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Abstract

Permutation pattern classes that are defined by avoiding two permu-
tations only and which contain only finitely many simple permutations
are characterized and their growth rates are determined.

1 Introduction

Permutation pattern classes are sets of permutations that are closed under tak-
ing subpermutations. A permutation π = p1p2 · · · pm is a subpermutation of (or
is involved in) a permutation σ = s1s2 · · · sn if σ has a subsequence si1si2 · · · sim

that is order isomorphic to π (that is, p1p2 · · · pm and si1si2 · · · sim are in the
same relative order). For example 312 is a subpermutation of 41532 because of
the subsequence 413. Notice that 123 is not a subpermutation of 41532 and we
say that 41532 avoids 123.

Permutation pattern classes can equivalently be defined as sets of permutations
which avoid certain forbidden subpermutations. In this case we normally use
the smallest possible forbidden set, sometimes called the basis. The basis is just
the set of permutations that are minimal (under the subpermutation order) that
do not belong to the class; it may or may not be finite. We use the notation
Av(α, β, . . .) to denote the pattern class of all permutations that avoid each of
α, β, . . ..

There are 8 symmetries on the set of pattern classes that preserve their prop-
erties. They are generated by reversal (s1s2 · · · sn −→ sn · · · s2s1), complemen-
tation (s1s2 · · · sn −→ n + 1− s1 · · ·n + 1− sn), and inversion. For any of these
symmetries φ we have Av(α, β, . . .)φ = Av(αφ, βφ, . . .) and this often gives a
reduction in the number of cases one has to consider.

The usual problem that one wishes to solve of a pattern class is to enumerate
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it: to find the number an of permutations of each length n that it contains. For
nearly all pattern classes this problem is too hard to be solved exactly and so less
precise information is sought. For example we might try to find properties of the
generating function

∑
anxn or asymptotic information about an. By the main

result of [8] we know that (unless the pattern class contains all permutations)

lim sup
n→∞

n
√

an = K

is finite and so Kn is an approximate estimate for an. For this reason K is
called the growth rate of the class. For some pattern classes (including those
with a single basis element [4]) the lim sup is known to be a true limit; it seems
likely that this is true in general.

In this paper we shall show how to find the growth rate of a 3-parameter family
of pattern classes. We shall approach the problem using simple permutations
proving another theorem of independent interest. To state it we first recall the
basic facts about simple permutations and their importance for permutation
pattern classes.

An interval of a permutation β = b1 · · · bn is a subsequence of consecutive
positions bibi+1 · · · bj such that the set {bi, bi+1, . . . , bj} is a set of consecutive
values. Every permutation has singleton intervals and the entire permutation
is also an interval but, if these are the only intervals, the permutation is said to
be simple. For example 246135 is simple but 5174236 is not simple since it has
an interval 423.

If a permutation α is a concatenation τ̄1τ̄2 · · · τ̄r where each τ̄i is an interval
order isomorphic to a permutation τi then, for any two intervals τ̄i, τ̄j , either
all the terms of τ̄i are less than all the terms of τ̄j or they are all greater; we
express this as τi < τi or τi > τj respectively. Therefore we can use the notation

α = σ[τ1, . . . , τr]

where σ is the permutation defined by the relative order of the intervals τ̄i. It is
proved in [1] that every permutation has a representation of this form in which
σ is a simple permutation. Indeed, so long as r > 2 (and σ is simple), the
permutations τi are also uniquely determined.

Pattern classes that contain only a finite number of simple permutations are
particularly tractable [1] in that they have a finite basis, are partially well-
ordered, and have algebraic generating functions. Thus it is of great interest
to know when a pattern class has just a finite number of simple permutations.
A decision procedure to decide this question (given a finitely based class) has
recently been given [6]; in principle it gives a bound on the length of the longest
simple permutation in the class (when this exists) but the bound is almost
certainly very excessive.

Pattern classes of the form Av(α) have a finite number of simple permutations
only if α = 1, 12, 231 (or a permutation equivalent to one of these by a symme-
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try). Our first result is about pattern classes defined by two avoided permuta-
tions. To state it we adopt the following notation. The increasing permutations
1 2 · · · k − 1 k and decreasing permutations k k − 1 · · · 2 1 will be denoted by
ιk and δk respectively. Furthermore, if λ, µ are any permutations then λ ⊕ µ
(respectively λ	µ) will denote the permutation λ̃µ̃ where the segments λ̃, µ̃ are
isomorphic to λ, µ and every term of λ̃ is less than (respectively greater than)
every term of µ̃.

Theorem 1 Av(α, β) has a finite number of simple permutations if and only if
the pair α, β is equivalent by a symmetry and possible exchange of α with β to
one of the following types:

1. α = 231

2. α = 2413, β = 3142

3. α = δk, β = ιa ⊕ θ ⊕ ιb where θ is one of the following permutations:
1, 21, 231.

It is then immediate by the results of [1] that the pattern classes listed in the
three cases of the theorem have algebraic generating functions. In fact, for
the first type, the generating function is actually a rational function p(x)/q(x)
and an efficient recursive procedure for calculating it is given in [9]; the rate
of growth of the class is, of course, then determined as the reciprocal of the
smallest root of the polynomial q(x). The simple permutations of these classes
are 1, 12, 21.

The second type is the class of all separable permutations (see [5]) and its
generating function is

1− x−
√

1− 6x + x2

2
with growth rate 3+2

√
2. The simple permutations of this class are also 1, 12, 21.

We shall come across this class later and so we recall the definition of separable
permutations as those permutations that can be obtained from the permutation
1 by repeated use of the operations ⊕,	. For example, 31254 is separable since
each of 12 = 1⊕ 1, 312 = 1	 12, 21 = 1	 1 are separable and 31254 = 312⊕ 21.
Another way of defining them (see [3]) is as those permutations obtained from
the permutation 1 by repeatedly replacing symbols i by i i+1 or by i+1 i (with
appropriate relabelling of the other symbols). For example we obtain 31254 in
this way by the operations

1 −→ 12 −→ 213 −→ 3124 −→ 31254

(the symbol being replaced at each step is underlined).

For the third of the types in Theorem 1 we note that if θ = 1 then ιa ⊕ 1⊕ ιb =
ιa+b+1 and Av(δk, ιa+b+1) is finite by the Erdős-Szekeres result [7]; since we use
this result several times later on we state it explicitly:
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Proposition 1 Av(δk, ι`) is finite and its longest permutations have length (k−
1)(`− 1).

In the case θ = 21 we can appeal to one of the results of [2]: the number of
permutations of degree n in Av(δk, ιa ⊕ 21 ⊕ ιb) is a polynomial in n; so here
the growth rate is 1. The remaining case θ = 231 is the subject of our second
result.

Theorem 2 The growth rate of Av(δk, ιa ⊕ 231⊕ ιb) is independent of a, b and
hence is equal to the growth rate of Av(δk, 231).

The growth rate of Av(δk, 231) can be determined by the methods of [9]. For
completeness we give the argument which, in this special case, is quite easy. A
permutation of length n > 0 in Av(δk, 231) can be written as λnµ where every
term of λ is less than every term of µ. Clearly, µ ∈ Av(δk−1, 231) (and, of
course, λ ∈ Av(δk, 231)). Hence, if fk = fk(x) denotes the generating function
of Av(δk, 231), we have f1 = 1 and, for k > 1,

fk = 1 + xfkfk−1

which gives

fk =
1

1− xfk−1

We then find that fk is a rational function qk−1/qk of x where q1 = 1, q2 = 1−x
and, for k > 2,

qk = qk−1 − xqk−2

An easy inductive argument then proves that

qk =
∑

i

(
k − i

i

)
(−x)i

The first few of these polynomials are q3 = 1 − 2x, q4 = 1 − 3x + x2, q5 =
1 − 4x + 3x2 and their smallest zeros (x = 1/2, x = (3 −

√
5)/2, x = 1/3) give

growth rates 2, (3 +
√

5)/2, 3.

The argument in the proof of Theorem 1 gives the rough upper bound

7k−1(a + b)k/2

on the length of the simple permutations in Av(δk, ιa ⊕ 231⊕ ιb).

2 Proof of Theorem 1

We begin by giving some infinite families of simple permutations. They are
presented as plots of points in the (x, y)-plane: p1p2 · · · pn is represented as the
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Figure 1: The family F1 of permutations 246 · · · 2n 135 · · · 2n−1. They all avoid
321, 2143 and 3142. The family F−1

1 of inverse permutations all avoid 321, 2143
and 2413

 

Figure 2: The family F2 of permutations 31527496 · · · 2n− 1 2n− 4 2n 2n− 2.
They all avoid 321, 4123, 2341 and 3412.

 

Figure 3: The family F3 of permutations 246 · · · 2n 2n − 3 2n − 5 · · · 1 2n − 1.
They all avoid 3412, 2143, 3142, 2134 and 4132.
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Figure 4: The family F4 of permutations 246 · · · 2n 1 2n− 1 2n− 3 · · · 53. They
all avoid 2134, 4213, 1324, 3124, 4312, 4231, 3241 and 1423

set of n points (i, pi). These diagrams (Figure 1, Figure 2, Figure 3, and Figure
4) make it easy to check (as also verified in [6]) that the permutations are indeed
simple and that they avoid the various permutations of small length stated.

Lemma 2 If Av(321, α) has only finitely many simple permutations then α has
one of the following forms:

1. α = ιa,

2. α = ιa ⊕ 21⊕ ιb,

3. α = ιa ⊕ 231⊕ ιb,

4. α = ιa ⊕ 312⊕ ιb.

Proof: If either of 2143 or 3142 is a subpermutation of α then Av(321, α) would
contain (respectively) Av(321, 2143) or Av(321, 3142) and so would contain the
infinite family F1 of simple permutations which is impossible. Similarly, if 2413
was a subpermutation of α, Av(321, α) would contain Av(321, 2413) which con-
tains the infinite family F−1

1 .

Again similarly, none of 4123, 2341, 3412 are subpermutations of α since, if they
were, then Av(321, α) would contain the infinite family F2.

However, once we know that α avoids {2143, 3142, 2413, 4123, 2341, 3412} it is
virtually trivial to prove that α has one of the forms claimed.

This allows us to prove the more general

Lemma 3 If Av(α, β) has finitely many simple permutations then the pair α, β
is equivalent under symmetry and exchange of α with β to one of those listed in
Theorem 1.

Proof: If either α or β has length 3 then we can appeal to Lemma 2 (if one is
monotonic) or (otherwise) obtain the first case of Theorem 1.
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Suppose next that neither is monotonic and both have length at least 4. If nei-
ther have a monotone subsequence of length 3 then, necessarily, they have length
exactly 4 (Proposition 1) and are easily seen to lie in {3142, 2413, 3412, 2143}.
Of the 6 possible pairs in this set we need only consider the pairs {3142, 2413},
{3412, 2143}, {3142, 3412} since the 3 other pairs are equivalent to one of these
by symmetry. However, each of Av(3412, 2143) and Av(3142, 3412) contain the
simple family F3 and hence only Av(3142, 2413) is possible which is the second
case of Theorem 1.

Next we assume that one of α or β (α say) has a decreasing subsequence of
length 3 but that neither is monotonic. Then

Av(321, β) ⊆ Av(α, β)

and so β is of one of the types in Lemma 2. However, in all of those cases, β
has a subsequence isomorphic to 123. Hence

Av(α, 123) ⊆ Av(α, β)

and then Lemma 2 tells us that αR (the reverse of α) is also of one of the types
of Lemma 2.

We select subpermutations α0, β0 of α, β of length 4, neither monotonic. Then
we have

Av(α0, β0) ⊆ Av(α, β)

where αR
0 , β0 are each of one of the types of Lemma 2. The possibilities for α0

are therefore
4312, 4231, 3421, 2431, 3241, 4132, 4213

and for β0 are
2134, 1324, 1243, 1342, 1423, 2314, 3124

If we can show that every possible Av(α0, β0) has an infinite number of simple
permutations we shall have excluded this case. However, this is relatively easy
since not all the 49 combinations (α0, β0) need to be examined. To within
symmetry and exchange of α0 and β0 we have only the following cases:

Av(4312, 2134), Av(4312, 1324), Av(2134, 4213),
Av(1324, 4213), Av(3124, 4213), Av(3241, 1423),
Av(4213, 1423), Av(4231, 1324), Av(4132, 2134).

The first 8 of these classes all contain the infinite family F4 and the last contains
F3.

There remains only the situation where one of α, β is monotonic, say α is de-
creasing. Then 321 is a subpermutation of α so that Av(321, β) is contained in
Av(α, β) and Lemma 2 proves that we obtain the third case of Theorem 1.

Lemma 3 proves one half of Theorem 1. We now have to establish that the classes
listed in the theorem do indeed have a finite number of simple permutations.
For the classes Av(231, β) and Av(2413, 3142) we have already remarked that
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the only simple permutations in these classes are 1, 12, 21. We have also already
discussed the cases Av(δk, ιa⊕ 1⊕ ιb) and Av(δk, ιa⊕ 21⊕ ιb) and it remains to
handle the case Av(δk, ιa⊕231⊕ιb). For convenience we write αab = ιa⊕231⊕ιb.

We shall prove that Av(δk, αab) has only a finite number of simple permutations
by giving an upper bound on the length of its simple permutations in terms
of k, a, b. To do this we shall consider an arbitrary simple permutation θ ∈
Av(δk, αab). Since θ avoids δk it has a decomposition into k − 1 increasing
subsequences (which we shall call chains). For convenience we shall use the
(left) greedy decomposition. In this decomposition the first chain is the sequence
of the left to right maxima (a term is a left to right maximum if it has no larger
predecessors). Since the sequence of remaining terms avoids δk−1 the second and
subsequent chains can be defined iteratively; thus the ith chain is the sequence
of left to right maxima of those terms not among the first i − 1 chains. We
set θi to be the sequence of terms in the first i chains and put ui = |θi|. Then
uk−1 = |θ| and, by convention, we let u0 = 0.

Lemma 4 For 0 ≤ i ≤ k−2 we have ui+1 ≤ 7ui+a+b+3(a+b+4)(k−i−2)+1
(with u0 defined as 0).

Proof: Consider Figure 5. This represents the subpermutation of θ defined by
the terms of θ− θi. It has t = a+ b+p left to right maxima (represented by the
small black circles) which comprise the (i + 1)th chain of θ. The initial a and
final b of these are shown (with a = 3, b = 4); we shall bound the number p of
intermediate ones. The figure also defines various regions marked as Vj (vertical
strips), Hj (horizontal strips), Sj and T . The diagram does not show the ui

terms in the first i chains of θ but these would all lie above the zigzag line.

The region T is empty from the αab avoidance.

The points in θ − θi+1 (i.e. the points in the regions of Figure 5 not among
the left to right maxima shown there) form a subsequence that avoids δk−i−1

and its terms therefore fall into k− i− 2 chains. In each of these chains we call
the initial a and final b points the exterior points of the chain, the others being
called the interior points.

Let us first suppose that there are more than 2(k− i−2) V -regions that contain
interior points. Then, by the pigeon-hole principle, there will be at least 3 V -
regions that contain interior points of the same chain. These points are shown
as x, y, z in Figure 6 and u, v, w are the immediately preceding left to right
maxima of θ − θi. Now the initial a exterior points of the chain that contains
x, y, z, together with points v, w, z, and the final b left to right maxima of Figure
6 form a subsequence order isomorphic to αab. This is a contradiction.

Hence at most 2(k−i−2) V -regions contain interior points. A similar argument
proves also that at most 2(k − i − 2) H-regions contain interior points and so
there are at most 4(k−i−2) V -regions and H-regions in all that contain interior
points. Also, since there are at most (a + b)(k − i− 2) exterior points at most
(a + b)(k− i− 2) V -regions and H-regions in all contain exterior points. Hence
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a 

b 

T 
S1 

S2 

Sp-1 

Sp 

V1 V2 Vp 

H2 

H1 

Hp 
p 

Figure 5: The subpermutation θ − θi and its left to right maxima

there are at most (a + b + 4)(k − i− 2) non-empty V -regions and H-regions in
all.

Suppose some Sj is non-empty. Then, in order that the region Sj together with
its immediately preceding left to right maximum not be an interval, there must
be some term within θ whose value or position prevents this. Such a term must
either lie in θi (i.e. among the ui points of the first i chains), or lie in one of
Vj or Hj . At most 2ui of the non-empty Sj are prevented from being intervals
by the points in θi (since a point of θi can split at most two of the Sj , one by
value and one by position). The remainder are prevented from being empty by
non-empty V or H regions of which there are at most (a + b + 4)(k − i − 2).
Hence there cannot be more than

N = 2ui + (a + b + 4)(k − i− 2)

non-empty S-regions.

The number of empty S-regions is therefore at least p − N . Of these empty
S-regions at most N + 1 of them are followed by a non-empty S-region or by
a point following Sp (should Sp happen to be empty) and so there are at least
p− 2N − 1 pairs of consecutive empty S-regions.

Consider some pair Sj , Sj+1 of consecutive empty S-regions with immediately
preceding left to right maxima mj ,mj+1. In order that mjmj+1 is not an
interval at least one of Vj and Hj+1 must be non-empty or it must be separated
by one of the ui points in the first i chains (again such points can separate at
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Figure 6: 3 V -regions containing 3 interior points

most two such pairs). Hence, if p− 2N − 2ui > (a + b + 4)(k− i− 2), we would
have more than (a+ b+4)(k− i− 2) non-empty V -regions and H-regions. This
contradiction proves that

p− 2N − 1− 2ui ≤ (a + b + 4)(k − i− 2)

leading to
p ≤ 3(a + b + 4)(k − i− 2) + 6ui + 1

and, as ui+1 = ui + a + b + p this completes the proof of the lemma.

We can now complete the proof of Theorem 1. The recurrence in the previous
lemma tells us that

|θ| = |θk−1| ≤ 7k−1(a + b)k/2

and hence there are only finitely many simple permutations in Av(δk, αab).

Finally, we note that by using the decision procedure in [6] the proof of Theorem
1 could be shortened. However, our approach gives a rather better bound on
the lengths of the simple permutations in question; it remains open whether
this bound is optimal or close to optimal.
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3 Proof of Theorem 2

We continue with the notation of the previous section and begin by proving
a slightly stronger result about Av(δk, αab). To state it we require one more
definition. We say that a permutation σ is strongly irreducible if it has no
segments of the forms i i + 1 or i + 1 i (in other words, it has no intervals of
size 2).

Lemma 5 Av(δk, αab) has only a finite number of strongly irreducible permu-
tations.

Proof:

We prove the result by induction on k it being obviously true for k ≤ 2. Strongly
irreducible permutations in Av(δk, αab) of length greater than 1 have one of three
forms (see [1]):

1. θ	φ. Here θ and φ are themselves strongly irreducible and lie in Av(δk−1, αab).
So, by the inductive hypothesis, there are only finitely many possibilities
for θ and φ.

2. σ[τ1, τ2, . . . , τr] where σ is a simple permutation of length r ≥ 4. Since
σ is simple, for each τi, there is either some preceding τj with τj > τi

or some succeeding τj with τi < τj ; so again each τi ∈ Av(δk−1, αab).
By the inductive hypothesis there are only finitely many possibilities for
each τi and since r = |σ| is bounded we have, again, only finitely many
possibilities.

3. θ ⊕ φ. In this case we write the permutation as

θ1 ⊕ θ2 ⊕ · · · ⊕ θg

with g maximal (so that each θi cannot be further decomposed in this
manner). We must have g < a + b + 2. To see this note that θa+1 ⊕
θa+2 either contains some subpermutation 231 or is separable. The latter
would contradict the strong irreduciblity of the permutation whereas the
former would imply a subpermutation αab. Since the θi cannot be further
decomposed they must have one of the first two forms and so they must
be bounded. Since g is bounded there are only finitely many permutations
of this form.

From the point of view of growth rate this lemma allows us to replace the class
Av(δk, αab) by the more tractable class Av(δk, αab, 2413, 3142).

Lemma 6 Av(δk, αab) and its subclass Av(δk, αab, 2413, 3142) have the same
growth rate.
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Proof: Let F be the (finite) set of strong irreducibles in Av(δk, αab). Then we
have

Av(δk, αab, 2413, 3142) ⊆ Av(δk, αab) ⊆ F oAv(δk, αab, 2413, 3142)

The class on the right hand side is a wreath product in the sense of [3] and,
again by [3], its generating function is a polynomial in the generating func-
tion of Av(δk, αab, 2413, 3142). Its growth rate is therefore the same as that of
Av(δk, αab, 2413, 3142) which completes the proof.

For convenience define

Tkab = Av(δk, αab, 2413, 3142)

and
T̃kr = Av(δk, ιr, 2413, 3142).

Furthermore, let tkab and t̃kr denote the generating functions (in the variable
x) of Tkab and T̃kr.

Our aim is to show that the growth rate of Tkab is independent of a, b and thereby
reduce the computation of the growth rate to the case a = b = 0. We shall do
this by showing that its generating function (which is necessarily rational) has
denominator whose roots depend only on k, i.e. the irreducible factors of the
denominator are all factors of the denominator of tk00.

Observe that every permutation in Tkab of length greater 1 has either the form
λ⊕ µ or λ	 µ and these forms are mutually exclusive. The permutations that
are not of the form λ ⊕ µ (i.e. those of the form λ 	 µ together with the
permutation 1) will be called plus indecomposable; those not of the form λ	 µ
will be called minus indecomposable. The subsets of Tkab of plus and minus
indecomposable permutations will be denoted by T+

kab and T−kab respectively
with a similar notation for the plus and minus indecomposable permutations
of T̃kr. The ordinary generating functions of these sets will be denoted by
tkab, t

+
kab, t̃kr etc.

Assume that not both a, b are zero. We shall obtain recursive descriptions of the
plus and minus indecomposable permutations from which we shall obtain equa-
tions for their generating functions. This follows the basic approach introduced
in [1].

1. Plus indecomposables. Those of length greater than 1 have the (unique)
form σ 	 τ where σ is minus indecomposable. Because αab is minus inde-
composable, such a permutation avoids αab if and only if each of σ and
τ avoid αab. For some unique r with 1 ≤ r ≤ k we shall have σ involves
δr−1 but σ does not involve δr; and then τ must avoid δk−r+1. Then we
shall have

σ ∈ T−rab \ T−r−1,ab, and τ ∈ Tk−r+1,ab
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Notice that, as both σ, τ are non-empty, the values r = 1, r = k do not
arise. Furthermore, if 1 < r < k and the displayed conditions hold, then
σ 	 τ ∈ T+

kab.

2. Minus indecomposables. Those of length greater than 1 have the (unique)
form σ ⊕ τ where σ is plus indecomposable. Such a permutation avoids
δk if and only if each of σ and τ avoid δk. There are now three disjoint
cases:

(a) σ avoids αa0 and avoids ιa. Note that the second condition implies
the first. Here, for some unique r with 1 < r ≤ a, σ involves ιr−1

and avoids ιr (we cannot have r = 1 as σ is non-empty); and then τ
must avoid αa−r+1,b. So

σ ∈ T̃+
kr \ T̃+

k,r−1 and τ ∈ Tk,a−r+1,b

(b) σ avoids αa0 and involves ιa. Here τ avoids α0b. Thus

σ ∈ T+
ka0 \ T̃+

ka and τ ∈ Tk0b

(c) σ involves αa0. For some unique r, 1 ≤ r < b, σ involves αa,r−1 but
avoids αar. Then τ avoids ιb−r+1 (and, as τ is non-empty, r = b
cannot arise). So

σ ∈ T+
kar \ T+

ka,r−1 and τ ∈ T̃k,b−r+1

If any of the displayed conditions hold then σ ⊕ τ ∈ T−kab.

Passing to generating functions:

tkab = t+kab + t−kab − x

t+kab = x +
k−1∑
r=2

(t−rab − t−r−1,ab)tk−r+1,ab

t−kab = x +
a∑

r=2

(t̃kr − t̃k,r−1)tk,a−r+1,b + (t+ka0 − t̃+ka)tk0b

+
b−1∑
r=1

(t+kar − t+ka,r−1)t̃k,b−r+1

The quantities tkab, t
+
kab, t

−
kab are all rational functions whilst t̃kr, t̃

+
kr are poly-

nomials (since, by Proposition 1, they enumerate finite sets).

Call a generating function of the form tkab, t
+
kab, t

−
kab “good” if its denominator

has only irreducible factors that divide the denominator of
∏k

i=1 ti00. We can
use the equations above to show, by induction on k, a, b, that tkab is good for
all a, b.
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First we prove that tka0, t
+
ka0, t

−
ka0 are good. By definition this is true for a = 0.

But, for a > 0, the second equation tells us that t+ka0 is good; then the third
equation tells us that t−ka0 is good, and finally the first equation tells us that
tka0 is good.

It then follows by symmetry that tk0b is good for all b.

But now the equations can be used in a similar inductive argument to prove
that tkab is good for all a, b.

The growth rate of Tkab is, say, 1/ρ where ρ is the smallest root of the denomina-
tor of tkab. By what we have just proved ρ is a root of one of the denominators
of some ti00 with 1 ≤ i ≤ k. Let 1/ρ1, 1/ρ2, . . . , 1/ρk be the growth rates of
t100, t200, . . . , tk00; in other words each ρj is the smallest root of the denominator
of tj00. But, from the definition of Tj00 as a pattern class, ρ1 ≥ ρ2 ≥ · · · ≥ ρk

and hence ρ ≥ ρk. However, Tk00 ⊆ Tkab. and so 1/ρk ≤ 1/ρ. This proves that
ρ = ρk and that

Lemma 7 For all a, b ≥ 0, Av(δk, αab, 2413, 3142) and Av(δk, α00, 2413, 3142)
have the same growth rate.

Theorem 2 now follows from Lemmas 6 and 7.

References

[1] M. H. Albert, M. D. Atkinson: Simple permutations and pattern restricted
permutations, Discrete Math. 300 (2005), 1-15.

[2] M. H. Albert, M. D. Atkinson, R. Brignall: Permutation classes of poly-
nomial growth.

[3] M. D. Atkinson, T. Stitt: Restricted permutations and the wreath product,
Discrete Math. 259 (2002), 19–36.

[4] R. Arratia: On the Stanley-Wilf conjecture for the number of permutations
avoiding a given pattern, Electron. J. Combin. 6 (1999), N1.

[5] P. Bose, J. F. Buss, A. Lubiw: Pattern matching for permutations, Inform.
Process. Lett. 65 (1998), 277–283.
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