Since fs separates ps,vs from αs, ps3, . . . , ps,vs−1,
z also must separate ps,vs from αs, ps3, . . . , ps,vs−1 and this contradicts that χs

does not overlap χt.

Therefore no such M can exist and β is simple.

But ξ is a minimal simple extension of ψ and ψ � β � ξ. Therefore β = ξ from
which we conclude that |ξ| ≤ 7n. �

4.2. Decomposable permutations of finite type

Theorem 4.2. If ψ is of any of the following permutations:
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1. α1 ⊕ α2 where α1, α2 ∈ {1, 21, 231, 312},
2. 21⊕ 1⊕ 21, 1⊕ 21⊕ 1, or any subpermutation of these, or

3. 2413⊕ 1, 1⊕ 2413, 3142⊕ 1, or 1⊕ 3142,

then ψ has finite type.

Proof: The first two parts are similar and we will only prove the first. The
third part is a special case of Theorem 4.5 which is proved in the next subsec-
tion. Therefore, suppose ψ = α1 ⊕ α2 where α1, α2 ∈ {1, 21, 231, 312}. Further
suppose that ξ is a minimal simple extension of ψ.

We construct a subpermutation β of ξ exactly as in the proof of Theorem 4.1.
Using the notation of that proof we have β = F ∪ χ1 ∪ χ2 with |F | ≤ 2 and
|χi| ≤ 6. Thus |β| ≤ 14. The result will therefore follow if we can prove that β
is simple for then ψ � β � ξ implies that β = ξ and hence demonstrates that
|ξ| ≤ 14.

To this end let M be a non-trivial interval of β. We can now argue that M = β
exactly as in the proof of Theorem 4.1 with one exception: we have to give a
different argument in the case that M intersects both χ1 and χ2 (since there is
no further interval of ψ lying between α1 and α2). So suppose that M contains
a point u ∈ χ1 and a point v ∈ χ2.

We shall prove that M contains a point of α1. Obviously this is true if u ∈ α1

so we assume that u ∈ χ1 \ α1 and therefore (by the construction) u is a point
on a pin sequence that starts in α1. Then u is not both the rightmost and
greatest point of χ1, since a pin sequence has no such point. Suppose u is not
the rightmost point of χ1 (the case that u is not the greatest point is similar).
Then the rightmost point w of χ1 lies between u and v by position and so
belongs to M . The intersection of M with the pin sequence is then a non-trivial
interval of the pin sequence and Proposition 2.1 shows that it must contain one
of the two initial points which both lie in α1.

Because of the form of α1 and the fact that M contains the point v which is
larger and to the right of α1 we have α1 ⊆ M . Another appeal to Proposition
2.1 now demonstrates that M contains χ1.

Similarly M also contains χ2 and therefore, as in Theorem 4.1, M = β and so
β is simple. �

4.3. Spiral permutations

A spiral permutation ψ is made up of a central pattern 3142 which forms an
interval and a non-empty pin sequence p2, . . . pk that winds clockwise around
this interval as shown in Figure 9. Also a (dual) spiral permutation is made
up of a central interval 2413 and a counter-clockwise pin sequence as shown in
Figure 10.
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Figure 9: The four spiral permutations of length 17 with central interval 3142

Figure 10: The four dual spiral permutations of length 17 with central interval 2413

Lemma 4.3. Suppose a permutation ζ is contained in a spiral permutation ψ,
contains an interval isomorphic to 3142 [or 2413], but no longer proper intervals.
Then ζ is itself a spiral permutation.

Proof: Without loss we will assume that the central interval of ψ is 3142.
From Figure 9, it is clear that ψ contains only one subsequence θ isomorphic to
3142 and so θ is contained in ζ.

By way of contradiction suppose that the sequence of pin points of ψ contained
in ζ is not contiguous. Let pi be the first pin point contained in ζ and let pj+1

be the first pin point after pi not contained in ζ. Now θ and pi, pi+1, . . . , pj form
a single interval in ζ. This contradicts the assumption that the largest interval
of ζ is 3142. Hence ζ consists of θ and a contiguous sequence of pin points from
the clockwise pin sequence. Therefore ζ is a spiral permutation. �

Lemma 4.4. A spiral permutation ψ where |ψ| 6= 6, 7, 9 has only one proper
interval, that is, the central 3142 [or 2413] pattern. If |ψ| = 9, then ψ has exactly
two proper intervals where the second of these intervals is made up of the first
and last pin points. If |ψ| = 6, 7, then ψ has a plus or minus decomposition with
one interval of length 1 and another interval of length |ψ| − 1.

Proof: The claims for the cases when 5 ≤ |ψ| ≤ 9 are clear upon inspection
of diagrams shown in Figure 11.

Consider ψ with |ψ| = m+3 > 9 as the pin sequence P shown in Figure 12 where
the centre solid square p1 represents the pattern 3142, and the remaining points
are labeled p2, . . . , pm. Then by Proposition 2.1, if P has a proper interval I,
then it must be one of {p1, pm}, {p2, pm}, {p1, p3, . . . , pm}, or {p2, p3, . . . , pm}.
If I = {p2, pm} or I = {p2, p3, . . . , pm}, then p1 6∈ I, and so pm must be in the
same quadrant (with respect to the central interval) as p2. But since m > 6,
this quadrant also contains pm−4 6= p2, and so pm−4 ∈ I. It then follows that
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Figure 11: The spiral permutation ψ and its intervals when 5 ≤ |ψ| ≤ 9

p1

p2

p3
p4

p5

pm

Figure 12: A spiral permutation with central interval 3142

pm−3 ∈ I, and this point lies in a different quadrant, which in turn implies
p1 ∈ I, a contradiction. A similar argument shows that I = {p1, pm} and
I = {p1, p3, . . . , pm} are impossible. �

Theorem 4.5. Any spiral permutation ψ where |ψ| 6= 6, 7 has finite type.

Proof: Suppose without loss that the central interval C of ψ is isomorphic to
3142. Let |ψ| = n and let q1, . . . , qn−4 be the remaining points of ψ which spiral
around C clockwise. For now, in addition to n 6= 6, 7, let us also suppose n 6= 9,
so that, by Lemma 4.4, C is the only proper interval of ψ.

Suppose that ξ is a minimal simple extension of ψ. Let p1, p2 be two points of C;
by Proposition 2.2 there must be right-reaching and left-reaching pin sequences
that begin from p1, p2 and we choose a pin sequence P = {p1, p2, . . . , pm} whose
final point is on the same side (left or right) of C as q1. Then q1 separates
the final point of P from C by position unless q1 actually is the final point
of P ; in this latter case q1 = pm is a right pin point and it separates C from
the penultimate point of P by value. In any case there is a point of P that is
separated from C by some qi. Hence there is a first such point of P . So there
exists some v ≥ 3 such that p1, p2, . . . , pv are not separated from C by any qi
but pv+1 is separated from C by some qi.

The sequence of points p3, . . . , pv+1 can be defined for any embedding ψ′ of ψ
in ξ and any pair of points p1, p2 in the central interval of ψ′. We shall choose
the embedding of ψ and the pair of points p1, p2 for which the value of v is as
small as possible.
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We observe that C ∪ {p1, . . . , pv} contains no copy of 3142 other than C itself.
For if there were another copy C ′ it would contain pt for some 2 < t ≤ v
which we can take as large as possible. Then C ′ ∪ {q1, . . . , qn−4} would be a
subpermutation isomorphic to ψ. Furthermore pt+1, . . . , pv+1, . . . , pm would be
a pin sequence extending from it such that pt, . . . , pv is not separated from C ′

by any qi but pv+1 is separated from C ′ by some qi. This would contradict the
minimal property of the embedding of ψ.

The point p3 lies outside Rect(C). If not, the minimality property is contra-
dicted since we could instead take p3 to be the first point of P outside Rect(C)
and p1, p2 to be points of C separated by p3: it cuts Rect(C) but lies either
below, left, above or right of Rect(C). Using the fact that C ∪{p1, . . . , pv} con-
tains no other copy of 3142 a case inspection shows that p4 lies (respectively),
left of, above, right of or below Rect(C) and does not cut Rect(C). Indeed,
by analogous inspection, all subsequent pi lie outside Rect(C) and they spiral
around Rect(C) in a clockwise fashion.

It is now easily seen that C ∪ {p1, . . . , pv} is simple (except possibly if v = 3)
and that C∪{p1, . . . , pv}\{p3} is a spiral permutation of length v+1. However
ψ, a spiral permutation of length n, is involved in every spiral permutation of
length n + 3 or more. Therefore v + 1 < n + 3 for otherwise C ∪ {p1, . . . , pv}
would be a simple permutation that contained a subpermutation isomorphic to
ψ and this would contradict the minimality of ξ.

Let α = ψ ∪ {p3, p4, . . . , pv+1}. From the above we have

|α| ≤ |ψ|+ v − 1 < n+ n+ 2− 1 = 2n+ 1

Now we will show that α is a simple extension of ψ and thus α = ξ. To do this
we have to consider an arbitrary interval M of α with |M | > 1 and prove that
M = α. Then from ψ � α � ξ we can deduce that α = ξ.

Define the subpermutations β = C ∪ {p1, . . . , pv, pv+1} and γ = q1, . . . , qn−4 of
α; then α = β∪γ. Note that β is obtained by adding a further point (necessarily
outside Rect(C)) to C ∪ {p1, . . . , pv} and is easily seen to be simple. In fact,
because n− 4 6= 2, 3, 5, we have, by inspection, that γ is also simple.

Suppose first that M contains at least two points of β. Then, as β is simple
and M ∩ β is an interval of β, we have β ⊆ M . However, there is some point
of γ that separates pv+1 ∈ β from C ⊆ β and so M contains that point of γ. If
|γ| = 1 (i.e. n = 5) then certainly M = β ∪ γ = α. On the other hand if |γ| > 1
then, since n 6= 6, 7, we have |γ| ≥ 4. However then, for every point qi of γ,
there is some other point of γ that separates it from C (namely qi+1 if i < n−4
and qi−3 if i = n−4). As at least one point of γ belongs to M so therefore does
every point and hence M = α.

Suppose next that M contains at least two points from γ (and so in particular
γ has at least two points). Since γ is simple and M ∩ γ is an interval of γ, we
have γ ⊆M . As any two consecutive points of γ are separated by C, it follows
that M contains C and therefore M contains β. So again, M = α.
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The remaining case is that M ∩ β and M ∩ γ are non-empty intervals of simple
permutations β and γ respectively and therefore are singletons {b} and {c}.
The point c does not cut C and, without loss, we shall assume it lies below and
to the right of C. If b ∈ C then a further point (the least or rightmost point)
of C would lie between b and c and so would lie in M which is impossible. It
follows that no point of C lies by position or by value between b and c, and so b
also lies below and to the right of C. In particular b = pi for some i > 3. Then
pi−1, the previous point on the clockwise sequence p3, p4, . . ., is above and to
the right of b. Since i− 1 ≤ v, the point pi−1 lies between b and c and therefore
lies in M , a contradiction.

Since ξ is bounded, we have shown that ψ has finite type except when |ψ| 6=
6, 7, 9. A similar argument that uses ideas from the proof of Theorem 4.1 can
be used to show that ψ also has finite type when |ψ| = 9. �

In the cases when |ψ| = 6, 7, the permutation ψ is shown to have infinite type
in Proposition 5.4 below based on the decomposition mentioned in Lemma 4.4.
Also when |ψ| = 5, Theorem 4.5 is equivalent under symmetry to the third case
of Theorem 4.2.

5. Infinite types

To prove that a permutation ψ has infinite type we have to display infinitely
many minimal simple extensions of ψ. Our approach to this is to find simple
extensions ξ of ψ which contain a unique copy of ψ and then to show that every
proper subpermutation of ξ that contains this unique copy of ψ has a proper
interval. It then follows that ξ contains no proper subpermutation that is a
simple extension of ψ and hence that ξ is minimal.

Our methods for carrying out this programme depend on the skeleton of ψ. We
treat the case that the skeleton is 12 (or 21, which is equivalent by symmetry)
somewhat differently from the case of larger skeletons.

5.1. The decomposable infinite types

Theorem 5.1. Suppose ψ is plus-decomposable and is not of the form in The-
orem 4.2. Then ψ has infinite type.

Proof: This statement will follow from Propositions 5.2, 5.3, and 5.4. �

Proposition 5.2. For all α, β, γ, δ, α⊕ β ⊕ γ ⊕ δ has infinite type.

Proof: In the permutations exemplified by Figure 13 the minimal intervals of
α and β are cut by hook points on the right and these hook points are ordered
in monotonic decreasing order; the minimal intervals of γ ⊕ δ are cut by hook
points which lie above α and below β in value and which are also in monotonic
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δ

γ

β

α

Figure 13: Minimal simple permutations containing α⊕ β ⊕ γ ⊕ δ

decreasing order. The pin sequence in the top left of the figure is of arbitrary
length; its left-most point is the first element of the permutation and its other
points lie between α and β. In such permutations, α ⊕ β ⊕ γ ⊕ δ has a unique
embedding. This follows because there are no other subpermutations which are
the plus sum of four permutations of lengths |α|,|β|, |γ| and |δ|. Furthermore
such a permutation is clearly simple. Finally, this simple extension of α⊕β⊕γ⊕δ
is minimal. Indeed, consider any subpermutation ξ that contains α⊕ β⊕ γ⊕ δ.
If there is a hook point that ξ does not contain then, by construction, one of
the intervals of α, β, γ ⊕ δ will be an interval of ξ. On the other hand if one of
the pin points p is not contained in ξ then β ⊕ γ ⊕ δ together with their hook
points and pin points preceding p will form an interval of ξ. �

Proposition 5.3. Suppose that α, β, γ are plus-indecomposable permutations.
Then α⊕ β ⊕ γ has infinite type unless we have

1. |α| ≤ 2, |γ| ≤ 2 and β = 1, or

2. α = γ = 1 and |β| ≤ 2.

Proof: Suppose that α ⊕ β ⊕ γ is not one of the permutations listed in the
statement of the proposition. By taking an appropriate symmetry we may
suppose that |α| ≤ |γ|.
Consider the extensions of α ⊕ β ⊕ γ exemplified by Figure 14; the left hand
diagram is the case that β, γ are decreasing permutations of lengths r, s ≥ 2 and
the right hand diagram represents all the other cases. For both diagrams the
hook points are chosen so that they cut the minimal intervals of α, β, and γ and
are ordered monotonically as shown. The pin sequence shown is of arbitrary
length. The point p is shown as lying among the positions of β; however, in the
left diagram, should β have only one point then we will instead place p before or
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Figure 14: Minimal simple permutations containing α⊕ β ⊕ γ

among the positions of γ in such a way that it does not lie immediately before
or after the largest point of γ (this is possible since |γ| > 2).

By inspection, such permutations are simple. Suppose, for the moment, that
they have a unique copy of α⊕β⊕γ. Then they are all minimal simple extensions
of α⊕ β⊕ γ, because any proper subpermutation that includes all the points of
α⊕ β ⊕ γ either must omit a hook point thereby creating an interval in one of
α, β, γ or must omit a pin point which creates an interval containing β ⊕ γ.

So to complete the proof we only have to verify that there is no other copy
of α ⊕ β ⊕ γ within the permutations of Figure 14. To this end suppose that
α′ ⊕ β′ ⊕ γ′ is another copy. In either case however it is easily seen that α′ = α
(since α′ clearly contains none of the points of the pin sequence, therefore ends
within β or after β, and then the subsequent points cannot contain β′ ⊕ γ′).
Put β = λ 	 δr and γ = µ 	 δs (with similar definitions for β′, γ′), where
δr, δs denote decreasing permutations of length r, s and r, s are taken as large
as possible so that λ, µ do not end with their minimum.

We now show that λ is empty. This is certainly true if |β| ≤ 2. But if |β| ≥ 3
then β′ can consist only of points of β and hook points of γ. In particular it
follows that λ′ = λ. If λ′ is non-empty (so we have the right hand diagram of
Figure 14) it must contain the top point of β and therefore we must have γ′ = γ
and then β = β′ which is a contradiction. Thus β = δr.

Next we show that µ is empty. Assume not so that we have the right hand
diagram of Figure 14. If β′ = β then we must have γ′ = γ, a contradiction.
Therefore β′ contains at least one of the hook points of γ. However γ′ contains
only points of γ and hook points of β and consequently µ′ = µ; but that means
that γ′ contains points that precede points of β′, a contradiction. Thus γ = δs.

We now show that β 6= 1. If not then consider the right hand diagram again.
If β′ = β then γ′ = γ which is impossible. If β′ is a hook point of γ then we
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E

Figure 15: The type A permutations α

cannot embed γ′ (as β has no hook points). The only other possibility is that
β′ embeds as a pin point. But then γ′ also embeds as a pin point and so |γ| ≤ 2
and therefore also |α| ≤ 2 which is the first exception listed in the theorem.

Now we show that γ 6= 1. If this were false then, in the right hand diagram
and noting that there are no hook points of γ, we would either have β′ = β and
therefore γ′ = γ, a contradiction, or β′ consisting of pin points; in the latter
case β � 21 and γ = 1, from which also α = 1 and this is the second exception.

At this stage we have completed the proof unless β = δr, γ = δs with r, s ≥ 2.
But here it is easily seen in the left hand diagram that no other copy of α⊕β⊕γ
is possible. �

Proposition 5.4. Suppose that α and β are plus-indecomposable. Then α⊕ β
has infinite type unless

1. One of α, β is in {2413, 3142} and the other is trivial, or

2. α and β are amongst {1, 21, 312, 231}.

Proof: Since the permutation 12 has finite type we may assume that not both
α = 1 and β = 1 so assume that |α| > 1. Consider three cases.

A. α is a permutation of the type shown in Figure 15 with |α| ≥ 4; in par-
ticular α is minus-indecomposable, although we allow it to begin without
the first point F and/or end without the last point E.

B. α is minus-indecomposable but not of the form in A.

C. α is minus-decomposable.

In case A, consider the family of permutations exemplified by Figure 16.

These permutations are all simple. Furthermore, so long as |α| > 4, α⊕β embeds
in them uniquely. Now we argue as usual that every proper subpermutation that
contains α⊕ β contains a proper interval; thus, when |α| > 4, the permutations
of Figure 16 are minimal simple extensions of α ⊕ β. However, if |α| = 4 we
need a rather different family. By symmetry we may assume that α = 2413.
Consider the permutations typified by Figure 17.
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α

β

Figure 16: In case A, minimal simple permutations containing α⊕ β, |α| > 4

β

α

Figure 17: In case A, minimal simple permutations containing 2413⊕ β
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d

Figure 18: A type B permutation α⊕ β and a minimal simple permutation containing it

If β 6= 1 then, using its plus-indecomposability, these permutations have unique
embeddings of 2413 ⊕ β. They are also clearly simple and, if any points other
than points of the embedded 2413⊕β are removed, we produce a proper interval.
So 2413 ⊕ β has infinite type. On the other hand if β = 1 we get the first
exception of the proposition.

For case B we begin by dividing into two subcases according to whether the last
two symbols of α are in increasing order or not. We shall give full details for the
former subcase and we shall appeal to the family of permutations exemplified
by Figure 18. In this family we have a pin sequence emerging from the right of
α whose first point is a value that lies between the smallest and second smallest
values of α. The other subcase, where the last two points of α are decreasing,
is very similar and uses a pin sequence that emerges from the bottom of α in
between the final two positions of α but the essential arguments are the same.

In Figure 18 the hook points above and to the left of α represent points that
extend α to a simple permutation (as in Proposition 3.1 and a suitable symmetry
of Figure 6) that contains a unique copy of α. The permutations in Figure 18
are simple and if we can prove that they contain one copy only of α⊕β we shall,
as usual, be able to conclude that they are minimal simple extensions of α⊕ β.
This will follow if we can show that the set of points consisting of the displayed
copy of α together with the pin points that follow it does not contain another
copy of α.

So now suppose that, within the displayed set α and the subsequent pin points,
there is a second copy (say, α′) of α. Consider the final point of α′. This point
must be a “R” (right) pin point (for, if it is a “B” (below) pin point, α′ would
not be minus-indecomposable); so we may take it to be a point a illustrated as
in Figure 18. Now, again by the minus-indecomposable property, we know that
point b must also lie in α′. For the same reason d also lies in α′. But now also
we can conclude that point c lies in α′ because the final two points of α (and
so the final two points of α′) are increasing. Now we continue to use the minus

24



a
b c

d

α

Figure 19: A type B permutation α together with α′

indecomposability of α′ and deduce that all the pin points between a and α lie
in α′. In particular, α terminates in a sequence of points that is isomorphic to
this sequence of pin points; and, even more particularly, the penultimate point
of α is its minimal point.

Thus α and α′ are related as shown in Figure 19. Again the minus-indecomposable
property proves that the entirety of points shown there belong to α′ and we can
extend backwards further in α. It follows that α is of type A, a contradiction.

For case C, let α = θ 	 φ. First assume that |θ| > 1 and consider the permuta-
tions of Figure 20. Here the hook points cut the minimal non-trivial intervals
as usual and the first pin point is positioned between the first and last points of
θ. Note too that there might be an interval that intersects both θ and φ; this
should be cut by an additional point in the same family as the hook points of φ.
Again we have to confirm that there is a unique embedding of α⊕ β. However
another copy of α could only occur in the pin sequence extending from θ and
the only minus-decomposable subsequences that it has are isomorphic to 21, 312
and 231. So, except for these cases, α⊕ β has infinite type.

We can argue in a similar way if |φ| > 1 by first taking inverses (essentially
reversing the roles of θ and φ). Thus we have shown that α⊕β has infinite type
unless α is one of 21, 312 and 231. However, when α has one of these forms we
can argue by symmetry that, unless β is also of this form, α ⊕ β has infinite
type. This gives the second exception of the proposition. �

5.2. Indecomposable infinite types

In this subsection we shall be considering non-spiral permutations

ψ = σ[α1, α2, . . . , αn]

where σ is simple, n ≥ 4, and at least one of the intervals αi is isomorphic to
123, or isomorphic to 321, or has length at least four. Our aim is to prove that
such permutations have infinite type.

We pick a maximal length interval αs of ψ. If there are no intervals of size 4 or
more we choose αs to be any 123 or 321 interval.
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φ

β

Figure 20: In case C, minimal simple permutations containing α⊕ β

Since we can replace ψ by its reverse, we may assume s < n. Similarly, if
necessary, we can replace ψ by its complement so that αs > αn.

To prove that ψ has infinite type we shall construct an infinite family of minimal
simple extensions of ψ. As before, the minimality of such simple extensions will
be proved using the fact that they contain a unique copy of ψ. We let ξ denote
a typical permutation in this family.

Construction of ξ

We first apply Lemma 3.2 to αs. This shows that there exists a minimal simple
extension α∗s of αs where every point of α∗s − αs cuts αs, an arbitrarily long
pin sequence P = {p1, . . . , pm} out of α∗s and a permutation α̂s = α∗s ∪ P . To
recapitulate their properties as stated in Lemma 3.2:

• α̂s is simple and has a unique subpermutation isomorphic to αs (properties
5 and 6),

• the last pin point of P is the largest point of α̂s (property 4), and

• if αs 6= 3142 or 2413, then all of the pin points that do not cut α∗s lie
above α∗s (property 3),

• If αs � β � α̂s and β 6= α̂s then β has an interval M such that |M | > 1
and such that M does not contain the final point of P (property 7).

In broad terms the permutation ξ is constructed in two stages. First we form

σ[α1, . . . , αs−1, α̂s, αs+1, . . . , αn]
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αs

Figure 21: The permutation ξ

and then we extend it to a simple permutation by inserting hook points. The
hook points either cut intervals by value (H-hook points) or by position (V -hook
points). The hook point cutting α̂s cuts it just below its highest point.

In more detail, we form the permutation shown in Figure 21. There is one
exception to this: when αn−1 is the top interval of ψ. In that case, we will
instead take the V -hook points to drop downwards to the bottom of ξ. The
reason for this variation will emerge in Lemma 5.8. In both cases the monotone
order in which the H-hook points and the V -hook points is chosen is as in
Proposition 3.1: different from the order in which the final two points of ψ and
the top (or, in the exceptional case, the bottom) two points of ψ are ordered.

For the remainder of this section, we will often refer to blocks of ξ, denoted
α̂1, . . . , α̂n where

α̂i =

{
αi if i 6= s
α̂s if i = s

That is, the blocks of ξ will be the same as the corresponding intervals of ψ,
except in the case of α̂s. This block α̂s will be called the special block.

It follows from Proposition 3.1 (and its proof) that we have:

Lemma 5.5. ξ is simple.

In the following seven lemmas, we go about proving that the copy of ψ that
has been designed to appear as a subpermutation of ξ is unique. To do this, we
assume the contrary and suppose that ξ has another subpermutation ψ′ isomor-
phic to ψ. Then ψ′ has intervals represented by the subsequences α′1, . . . , α

′
n

of ξ, which are isomorphic to α1, . . . , αn and ψ′ = σ[α′1, . . . , α
′
n]. By analyzing

the possible ways in which α′1, . . . , α
′
n can intersect with α̂1, . . . , α̂n, we shall

eventually prove that ψ′ does not exist.

Lemma 5.6. No block of ξ intersects non-trivially all the intervals of ψ′.
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Proof: Suppose that R is a block of ξ that has non-trivial intersection with
every interval of ψ′. We shall first show that these intersecting intervals are
actually contained entirely within R. We will then show that this leads to a
contradiction.

Let B be an interval of ψ′ not wholly contained in R. Since every interval of
ψ′ intersects R non-trivially, B is an extremal (leftmost, rightmost, topmost, or
bottommost) interval of ψ′. All points of B \R must cut R, otherwise B would
be extremal in two directions and the intervals of ψ′ would not have the simple
pattern σ. Since R is a block of ξ the points of B \R are therefore hook points
of R and so we have one of the three possibilities:

1. all points of B \R lie above R,

2. all points of B \R lie below R, or

3. all points of B \R lie to the right of R,

depending on which side of R its hook points lie. Therefore B is unique subject
to not being wholly contained in R since R has hook points in one direction
only and B is an interval of ψ′.

Suppose that R is not the special block; say R = αi. This implies that B = α′i,
for otherwise we would have α′i ⊆ αi and thus α′i = αi leaving no points available
for the other intervals of ψ′. Hence, R is extremal as an interval of ψ in the
same direction that B is extremal as an interval of ψ′. However, the construction
of ξ ensured that hook points of any extremal interval of ψ did not extend in
the same direction in which the interval was extremal. Therefore we have a
contradiction.

Thus R = α̂s. For the same reasons as given at the end of the previous para-
graph, B 6= α′s. Hence α′s ⊆ R and by the uniqueness of the embedding of αs

in α̂s (given in the construction of ξ), we know αs = α′s.

However, since the hook point of α̂s is in B, this requires that B = α′n is the
rightmost interval of ψ′. By our construction, this hook point lies above αs and
thus α′s < α′n which contradicts one of our initial assumptions about ψ.

Therefore if R is to have non-trivial intersection with all of the intervals of ψ′,
R must contain all of the intervals of ψ′. It is then clear that R = α̂s, since
otherwise R would not have enough points. In particular α′s = αs and therefore
none of the other intervals of ψ′ cut αs. However α∗s − αs consists solely of
points that cut αs and so all the other intervals of ψ′ are contained in the pin
sequence. But, except when αs = 2413 or 3142, the pin points all lie above α∗s
and (apart from the first) lie either all to the left or all to the right of α′s. Thus
all the other intervals of ψ′ lie above and to one side of α′s. This contradicts the
simplicity of σ.

Finally, if we have αs = 3142 or 2413 (so that no other interval of ψ has
length more than 4) Lemma 4.3 proves that ψ′ and therefore ψ itself is a spiral
permutation, contrary to the initial assumption of this subsection.

28



Hence, there is no block R having non-trivial intersection with all of the intervals
of ψ′. �

Lemma 5.7. Suppose that each of the blocks α̂r, α̂r+1, . . . , α̂r+t of ξ inter-
sects non-trivially at most one interval of ψ′. Additionally suppose the intervals
α′u, α

′
u+1, . . . , α

′
u+t of ψ′ are contained in the union of the blocks α̂r, α̂r+1, . . . , α̂r+t.

Then α′u+j is contained in α̂r+j for all 0 ≤ j ≤ t. Also, if r = u, then
α′r+j = αr+j for all 0 ≤ j ≤ t.

Proof: Define 0 ≤ a0, a1, . . . , at ≤ t such that α̂r+aj is the leftmost block
that intersects α′u+j non-trivially. Since each block of ξ intersects at most
one interval of ψ′, we know that α̂r+aj

does not intersect α′u+j+1. Also, due
to their positions, none of α̂r, . . . , α̂r+aj−1 intersect α′u+j non-trivially. Hence
0 ≤ a0 < a1 < . . . < at ≤ t and so aj = j for all 0 ≤ j ≤ t. Therefore α′u+j is
contained in α̂r+j for all 0 ≤ j ≤ t.
Suppose now that r = u and 0 ≤ j ≤ t. If r + j 6= s then αr+j = α′r+j since
these intervals are isomorphic. This is also true in the case r + j = s since, by
the construction of ξ, α̂s contains a unique copy of αs. �

Lemma 5.8. The permutation ψ′ contains no V -hook points. It contains ex-
actly one H-hook point h and h ∈ α′n.

Proof: Because of the choice of the monotone direction in which the H-hook
points were positioned in the construction, there can be at most one H-hook
point h in ψ′. Also if ψ′ contains h, then it will be the rightmost point of ψ′

and thus h must be contained in α′n.

If there were a V -hook point in ψ′, let v be the rightmost such. Then v ∈ α′n−1
or v ∈ α′n since there are at most |αn| points of ψ′ to the right of v. However,
v /∈ α′n−1 because αn−1 would be extremal in value in the same direction as the
V -hook points extend which is not consistent with the construction of ξ. Also,
v /∈ α′n because if v ∈ α′n, then αn would be maximal in position and value
contradicting the simplicity of σ. Hence there cannot be a V -hook point in ψ′.

Finally, if ψ′ contained no hook points at all it would be contained in the union
of the blocks of ξ. In addition each α̂i would intersect at most one interval of ψ′.
To see this consider the set T of intervals of ψ′ which intersect α̂i. Every other
interval of ψ′ that cuts T would have to cut α̂i but only hook points cut α̂i and,
by assumption, there are none such in ψ′. Therefore T defines an interval in the
simple pattern formed by the intervals of ψ′. By Lemma 5.6 |T | = 1. Now we
can apply Lemma 5.7 (with r = u = 1 and t = n− 1) and deduce that α′i = αi

for all i. But then ψ = ψ′, a contradiction. �

Notation: From now on we shall let h denote the unique H-hook point con-
tained in ψ′ and α̂i the block that it cuts.
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Lemma 5.9. Every block except possibly α̂i intersects at most one interval of
ψ′. If the block α̂i intersects more than one interval of ψ′ then two of these
intervals are separated in value by h.

Proof: Suppose that there is some block α̂j that intersects more than one
interval of ψ′. Then the set T of such intersecting intervals has size strictly
between 1 and n (by Lemma 5.6). However T is not an interval in the pattern
σ defined by all the intervals of ψ′ which has no non-trivial intervals. Hence
there is an interval α′k of ψ′ that separates the set T and so α′k cuts α̂j . As α̂j

is cut only by hook points and the only hook point that belongs to ψ′ is h it
follows that h ∈ α′k and that h cuts α̂j . Hence j = i proving the first statement.
The second statement follows also since h is an H-hook point and so cuts α̂i by
value. �

Lemma 5.10. For all 1 ≤ j ≤ i, the interval α′j begins no earlier than α̂j. Sim-
ilarly for all n > j ≥ i, the interval α′j ends no later than α̂j+1. In particular,
α′i is contained in α̂i ∪ α̂i+1.

Proof: Let us prove the first assertion by induction on j. If j = 1, then
certainly α′1 cannot begin before α̂1. Now suppose α′j−1 does not begin before
α̂j−1 for some 1 ≤ j − 1 < i. By way of contradiction, suppose α′j begins in
the block α̂t where t < j. Then because t < j ≤ i, we know from Lemma 5.9
that α̂t cannot have non-trivial intersection with any other interval of ψ′. In
particular, α̂t cannot intersect α′j−1. Since α′j−1 must begin before α̂j , there
must exist a u < t such that α′j−1 begins in α̂u. However, u < j − 1 which is a
contradiction. Hence if 1 ≤ j ≤ i, then α′j begins no earlier than α̂j .

The argument is similar for the second assertion. �

Lemma 5.11. α′i is contained in α̂i.

Proof: Suppose by way of contradiction that α′i is not contained in α̂i. Then
by Lemma 5.10, α′i would have non-trivial intersection with α̂i+1. Consequently,
α′i+1 cannot intersect α̂i+1 by Lemma 5.9. It follows that all of the intervals
α′i+1, . . . , α

′
n−1 are contained in α̂i+2 · · · α̂n. In addition, by Lemma 5.9, each

of α̂i+2, . . . , α̂n intersects at most one interval of ψ′. Therefore Lemma 5.7
can be applied and it proves that α′j ⊆ α̂j+1 for all i + 1 ≤ j < n. This
leaves h as the only point available for α′n, and so |αn| = |α′n| = 1. But then
α′n−1 ⊆ α̂n = αn implies |αn−1| = |α′n−1| = 1. Continuing in this way we
conclude that |αj | = |α̂j | = 1 and α′j = α̂j+1 for all i < j < n.

Since α̂i has a hook point, |αi| = |α′i| ≥ 2. Because of this and since |α̂i+1| = 1,
we have α̂i∩α′i 6= ∅. Therefore it follows that both α̂i and α̂i+1 have non-trivial
intersection with α′i. Since α̂i and α̂i+1 do not form an interval in ψ, there must
be another block B in ψ that separates them by value. Because some points of
α̂i and α̂i+1 combine to form a single interval in ψ′, B does not intersect ψ′.
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Thus B must be to the left of α̂i because the blocks α̂i+2, α̂i+3, . . . , α̂n of ξ are
the intervals α′i+1, α

′
i+2, . . . , α

′
n−1 of ψ′ respectively.

We can now deduce that α′i−1 ⊆ α̂i. For if this were false each of α′1, . . . , α
′
i−1

would have non-empty intersection with α̂1α̂2 · · · α̂i−1 and so there would be
at least i − 1 non-empty intersections α̂j ∩ α′k with 1 ≤ j, k ≤ i − 1. However
each such α̂j features in at most one such intersection (see Lemma 5.9) while
α̂j = B features in none at all; so there are fewer than i− 1 such intersections,
a contradiction.

Suppose α̂i is not the special block. Since α̂i+1 contributes only one point to α′i,
|α̂i|−1 = |αi|−1 points of α̂i are in α′i. This leaves only one point remaining in
α̂i which must constitute α′i−1. Thus α̂i has non-trivial intersection only with
α′i−1 and α′i and so α′1 · · ·α′i−2 ⊆ α̂1 · · · α̂i−1. As in the previous paragraph we
count the non-empty intersections α̂j ∩α′k where 1 ≤ j ≤ i−1 and 1 ≤ k ≤ i−2
in two ways and find exactly i − 2 such. This means that each of the i − 2
blocks of ξ to the left of α̂i except for B must contain one of the intervals
α′1, α

′
2, . . . , α

′
i−2.

Suppose α̂i < α̂i+1. Then since α′i ⊂ α̂i ∪ α̂i+1 and α′i−1 ⊂ α̂i, we must have
α′i−1 < α′i and therefore α̂i−1 < α̂i. Similarly, if α̂i > α̂i+1, we have α̂i−1 > α̂i.
Hence we have either α̂i−1 < α̂i < α̂i+1 or α̂i−1 > α̂i > α̂i+1. Thus α̂i−1 6= B
since α̂i−1 does not separate α̂i and α̂i+1 by value. Assume without loss that
α̂i−1 < α̂i. Since α̂i−1 6= B, we must have α′i−2 contained in α̂i−1. Thus
α̂i−2 < α̂i and thus α̂i−2 6= B either. Continuing this argument, one can see
that α̂j 6= B for all 1 ≤ j ≤ i − 1. This is a contradiction and therefore α̂i is
the special block, i.e. i = s.

The set of intervals that intersect α̂s has at least two members (for example,
α′s−1 and α′s). The second part of Lemma 5.9 tells us that h separates this set
of intervals by value but, because h lies just below the top point of α̂s in value,
this top point must belong to ψ′. If α′s intersects α̂s in its top point then that
will be the only point of intersection. In this case α′s has only one further point
(the single point in α̂s+1) and so |α′s| = 2 but this contradicts the initial choice
of αs. Alternatively, if α′s intersects α̂s in any other point, then α′s < α′n which
contradicts one of the initial assumptions about ξ. �

Lemma 5.12. ψ′ does not exist and so ψ embeds uniquely in ξ.

Proof: Suppose first that i = s. By assumption h cuts α̂s and so, by Lemma
5.11, α′s is contained in α̂s. Therefore, by the construction of ξ, α′s = αs. Again
from the construction h is above αs and, as h ∈ α′n, α′n > α′s and this contradicts
an initial assumption about ξ.

Suppose next that i 6= s. Then, by Lemma 5.11, α′i is contained in α̂i and so
α̂i = α′i. However h ∈ α′n and h cuts α̂i. This is also a contradiction since α′i is
cut by no point of another interval of ψ′. �

Lemma 5.13. ξ is a minimal simple extension of ψ.
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Proof: We have to prove that any proper subpermutation β of ξ that properly
contains (the unique copy of) ψ is not simple. So consider such a subpermu-
tation. If any hook point of ξ is not contained in β then, by design, β has
a minimal non-trivial interval. On the other hand, if any point of α̂s − αs is
not contained in β then β ∩ α̂s is a proper subpermutation of α̂s. One of the
properties of the construction of ξ is that such a subpermutation would have an
interval M with |M | > 1 and such that M does not contain the final point of
P . Since M is not cut by any hook point it would also be an interval of β. �

Since the pin sequences in our construction of ξ can be arbitrarily long we have
proved

Theorem 5.14. If ψ = σ[α1, . . . , αn] is a non-spiral permutation where σ is
simple, n ≥ 4, and at least one of the intervals αi is isomorphic to 123, or
isomorphic to 321, or has length at least four, then ψ has infinite type.

6. Concluding remarks

In closing we give, in Table 1, the bases of the substitution closures of the
classes of permutations Av(ψ) (up to symmetry) where ψ has finite type and
|ψ| = 3, 4. These bases have been found by exhaustive search, testing simple
permutations of increasing degree up to the bounds implicit in the proofs of
Section 4. A summary of the results on type is given in Tables 2, 3, 4, 5, 6 for
every permutation (up to symmetry).

Table 1: Finite bases for substitution closures of small permutation classes

ψ Basis of the substitution closure of Av(ψ)
231 2413,3142
123 24153, 25314, 31524, 41352, 246135, 415263
3142 3142
3412 35142, 42513, 351624, 415263, 246135
4132 41352, 35142, 263514, 531642, 264153, 526413, 362514

4231
463152, 364152, 264153, 536142, 531642, 531462
462513, 362514, 263514, 526413, 524613, 524163
526314, 426315, 513642, 362415, 461352, 416352

4312
463152, 364152, 264153, 536142, 531642, 531462
462513, 362514, 263514, 526413, 524613, 524163
361524, 264135, 514263, 531624

This paper has been entirely about pattern classes with a single basis element.
The same question can be asked about Av(B) for any finite set B: when is
its substitution closure finitely based? We feel that this is a hard question but
some progress is possible. It is easy to extend Proposition 1.2 to
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Table 2: Classification of ψ = (12)[α1, α2]

α1 α2 Type Justification
{1, 21, 231, 312} {1, 21, 231, 312} finite Theorem 4.2
{2413, 3142} 1 finite Theorems 4.2, 4.5
1 {2413, 3142} finite Theorems 4.2, 4.5

All other combinations infinite Proposition 5.4

Table 3: Classification of ψ = (123)[α1, α2, α3]

α1 α2 α3 Type Justification
{1,21} 1 {1,21} finite Theorem 4.2
1 21 1 finite Theorem 4.2
All other combinations infinite Proposition 5.3

Table 4: Classification of ψ = (12 · · ·n)[α1, . . . , αn], n ≥ 4

αi Type Justification
αi is any permutation infinite Proposition 5.2

Table 5: Classification of Spiral Permutations ψ

k Type Justification
5 finite Theorem 4.5

6,7 infinite Proposition 5.4
8,9,10,. . . finite Theorem 4.5

Table 6: Classification of Non-spiral Permutations ψ = σ[α1, . . . , αn], n ≥ 4

αi Type Justification
All αi ∈ {1, 12, 21, 132, 231, 213, 312} finite Theorem 4.1

Some αi 6∈ {1, 12, 21, 132, 231, 213, 312} infinite Theorem 5.14

Proposition 6.1. The basis of the substitution closure of Av(B) is the set of
permutations ξ such that

1. ξ is simple and involves at least one permutation of B.

2. The proper simple subpermutations of ξ involve no permutations of B.

In other words every basis element of the substitution closure of Av(B) is a
minimal simple extension of one of the permutations of B.

Therefore we have

Theorem 6.2. If every permutation in the finite set of permutations B has
finite type then the substitution closure of Av(B) is finitely based.
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On the other hand the permutations 1234 and 4321 each have infinite type
yet the substitution closure of Av(1234, 4321) (which is a finite set) is finitely
based by results of [1]. Even more disconcertingly the permutation 2134 is of
finite type yet the substitution closure of Av(2134, 1234) is infinitely based as
demonstrated by the family of basis permutations shown in Figure 22.

Figure 22: Basis permutations of the substitution closure of Av(2143, 1234)
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