
ELSEVIER Theoretical Computer Science 178 (1997) 103-l 18

Theoretical
Computer Science

Permutations generated by token passing in graphs

M.D. Atkinson*, M.J. Livesey, D. Tulley

School of Mathematical and Computational Sciences, North Haugh, St. Andrews KY16 9SS, UK

Received May 1995; revised February 1996
Communicated by MS. Paterson

Abstract

A transportation graph is a directed graph with a designated input node and a designated
output node. Initially, the input node contains an ordered set of tokens 1,2,3, . . The tokens
are removed from the input node in this order and transferred through the graph to the output
node in a series of moves; each move transfers a token from a node to an adjacent node. Two or
more tokens cannot reside on an internal node simultaneously. When the tokens arrive at the
output node they will appear in a permutation of their original order. The main result is
a description of the possible arrival permutations in terms of regular sets. This description
allows the number of arrival permutations of each length to be computed. The theory is then
applied to packet-switching networks and has implications for the resequencing problem. It is
also applied to some complex data structures and extends previously known results to the case
that the data structures are of bounded capacity. A by-product of this investigation is a new
proof that permutations which avoid the pattern 321 are in one to one correspondence with
those that avoid 312.

1. Introduction

Many problems in Computer Science involving the transfer of data items between

various locations can be modelled using directed graphs. The nodes of the graph
represent the locations where data can be stored and the edges represent the possibili-
ty that data might be transferred from one location to another. Examples include:

1. Distributed computing networks: The nodes are computers, the edges are high-
speed data communication channels, and the data items are files or fragments of files.

2. Parallel computers: The nodes are processing elements, the edges are the data
highways represented by the architecture (hypercube, mesh, butterfly, etc.), and the
data items are the bits, bytes and words which flow along the highways.

*Corresponding author.

0304-3975/97/$17.00 0 1997 - Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00057-6

104 M.D. Atkinson et al. /Theoretical Computer Science I78 (1997) 103-118

3. Models of transportation systems: The nodes are cities, the edges are roads, and

the data items are commodities being shipped from one city to another.

4. Data structures: We shall say more about this example later but for now it will

be enough to consider Binary Search Trees. The nodes are the memory cells contain-

ing a key and associated values. The edges connect each node to its left and right

children, and the data items are the (key, value) pairs which move around the tree as it

is updated.

This paper addresses some features common to all these situations. In the next

section we pose an abstract problem concerned with the movement of “tokens”

around the nodes of a graph and the way in which they may be permuted. Then, in

Section 3, we solve the problem in terms of regular sets (see [S]). The solution is then

applied to some of the above areas. Section 4 discusses the resequencing problem in

packet-switching networks. Finally, Section 5 applies the techniques to abstract data

types extending the work of [ll, 17, 131, gives a new solution to a combinatorial

problem solved in [14,16], and demonstrates how our general approach can be used

efficiently.

2. Problem formulation

Let N be a finite directed graph with a designated input node and a designated

output node. The input node has no incoming edges and the output node has no

outgoing edges. The remaining nodes are called internal nodes. Such a graph will be

called a transportation graph.
Each internal node is allowed to contain 0 or 1 tokens. In applications of this

problem the tokens are items of data but in our abstract formulation we shall assume

only that tokens are denoted by positive integers and therefore are distinguishable

from each other.

The input node generates an ordered sequence 1,2,3, . . . of tokens. How this is

done is unimportant at present; the tokens could be generated by local computation at

the input node or may have been received from an external source. The tokens are

then moved from one node to another along the edges of the network until they arrive

in some order at the output node. Tokens cannot be stored on the edges of the network.

A token t on a node x can only move to a node y if the following conditions hold:

1. There is an edge from x to y.

2. x is the input node and tokens 1,2, . . , t - 1 have already been moved from the

input node or x is an internal node.

3. y is an internal node and y does not currently contain any token, or y is the

output node.

Condition 1 implies that tokens move from the input node to the output node along

a path in the graph, condition 2 implies that tokens leave the input node in the natural

order 1,2,3, . . , and condition 3 ensures that every internal node contains at most

one token at any time.

M.D. Atkinson et al. /Theoretical Computer Science 178 (1997) 103-118 105

Fig. I.

Example. Fig. 1 shows a simple graph with 2 internal nodes and a possible movement
of 3 tokens through it. The tokens arrive at the output node in the order 3 12. It is not
difficult to see that different choices of moves could result in any arrival order other
than 3 2 1. From the theory that we develop in this paper results for n tokens can be
derived. For example, if x, is the number of possible arrival orders of n tokens then
x0 = 1, x1 = 1, and x, = 3x,-i - x,_~ for n 2 2.

We shall consider general transportation graphs and the movement of tokens
through them. As described above the tokens leave the input node in the order
1,2,3, If the input stream is finite and the tokens all arrive at the output node, the
output node will then contain some permutation c of the input stream; we say that 0 is
generated by the transportation graph. The set of all permutations generated by
a transportation graph N will be denoted by Out(N). We let Out,(N) denote the set of
permutations of 1,2, . . . ,n in Out(N).

The main aim of this paper is to give a description of Out(N). This description
allows the membership problem (given a permutation n determine whether
it E Out(N)) to be answered in time proportional to the length of rr. It also permits
)Out,(N)(to be calculated.

3. General transportation graphs

Throughout this section N will denote a transportation graph. We shall develop
a method for characterising Out(N) and counting the number of permutations in
Out,(N) for each n.

106 M.D. Atkinson et al. /Theoretical Computer Science I78 (1997) 103-118

Our method depends on an encoding of the permutations in Out(N). For every
permutation 0 = o1 fs2 . . . a, we define its encoded form X(G) = cl c2 . . . c, by defining ci to
be the rank of Gi in cioi+i . . . on. For example the encoded form of 276 145 3 is
2 6 5 12 2 1. It is easy to see that every code sequence cl c2 . . . c, satisfies C”_i < i + 1 and
that every sequence of positive integers of length n which fulfils this condition is the
encoding of some permutation. We let C(N) and C,,(N) denote the set of strings which are
the coded forms of the elements of Out(N) and Out,(N) respectively. Our main theorem is

Theorem 1. C(N) is a regular set.

The proof of Theorem 1 is constructive. We shall show how a regular grammar can
be defined which generates C(N). We shall then use some standard constructions for
regular languages to obtain a method for computing 1 C,(N)1 = IOut,,(N)I.

We label the internal nodes of N in an arbitrary order as 1,2, . . . , k. As a sequence
1,2, . . . , n of tokens is transferred, step by step, through the transportation graph to
the output node the graph passes through a series of configurations. A configuration is
a disposition of tokens among the internal nodes Such a disposition may be described
by an occupancy function f : { 1,2, . . . , k} -+ (0, 1,2, . . . >; f(i) is the token residing on
node i except in the case f(i) = 0 which represents that node i is empty. The
configuration where f(i) = 0 for all i is denoted by E; it is both the initial and the final
configuration of the transportation graph.

Two configurations with occupancy functions f;g are defined to be equivalent if
(a) f(i) = 0 if and only if g(i) = 0,
(b) f(i) <f(j) if and only if g(i) < g(j).

A state of the transportation graph is defined to be an equivalence class of configura-
tions. The state corresponding to the equivalence class (E} is denoted by qo.

Lemma A. The number of states is finite.

Proof. Every configuration is equivalent to one in which the tokens on the internal
nodes are 1,2, . . . , h with h d k. The occupancy function then takes values in
{0,1,2, . . . , k) and there are at most kk+’ such functions. 0

Let C denote the set of configurations, and E the set of edges of N. We shall define
a partial function v : C x E + C x { 1,2, . . . , k, A}. Let c E C and e = (i, j) E E. Informal-
ly, v(c,e) specifies the configuration that arises from configuration c if a token is
transferred from node i to node j, and the new symbol (if any) that is placed at the
output node. More precisely, v(c,e) is defined whenever, in configuration c, node
i contains a token t (if node i is the input node then t is the next input token to be
transferred from the input node) and either node j is empty or node j is the output
node. Under these conditions v(c,e) is defined as (d,x), where

(i) d is the configuration that would arise from configuration c if t was transferred
from i to j, and

M.D. Atkinson et al. /Theoretical Computer Science I78 (1997) 103-118 107

(ii) x is the empty symbol 1 unlessj is the output node in which case x is the rank of
t among all the tokens residing on internal nodes in configuration c.

Lemma B. The permutation a E Out(N) if and only if there is a sequence of edges

e1,e2, . . . , ep and configurations E = ao,al, . . , a,, = E such that v(ai_ 1, ei) = (ai, Xi),

i = 1,2, . . . ,p, and x1x2 . . . xP = x(a).

Proof. Suppose cl g2 . . . CJ,, = u E Out(N). Then there is a sequence of transfers along
edgese,,e2, . . . , eP which causes tokens 1,2, . . , n on the input node to move through
the transportation graph until they have arrived on the output node in the order

01,02, ... 7 0,. Let E = ao,al, . . . , aP = E be the sequence of configurations induced in
the transportation graph by these transfers and let ti be the token taking part in the ith
transfer. Then, certainly, v(ai- 1, ei) = (ai, Xi) where

(i) if ti is not being transferred to the output, xi = 2 and
(ii) if ti is being transferred to the output, xi is the rank of ti among all the tokens on

internal nodes in configuration ai _ l; and since the tokens remaining in the input node
are greater than all these tokens xi is actually the rank of ti among all tokens not yet
transferred to the output.

Thus x1x2 . . . xP has the property that the jth (non-empty) symbol is the rank of
Oj among Oj,CTj+l, . . . , a,; in other words, xl x2 . . . xp = x(o).

Conversely suppose, for some permutation c = c1~2 . . . u,,, there exist edges

e1,e2, . . . , ep and configurations E = ao, al, . . . , aP = E such that v(ai- 1, ei) = (ai, xi),

i = 1,2, . . . , p, and x1x2 . . x, = x(o). Then, by definition of v, it is possible to move
tokens 1,2, . . . , n from the input node in p transfers using edges el , e2, . . . , eP in turn
and passing through configurations ao, aI, . . . ,ar. At a step which transfers a token
t to the output (corresponding to the equation v(ai_ 1, ei) = (ai, Xi) say) the token has
rank xi among all tokens not yet placed in the output. Hence the permutation
r defined by the sequence of transfers satisfies x(r) = x1 x2 . . . xp = ~(a) and therefore
0 = z E Out(N) as required. 0

Lemma C. Let a, b be equivalent configurations and let e be an edge of N. Suppose that

v(a, e) is defined and equal to (c, x). Then v(b, e) is defined and equal to (d, y) where d is
equivalent to c and y = x.

Proof. Let e be the edge (r, s). We give the proof in the case that r is not the input node;
the proof when r is the input node is almost the same. Let f be the occupancy function
of a.

Suppose that s is not the output node. Then x = 1, f(r) = t # 0, f(s) = 0 and the
occupancy function f’ of c differs from f only in that f’(r) = 0, f’(s) = t. From the
equivalence of a and b the occupancy function g of b satisfies g(r) = u # 0, g(s) = 0. It
follows that v(b,e) is defined and has occupancy function g’ differing from g only in
that g’(r) = 0, g’(s) = u. Therefore, for all i, j, we have f’(i) = 0 if and only if g’(i) = 0
and f’(i) <f’(j) if and only if g’(i) < g’(j). Thus c and d are equivalent. Also y = /1.

108 M.D. Atkinson et al. 1 Theoretical Computer Science I78 (1997) 103-I 18

Ifs is the output node the equivalence of c and d follows in the same way. From the

equivalence of a and b the token that is being transferred from node i to the output has

the same rank among the tokens of the internal nodes of a as it does among those of b;
that is, x = y. •i

Let Q be the set of states. We define a partial function p: Q x E + Q x { 1,2, . . . , k, A}.

Let 4 E Q and e E E. Thus q is an equivalence class of configurations. Let a be any

configuration in this equivalence class. If v(a, e) is defined and equal to (d, x) then we

define p(q, e) to be (r, x) where Y is the equivalence class of configurations that contains

d. Lemma C guarantees that ,u is well-defined (independently of the choice of a in the

equivalence class q). The next lemma follows immediately from these definitions.

Lemma D. Let e1,e2, _.. , eP be any sequenceofedges. Then there exists a sequence of
configurations8 = ao,ul, . . . ,Up = & SWh that V(aj-l,ei)= (Ui,Xi)ji = 1,2,p ifand

only ifthere exists u sequence ofstates qo, 41, . . , qp = 40 such that p(qi- 1, e;) = (qi, xi),

i = 1,2, . . . ,p.

Lemmas B and D have the following consequence:

Lemma E. The permutation o E Out(N) if and only if there is a sequence of edges

el,e2, .,. ,ep and states qo, 41, . . , qp = 40 such that p(qi- 1, ei) = (qi, xi),

i = 1,2, . . . ,p, and x1x2 . . . xp = x(o).

Proof of Theorem 1. We define a context-free grammar (N, T, P, S) as follows:

(i) The set N of non-terminals is (indexed by) the set of states.

(ii) The goal symbol S corresponds to the state qo.

(iii) The set T of terminal symbols is (1,2, . . . , k}.
(iv) The set of productions P contains productions of the form q + xr for every

defined value ,u(q, e) = (r, x) of the function p together with a production q. + A.
Derivations in this grammar have the form qO + x,q, -‘x1x2q2 -+ ... -+

x1x2 . . . xpqp --f x1x2 . . . xp and such a derivation exists if and only if there is a se-

quence of edges el , e2, . . , eP for which /l(qiP 1, ei) = (qi, Xi), i = 1,2, . , p. Therefore,

by Lemma E, the strings x1x2 . . . xP generated by this grammar are precisely those

strings of the form x(o) for G E Out(N), that is, they are the strings of C(N).

The grammar (N, T, P, S) is not itself regular since among its productions q -+ xr
there may be some of the form q + r (that is, x = A). However, standard results in

language theory (see [S, pp. 26, 2181) show that there is, nevertheless, a regular

grammar which defines the same language; thus C(N), being generated by a regular

grammar, is a regular set. q

We now turn to the question of computing the numbers 1 Out,(N)1 for all values of

n. The method for calculating these numbers is a special case of a more general

treatment valid for any context-free grammar [4]. However, we reproduce that part of

M.D. Atkinson ei al. 1 Theoretical Computer Science 178 (1997) 103-118 109

this general theory here for convenience and to establish the basis for the case

studies of the next section. There is a well-known equivalence [S, p. 2181 between

regular grammars and finite state automata. In this equivalence transitions

from a state p to a state q occasioned by a symbol x correspond either to productions

p -+ xq (if q is not a final state) or productions p + x (if q is a final state). There

is also a well-known construction [8, p. 223 that produces an equivalent deterministic

finite state automaton from a non-deterministic one. The regular grammar that is

associated with a deterministic finite state automaton has the property that the

productions on each fixed non-terminal have distinct initial terminals beginning

their right-hand sides. The consequence of this is that C(N) can be generated by

a regular grammar with non-terminal symbols S = S1, S2, . . . , S,, and productions of

the form

where tl,t2, . . . , t, are distinct together with a production S + 1.

Let sf’ be the number of terminal strings of length n that can be derived

from Si. Note that s$’ = 1 if i = 1 (since S -+ A) and sg’ = 0 otherwise. Let zij

be the number of productions of the form SC + tSj (i.e. there are zij terminals t

that can appear in this form of production). Since the derivations that begin

with the production Si + tSj produce a set of terminal strings that is disjoint

from the set of terminal strings that are derived beginning from any other pro-

duction on Si (because none of those terminal strings will begin with t) we have the

recurrence

This gives us a set of h linear recurrences which, together with the h boundary

conditions, completely define each ~2). In particular s!,‘) = (Out,(N)1 can be found in

this way.

There are standard techniques for solving sets of recurrence equations. These

methods tell us that the general solution depends on the eigenvalues of the matrix

[zij]. The most straightforward case is when the eigenvalues pl, ,u2, . . . , ph are distinct

and in that case ~2) has the form Cs= 1 kij& where the constants k, are determined by

the initial values. When there are repeated eigenvalues there is a similar expression for

SC’ in which the kij are replaced by polynomials in n of degrees depending on the

multiplicities of the eigenvalues.

The outcome of this is that lOut,(lv)l is given by a formula of the

form pl(n)~l + p2(n)p”, + p3(n)pt + ... where ,D~, p2, . . . are certain distinct

constants and pl(n),pz(n), . . are certain polynomials, all of which can be

calculated. We shall choose the notation so that 1~~1 >, 1~~1 3 ... so that

IOut,(N)1 is asymptotic to ~~(n)l~~l” as n -+ co. We can therefore conclude the

following

110 M.D. Atkinson et al. /Theoretical Computer Science 178 (1997) 103-118

Theorem 2. There exists a constant 1~1 depending only on N such that

(l/n)log(JOut,(N)l) + log 1~1 as n + CO.

Corollary. lOut,(N)(/lOut,_,(N)l --+l,~~l as n-, CO.

There is an information-theoretic interpretation of this result. We might
consider lOut,(N)l as a measure of how much choice exists in moving n tokens
from the input node to the output node. The larger lout,(N)1 is, the more uncertainty
there is in the result. In information theory uncertainty is measured in bits and
we can define the entropy of the arrival permutation as log,IOut,(N)l which
is asymptotic to n log, 1~~ 1. To put this in another way the entropy per output
token is logZIp I. By analogy with the results of [2] we therefore define the
entropy of the entire transportation graph to be log,lplI. The entropy is a rough
measure of how much permutational capability is possessed by a transportation

graph.
It should be noted that the calculation of) Out,(N)1 has linear time complexity in n.

However this understates the difficulty of carrying out the calculation since there is,
potentially, a doubly exponential dependence on the size of N. In Section 5 we shall
see that this combinatorial explosion can sometimes be contained.

4 Packet-switching networks

Packet-switching networks are computer communication systems used for trans-
mitting streams of data in the form of standardised packets. Typically a message
originates at one of the nodes in the network and is partitioned into packets. The
packets are then sent independently through the network and eventually all arrive at
their destination node. Because packets travel by different routes and may experience
delay because of congestion at intermediate nodes, the packets will, in general, not
arrive in their proper order. The destination node must therefore rebuild the correct
order of packets and so it may need to wait for any packets which have been delayed
during transmission through the network.

The analysis of the packet delays has been conducted by many authors
[lo, 3, 18, 15,9,7]. This work has concentrated on stochastic properties of the
delay times. For example the authors of [lo] made the assumption that packet delays
came from an exponential distribution and were stored after their delay until they
could be properly ordered; they analysed the distribution of the number of stored
packets and calculated the average delay due to resequencing. This analysis was
extended in [7] to the case that the packet delays came from a general distribution
and carried forward in [3]. For networks where the delay is caused by a multi-
server exponential queue (with different service rates) the delay distribution was
found in [lS].

M.D. Atkinson et al. /Theoretical Computer Science 178 (1997) 103-118 111

None of this work addresses the question of which permutations of the packets
might arise through transmission delays. The results of the previous section allow this
question to be attacked. To do this we must show how a transportation graph may be
used to model a packet-switching network and for that we need to make some
plausible assumptions about how packets are stored and forwarded at a network
node. We shall assume that each node collects packets in a finite packet buffer that is
subject to a queuing discipline. A node can only receive a packet if its packet buffer is
not filled to capacity. If a packet is received it must wait in the packet buffer until it
comes to the head of the queue, at which point it may be forwarded to another node
with spare capacity in its packet buffer. We shall consider 3 possible queuing
disciplines:

(i) FIFO: the packets pass through the packet buffer in “first in, first out” fashion;
(ii) LIFO: the packet buffer behaves like a stack and always outputs the most

recently received packet;
(iii) SIR0 (“serial in, random out”): the packet buffer may output any of the packets

it is currently storing.
If the queuing disciplines at the nodes of the network are of the above types

we can construct a transportation graph N from the packet-switching network
P as follows. Every node of P is replaced by a collection of nodes and edges
in a new graph N in such a way as to simulate the queuing discipline as shown in
Fig. 2 (in the case of packet buffers of capacity 5). The input node of N is defined to be
the origin of the message represented by the packets and the output node is the
destination of the packets. It is assumed that the packet routing never returns a packet
to its origin and that once it reaches the destination it is not further forwarded. It is
obvious that the set Out,(N) is the set of possible packet arrival orders of packets

1,2, . . . ,n.

Networks where the nodes are subject to the queuing disciplines FIFO and LIFO,
but with no bounds on the capacities of the nodes, have been considered by several
authors [l, 6, 13,173; the focus in these papers was on the set of output permutations.
Thus our packet-switching application may be considered to be an extension of this
work to the case where the queues are of bounded capacity.

These notions also allow the main result of Section 3 to be slightly generalised to
the case where the nodes of the transportation graph are allowed to contain
a bounded number of tokens greater than 1. A node of capacity k behaves like
a packet buffer with SIR0 queuing and so could be replaced by a group of nodes as in
the third diagram of Fig. 3.

Fig. 2. A packet buffer of capacity 5 with a typical input channel and typical output channel.

112 M.D. Atkinson et al. /Theoretical Computer Science I78 (1997) 103-l 18

+I+
A

B

Fig. 3. The simulation of a packet buffer of size 5 according to whether the queue is FIFO, LIFO, or SIRO.

5. Data structures

In this section we apply the techniques in Section 2 to some common data
structures. The permutations that can be generated by unbounded stacks and deques
have been studied in the previous work of [17; 13; 11,2.2.1]. We show how to extend
these results to the bounded case. As a consequence we are able to give a new proof of
a combinatorial result that appears in [12,14, 161 and which has figured in some
recent work on trees.

There is a further motive for this section. The construction of the regular grammar
given in Section 3 is usually not an easy one to carry out since, as noted previously, it
may involve two exponential explosions. The first arises since the number of states
may be exponential in the transportation graph size and the second is due to replacing
a non-deterministic finite automaton by a deterministic one. The work of this section
shows that this combinatorial explosion can sometimes be contained.

The bounded stack data structure can be modelled by the transportation graph
shown in Fig. 4.

In this transportation graph all edges between the k internal nodes are bidirec-
tional. It is easy to see that the tokens on internal nodes in any configuration occur in
increasing order of value (read from node 1 to node k). However, there are many ways
in which a given set of tokens can be disposed on the internal nodes. We obtain
a significant simplification by observing that two configurations whose internal nodes

M.D. Atkinson et al. /Theoretical Computer Science 178 (1997) 103-118 113

output Input

O- k

+-r-
4

3

2

1 I

Fig. 4.

contain the same set of tokens need not be distinguished; for each such configura-
tion is reachable from the other by transfers which affect neither the tokens
on the input node or the output node. Thus we can carry out the computations using
a set of k + 1 states qo,ql, . . . ,qk where qi is represented by a configuration with
occupancy function f defined by f(j) = j, j = 1,2, . . . , i, f(j) = 0, j = i + 1, . . . , k.

The possible transitions out of this state correspond to placing a new input token into
node i + 1 or transferring token i to the output node. The associated grammar is
therefore

41+1qol4*

q2 + 2q1 I q3

qk-l+k-lqk-2lqk

Rewriting it to eliminate all productions whose right-hand side consists of a single
non-terminal we obtain

qo-$~IlqoI2q~l3q2I . . . Ikq,-,

ql+ bol2q,l%,l ... Ikq,-,

q2 + %,l%,l . . . Ika-,

qk-1 + k - 1 qk-zlkqk-1

114 M.D. Atkinson et al. /Theoretical Computer Science I78 (1997) 103-118

If we let Qt’ denote the number of terminal strings of length II that can be derived from
4i we obtain the recurrence equations

Q;” = Q;? I + Q;” r + Qk2? 1 + . + Q;"--,"

Q;" = Q;'? 1 + Q;" 1 + Q;? 1 + ... + Q;':,"

Qa) = Q;" 1 + QL2j 1 + ... + Qkkt,"

QL3’ = QL2j 1 + ... + Q;"--,"

with initial conditions Qr’ = 0, Qi”’ = 1 for i 2 1.
Since the transportation graph models a stack of bounded size k, the outputs

generated by it are stack computable in the sense of [13] (where the stacks are
unrestricted in size). The well-known correspondence between stack computations
and ordered trees in which a sequence of pushes and pops corresponds to a traversal
in which each edge is visited once in the down direction and once in the up direction
(see Fig. 5) extends to correspondence between bounded stack computations and
bounded height trees. Thus, the recurrences can be used to generate the numbers of
ordered trees on n elements of height bounded by k.

Another treatment of the number of trees of bounded height is given in [S].
Our second application is to a queue which allows first-come-first-served

queuing but sometimes permits newly arrived customers to be served immedi-
ately rather than standing in line. It may be modelled by the transportation graph in
Fig. 6.

Ostensibly, this example is slightly more complicated than the bounded stack
example. However we can make a similar simplification that makes it possible to
handle the example with about the same degree of difficulty. As in the bounded stack
example we need not distinguish two configurations which differ only in the disposi-
tion of the same set of tokens on nodes 1,2, . . . , k - 1. Therefore, we can take as
representatives of the set of states qi (i = 0, 1, . . . , k - 1) the configurations whose
occupancy functions J;: (i = 0, 1, . . . , k - 1) are given by

fi(j)=j, j=1,2 ,..., i; fi(j)=O, j=i+l,..., k-l

Fig.5. Push-popsequence:l,l, -1, -l,l,l, -l,l, -l,-l,l,l,-l,l, -l,-l(l=push, -I=~~~).

M.D. Atkinson et al. 1 Theoretical Computer Science I78 (1997) 103-118 115

output input

1 2 3 k-l

Fig. 6.

and whose transfers are defined by the grammar

4o+~l~qoIq1

41-+ ho I %lqz

q2-+~q112qzIq3

. . .

qk-2 + lqk-, Ik - 1 qk-2 Iqk-I

qk-l+bk-2lk-lqk-1

If we now eliminate all the productions whose right-hand side consists of a single

non-terminal we obtain

4o-‘l1IqoI2q,13qzI ... Ikq,-1

41 + lqo~2~1~%2~ ... ikqk-1

q2 --) ~ql~%2l . . . ikqk-,

.

qk-2-‘lqk-3Ik- h-,lkqk-1

qk-1 + bk-,i’fqk-,

This grammar is fairly similar to the grammar of the first example. It does not

generate the same words but it is clear from the structural similarity that the

recurrence equations for the numbers of words of length n generated by each

non-terminal are identical to those of the bounded stack example. This observation

leads to a proof of a result concerned with permutations that avoid certain patterns. If

7t = rLlZ2 . . . 71,, o = c102 . . 0. are permutations and there is a subsequence of

c whose elements, when read from left to right, are ordered in the same way as the

elements of z then we say that CJ contains the pattern n. The relation of containment is

reflexive and transitive and defines a partial order on the set of all permutations. We

say that CJ avoids the pattern n if g does not contain 71. Permutations which avoid the

pattern 312 are precisely those which can be generated by a stack. Permutations

which avoid the pattern 321 are precisely those which may be represented as the

merge of two increasing sequences. We give a proof of the following theorem (see also

[14; 12, 51.4; 163).

116 M.D. Atkinson et al. /Theoretical Computer Science 178 (1997) 103-118

Theorem 3. The number of permutations of length n which avoid 312 is the same as the
number of permutations of length n which avoid 321.

Proof. We let n be fixed and consider the transportation graphs in Figs. 4 and 6 above
for any value of k 3 n. The first of these transportation graphs generates
the set of permutations which avoid 312 and so we merely have to check that the
second generates the set which avoids 321. However, this may be proved by
noting that any permutation generated by the second transportation graph
produces each symbol either by moving it along the top or bottom paths. The
permutation is therefore a merging of the two subsequences which arrive in this way
and these two subsequences are increasing. Conversely, any sequence which is the
union of two increasing subsequences may be generated by channelling the elements
of one subsequence along the bottom path and the elements of the other along
the top path. 0

Other data types which can be analysed in this way include bounded deques with or
without restricted input using the two transportation graphs shown in Fig. 7.

It might be hoped from the examples in Figs. 4 and 6 that, for every transportation
graph N, there was a finite set S of permutations such that Out(N) was precisely the
set of permutations that avoided each of the permutations of S. In other words, one
might hope that the complement of Out(N) had but a finite number of minimal
elements under the containment partial order. Unfortunately this is false. A counter-
example is the transportation graph M in Fig. 8.

Using arguments similar to those given in [173 it may be shown that the infinite set
of permutations of the form [4,1,6,3,8,5,10,7, . . . ,4n,4n - 3,2,4n - l] cannot be
generated by the transportation graph M, yet if any symbol is deleted from one of
these permutations the resulting permutation can be sorted; thus the set is an infinite
set of minimal elements of the complement of Out(M).

Bounded deque network Bounded deque network
with restricted input

Fig. 7.

M.D. Atkinson et al. 1 Theoretical Computer Science 178 (1997) 103-118 117

output

0 2
\p”t

A0

‘7

Fig. 8. The network M.

Acknowledgements

We thank Gerald Ostheimer, Michael Weatherill, and Peter Burgess for insightful
comments in the early stages of this work.

References

[l] M.D. Atkinson, Sorting permutations with networks of stacks, Technical Report TR-210, School of
Computer Science, Carleton University, Ottawa, Canada, August 1992.

[2] M.D. Atkinson and D. Tulley, The combinatorics of abstract data types, Proc. IMA Conf: on

Applications of Combinatorics, to appear.
[S] F. Baccelli, E. Gelenbe and B. Plateau, An end-to-end approach to the resequencing problem, J. ACM

31 (1984) 474-485.

[4] N. Chomsky and M.P. Schutzenberger, The algebraic theory of context-free languages, in: Computer

Programming and Formal Systems (North-Holland, Amsterdam, 1963) 118-161.
[S] N.G. de Bruijn, D.E. Knuth and S.O. Rice, The average height of planted plane trees, in: Graph Theory

and Computing (Academic Press, New York, 1972) 15-22.
[6] S. Even and A. Itai, Queues, stacks and graphs, in: Z. Kohavi and A. Paz, eds., Theory of

Machines and Computations, Proc. Internat. Symp. on the Theory of Machines and Computations,

Technion - Israel Inst. of Technol., Haifa, Israel, August 1971 (Academic Press, New York, 1971)
71-86.

[7] G. Harris and B. Plateau, Queuing analysis of a re-ordering issue, IEEE Trans. Software Engrg.

8 (1982) 113-123.

[8] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).
[9] I. Iliadis and L.Y.-C. Lien, Resequencing delay for a queuing system with two heterogeneous servers

under a threshold-type scheduling, IEEE Trans. Commun. 36 (1988) 692-702.

[lo] L. Kleinrock, F. Camoun and R. Muntz, Queuing analysis of the re-ordering issue in a distributed
database concurrency control mechanism, in: Proc. 2nd. Internat. Conf: Distrib. Database $vst.,

Versailles, France, April 198 1.
[l l] D.E. Knuth, Fundamental Algorithms, The Art of Computer Programming, Vol. 1 (Addison-Wesley,

Reading, MA, 2nd ed., 1973).
[12] D.E. Knuth, Sorting and Searching, The Art of Computer Programming, Vol. 3 (Addison-Wesley,

Reading, MA, 1973).

118 M.D. Atkinson et al. /Theoretical Computer Science I78 (1997) 103-118

[13] V.R. Pratt, Computing permutations with double-ended queues, parallel stacks and parallel queues,
Proc. ACM Symp. Theory of Computing 5 (1973) 268-277.

[14] D. Rotem, On a correspondence between binary trees and a certain type of permutation, Inform.
Process. Lett. 4 (1975) 58-61.

[lS] N. Shacham and D. Towsley, Resequencing delay and buffer occupancy in selective repeat ARQ with
multiple receivers, IEEE Trans. Commun. 39 (1991) 928-937.

[16] R. Simion and F.W. Schmidt, Restricted permutations, European J. Combin. 6 (1985) 383-406.
[17] R.E. Tarjan, Sorting using networks of queues and stacks, J. ACM 19 (1972) 341-346.
[18] T.-S.P. Yum, T.-Y. Ngai, Resequencing of messages in communication networks, IEEE Trans.

Commun. 34 (1986) 143-149.

