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Abstract

The permutations that can be sorted by two stacks in series are considered, subject
to the condition that each stack remains ordered. A forbidden characterisation of
such permutations is obtained and the number of permutations of each length is
determined by a generating function.
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1 Introduction

The question of which permutations can be sorted by a single stack, and
how many there are of each length, was solved by Knuth in [5]. He showed
that a permutation is stack sortable if and only if it has no subpermutation
231 (i.e. subsequence order isomorphic to 231) and that the number of such
permutations of length n is the n™M Catalan number. At the same time he
also introduced the problem of sorting permutations by two or more stacks in
series and this was subsequently investigated further by Tarjan in [10].

Let S* denote the set of permutations that can be sorted by k stacks in series.
It is easy to see that this set is closed in the sense that subpermutations of
permutations in S* are also in S*. Consequently S* is characterised by a set
of forbidden permutations, the set of minimal permutations not in S*, called
the basis. As noted above the singleton set {231} is the basis of S™.
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Fig. 1. Two stacks in series

For k > 1 it appears to be very difficult to identify the basis of S* and to
enumerate the permutations of each length in S*. Notice that, if the basis of
S* was finite, we could decide whether a permutation was in S* in polynomial
time. However, there are some indications that the basis of S? is infinite; by
computationally intensive methods we have found that its basis contains 22
permutations of length 7, 51 of length 8, and 146 of length 9. We conjecture
not only that the basis of S? is infinite but that it is NP-complete to decide
membership in 52

In this paper we study a subset M of S2. The set M consists of all permutations
that can be sorted by two stacks in series with each stack remaining sorted
from top to bottom. Clearly M is a closed set. Having in mind Figure 1 we
refer to the two stacks as the right stack (into which elements are first inserted)
and the left stack (into which elements are transferred from the right stack
before being output). An algorithm to sort a permutation using two stacks in
series can be described as a sequence of operations, each operation being one

of:

p: Move an element from the input permutation onto the right stack.
A: Move an element from the right stack to the left stack.
p: Move an element from the left stack onto the final output.

Our main results are a determination of the basis and an enumeration of the
permutations of each length in the following theorems:

Theorem 1.1 The basis of M is the infinite set
B={(2,2m —1,4,1,6,3,8,5,... ,2m,2m — 3) |m = 2,3,4,... }.
Theorem 1.2 Let z, be the number of permutations of length n in M. Then

i e 32x
=T 822 4+ 200 + 1 — (1 — 8z)3/2

Somewhat surprisingly the same generating function appears also in [2]. It
enumerates the permutations in the set defined by the single basis element
1342. Thus we have an example of two closed sets, one with an infinite basis the



other with a single basis element, which have the same number of permutations
of each length. This is an extreme example of a phenomenon that has been
noted elsewhere in the literature on closed sets, of different closed sets being
equinumerous [1], [8], and [9]; but all previous examples have had bases of the
same size.

Our work also provides some common ground between the S* problem and a
set W of permutations introduced by Julian West [12]. Although West did not
describe his set in terms of two stacks in series it has the following description.
Consider sorting by two stacks in series under a “greedy” restriction: at every
stage, if it is possible to insert the next input symbol into the right stack (a p-
operation) and keep it sorted then one must do so; otherwise, if it is possible to
transfer the top element of the right stack to the left stack (a A-operation) and
keep it sorted then one must do so; otherwise one pops an element from the left
stack into the output (a p-operation). Then W is the set of permutations that
this procedure sorts. Since the stacks remain sorted throughout we see that
W C M. The set W was enumerated by Zeilberger [13] and further studied
by Goulden and West [4] who related it to planar maps. As we shall see, our
set M also has a relationship to planar maps.

The set M is related to W in another way. We observe below that there is a
greedy algorithm to decide membership in M in linear time. However, while
West’s set depends on a greedy algorithm that favours operations “to the
right” of the system, the set M is sortable by a “left” greedy algorithm. This
left greedy algorithm (subsequently referred to simply as the greedy algorithm)
prioritises the operations p, A\, i in a different order to West: one carries out
a p-operation if that results in the correct next item being output, otherwise
one carries out a A-operation if the left stack remains sorted, otherwise one
carries out a p-operation if the right stack remains sorted, and otherwise the
algorithm fails. Then it is easily seen that:

Proposition 1.3 FEvery permutation in M can be sorted by the greedy algo-
rithm.

Corollary 1.4 There is an algorithm which decides whether a permutation o
belongs to M, and which has linear time complexity in the length of o.

In the next section we prove Theorem 1.1. Section 3 explains how we view
sorting algorithms as words in the basic push and pop operations and Section
4 associates these words to certain labelled trees for which we prove an enu-
meration result. In the final section we relate these trees to the 3(0,1)-trees
of [2] and thereby prove Theorem 1.2.



2 The basis of M

To prove Theorem 1.1 we first note that none of the permutations in B can
be sorted by the greedy algorithm. Furthermore, we can readily check that,
if any symbol of one of these permutations is deleted, the resulting sequence
can be sorted. This proves that B is a subset of the basis of M.

To prove that B is the whole of the basis we shall consider an arbitrary basis
permutation 3 of length n, examine how the greedy algorithm must fail when
applied to 3, and thereby identify enough properties of § to demonstrate that
G € B. We denote by  — 1 the sequence obtained by removing the symbol 2
from 3.

Lemma 2.1 Before the greedy algorithm applied to 3 fails, the symbol n — 1
has been processed by a p-operation bul not by a A-operation.

PRrROOF: If the greedy algorithm fails before attempting to apply a p-operation
to the symbol n then it would also fail on 3 — n and this contradicts the
minimality of 3. On the other hand if it fails after a p-operation has been
successfully applied to n then, from the fact that 3 — n can be sorted by the
greedy algorithm, we easily see that (3 itself can be sorted. It follows that the
greedy algorithm fails exactly at the point where it attempts to carry out a
p-operation on n (failing because the right stack is non-empty).

We compare the action of the greedy algorithm on each of 3 and 3 — (n —1).
It is clear that, up to the point of failure in (3, these algorithms must be
performing identically except that, for 3 — (n — 1), all operations involving
n — 1 are absent. However, the greedy algorithm on 3 — (n — 1) would not fail
on the p-operation to insert n into the right stack (by minimality) and so it
follows that, when applied to 3, n — 1 must be present in the right stack at
the point of failure. In other words n — 1 has been processed by a p-operation
but not by a A-operation. [ |

To complete the proof of Theorem 1.1 we shall construct a subsequence a;,, a;,, . . .
of (# order isomorphic to a permutation of B. By minimality this will be the
whole of 3. We shall label the subscripts ¢; so that they suggest the relative

values of the a;,.

Consider the point, guaranteed by Lemma 2.1, at which the greedy algorithm
inserts n — 1 into the right stack by a p-operation. The left stack is not empty
(otherwise a A-operation could be applied to n — 1, contradicting Lemma 2.1)
and contains a largest element ay. Thus

B =...az0n — 1¢.



Now, it cannot be possible to empty the left stack by p-operations (for that
would permit a A-operation on n — 1) and so there must exist some a; within
¢ with a1 < ay and we choose the rightmost such a;. So we have

5:---652971—1951@1...

Within 6 there are no symbols larger than a,. Indeed, since the right stack
must be empty in order to insert n — 1 into it, each symbol of § must either
be output or on the left stack; in either case it is smaller than a;. However,
within ¢; there must be a symbol larger than as (else when a; is processed by
a p-operation the left stack and all of the right stack except for n — 1 could be
moved to the output and that would allow n — 1 to move to the left stack). If
¢y contains n then 3 contains the subsequence ay,n — 1,n,a; which is order
isomorphic to 2341 € B and we are finished. Otherwise the symbols in ¢;
that are larger than az cannot be a set of contiguous symbols contiguous with
ay (for the same reason as before, that they could all be output once a; was
processed by a p-operation). Hence ¢ contains some largest a4 and there is a
smaller a3 to the right of ay also larger than ay; we choose the rightmost such
as. Now we have

ﬁ:...ag...n—1...a4...a1</§3a3...

Essentially we now repeat the argument of the last paragraph until we run out
of symbols. We do it explicitly once more for clarity. Within ¢3 there are some
symbols larger than a4 (else when a3 is processed by a p-operation the contents
of both stacks, except for n — 1, could be moved to the output and n — 1 could
move to the left stack). If ¢35 contains n, then 3 contains ag,n — 1, a4, a1, n, a3
which is order isomorphic to 254163 € B. Otherwise, the set of symbols in
¢s that are larger than a4 cannot be a contiguous set contiguous with a4 (or
again all the symbols in both stacks, except for n — 1, could be output). Hence
¢3 has a largest symbol ag and there is a rightmost smaller symbol a5 greater
than a4 but smaller than ag and to the right of a3. The situation now is

B: ...ag...n—1...a4...a1...a6...a3¢5a5...
In this way we define more and more symbols of 3:
ag,n — 1,ayq,ay1, a6, a3, . .. , Qs Agg—3, P2k—1, 251
and we do this until ¢9z_; contains n, in which case we obtain a sequence

order isomorphic to (2,2k — 1,4,1,6,3,... ,2k,2k — 3) € B as required. This
completes the proof of Theorem 1.1.



3 Algorithms as words

This section begins the proof of Theorem 1.2. In that theorem the generat-
ing function has constant term 1 corresponding to the empty permutation.
However, for technical reasons, we shall from now on consider only non-empty
permutations.

An algorithm for sorting a permutation of length n through two stacks in
series is a sequence of appropriate stack operations, and so can be described
as a word of length 3n over the alphabet p, A, u. We call these S?-words. For
a word W over {p, A\, u} and = € {p, A\, u}, we denote by #,(W) the number of
occurrences of z in W.

It is clear that a word W over {p, A, u} is an S?-word if and only if it describes
how to take a permutation through two stacks in series (without necessarily
sorting it). Indeed, if W transforms a permutation o = (i1,... ,4,) into the
permutation 7 = (J1,...,j,), then W sorts the permutation 7='c. From this
it now easily follows that W is an S%-word if and only if the following two
conditions are satisfied:

(S1) §,(W) = (W) = 8. (W);
(S2) for any initial subword (prefix) U of W we have §,(U) > §,(U) > §,(U).

It is also true that for every S?-word there is a unique permutation o which it
sorts (o can be found by applying the S?-word in reverse so that it defines an
algorithm for transforming an output sequence 1,2, ... . n, via the two stacks,
to produce o in the input). The converse, however, is not necessarily true: it
may be possible to sort a given permutation in several different ways.

In what follows we will find it useful to label the letters of an S2-word W as
follows. If @ = (ay,... ,a,) is the permutation sorted by W, then we denote
by pi (1 <1 < n) the occurrence of p in W which corresponds to moving a;
from the input onto the right stack. Similarly, A; moves a; from the right stack
to the left stack, and p; outputs a; from the left stack.

Those S%-words which represent sortings of permutations whilst respecting
the characteristic sorted stack property of M are called M-words; and those
M -words that also represent greedy sortings are called Greedy M-words, or
G M -words for short. We characterise M-words and G M-words in Propositions
3.3 and 3.4 but first we point out our reason for studying GM-words.

Lemma 3.1 The number of GM-words of length 3n is equal to the number
of permutations of length n in the set M.

PROOF: There is a natural one-to-one correspondence between GG M-words



and permutations of M. Every permutation of M can be sorted by the greedy
algorithm and so determines a GM-word. On the other hand, as already ob-
served, each GM-word sorts a unique permutation which necessarily belongs
to M. [ |

Lemma 3.2 Let W be an S*-word, and let @ = (a1,... ,a,) be the permu-
tation it sorts. Then W is not an M-word if and only if in applying W to w
there is a pair of elements a; and a; that are adjacent in both stacks.

PROOF:  The ‘if’ part is obvious. For the ‘only if’ part let a;, a; (¢ < j) be
a pair that violates the stack ordering (necessarily on the right stack). Thus
we have a; < a;, and at some stage a; lies above a; in the right stack, while at
some later stage a; lies above «a; in the left stack. In addition, assume that «;
and a; are chosen so that the length of the subword A; ... \; of W is minimal
possible. We claim that a; and a; are actually adjacent in both stacks.

Assume first that a; and a; are not adjacent on the right stack, and let ay
be an entry which lies between them. Since a; > a;, we must have a; > ay
or ay > a;. In the former case, the pair aj, a; violates the stack ordering and
the sequence ;... g is a proper subword of A;...\;, while in the latter case
the pair a;, a; violates the stack ordering and A ... J\; is a proper subword of
Aj ... A In both cases we obtain a contradiction with the choice of a; and a;,
and so they must be adjacent in the right stack.

Assume now that a; and a; are not adjacent on the left stack, and let a; be
an entry which lies between them. In particular, we have a; > a;. Since a; and
a; were adjacent in the right stack, ¢; must have been moved onto the right
stack after a; had left it, but before a; had done so. Therefore, the pair a;, a;
violates the stack ordering, and A;...A; is a proper subword of A; ... A;, which
is again in contradiction with the choice of a; and a;. [ |

Proposition 3.3 An S%-word W is an M-word if and only if it contains no
subword of the form AUX, where U is empty or an S?*-word.

ProoF: Let 7 = (a1,...,a,) be the permutation sorted by W. If W con-
tains a subword A;); then obviously a; and a; are adjacent in both stacks,
and W is not an M-word by Lemma 3.2. If W contains a subword of the form
AN;UX;, where U is an S%-word, then after a; has been moved to the left stack,
U transfers a collection of elements from the input, via the two stacks, into
the output, and then a; is moved onto the left stack. We see that again a; and
a; are adjacent in both stacks, and so W is not an M-word.

Conversely, if W is not an M-word, then, by Lemma 3.2, there is a pair as,
a;, such that they are adjacent in both stacks. Consider the subword ;U\,
of W, and assume that U is non-empty. We see that, after a; has been moved
onto the left stack, no element already on either of the stacks must be moved



before a; is moved on top of a;. Therefore, U must transfer a group of symbols
from the input, via the two stacks, to the output; in other words U must be
an S%-word. [ |

Proposition 3.4 An S*-word W is a GM-word if and only if the following
are satisfied:

(GM1) W does not contain a subword AX;
(GM2) W does not contain a subword ppu;
(GM3) W does not contain a subword U)X, where U is an S*-word.

PrROOF: (=) If W contains a subword AX then it is not an M-word by
Proposition 3.3. If W contains a subword pp, say W = Vpu ..., W is not
greedy, because a p can follow V. Similarly, if W = VUAX..., where U is an
S?-word, then W is not greedy, because a A can follow V', while the first letter
of U is p.

(<) Assume now that W is not a GM-word. If W is not even an M-word then,
by Proposition 3.3, it either contains a subword A\, or a subword AU\, where
U is an S?-word, and the proof is finished. So, let us now consider the case
where W is an M-word, but is not greedy. Let m be the permutation sorted
by M, and let V' be the shortest initial segment of W after which the greedy
algorithm condition fails. Thus, if we write W = VaV;, where x € {p, A, u},
there exists another M-word sorting 7 of the form VyV;, where = precedes y
in the list p, A, p. So we can distinguish the following three cases.

Case 1: x = p, y = A. Let a; be the top element in the right stack after V/
has been applied to 7, and write W = VpV3A;V,. Now note that pV5 must not
move any of the elements which are already on either of the stacks. Indeed,
the elements on the right stack cannot be moved before a; (because a; is on
the top of the stack), and the elements on the left stack cannot be output
before a; (because a; is smaller than any of them). Also, since any element
input by pVj is smaller than a;, it must also be output by pV3 (i.e. before A;).
Therefore, pV3 is an S?-subword of W preceding a A.

Case 2: v = p, y = p. Let a; be the top element of the left stack after
V' has been applied to 7, and write W = VpV3u,;Vy. Notice that a; is the
least element that has not yet been output. Therefore, V3 cannot contain any
occurrences of either A or p, and hence W contains a subword ppu.

Case 3: x = A, y = p. This case cannot occur, for if a; is the top element on
the left stack after V' has been applied to 7, then again it is the least element
that has not yet been output, and so applying a A move would violate the left
stack ordering.

This completes the proof of the proposition. [ |



4 Algorithms and plane trees

A GM-word W is reducible it W = W W5, where both Wy and W, are GM-
words, and is irreducible (or IGM for short) otherwise. In this section, we are
going to show how to associate a rooted plane tree with labelled edges to every
IGM-word, and then we are going to establish a recurrence formula for the
number of /GM-words corresponding to a rooted plane tree without labels.

IGM-words have a significance for the indecomposable permutations of M
(those which have no proper decomposition into subwords as a3 where a < b
for all a € a and b € 3).

Lemma 4.1 The number of IGM-words of length 3n is equal to the number
of indecomposable permutations of length n in the set M.

PROOF: Restrict the one-to-one correspondence given in the proof of Lemma

3.1 to IGM-words. [ ]

Let W be an IGM-word. Since it represents a greedy algorithm, W must
begin with pA, and it must end with g; in other words W can be written as

W = pAW'p.

We define the derived word d(W) of a GM-word W to be the word obtained
from W by removing the A symbols. The properties of d(W') inherited from
conditions (S1) and (S2) are those of well-balanced strings of parentheses and
allow a well-known description by a plane tree. In this description d(W) is
obtained by walking around the tree beginning at the root traversing each
edge twice, first downwards for a p symbol (opening parenthesis) and later
upwards for the corresponding p symbol (closing parenthesis). We shall use
this only in the case of an IGM-word. For such words the tree corresponding
to (W) has root of degree 1 and it is convenient to remove the root and its
incident edge. The resulting rooted plane tree will be denoted by T(W). By
construction, if W has length 3n, then T'(W) has n vertices.

Although T (W) uniquely determines d(W) it certainly does not determine W
itself. To capture the more detailed information present in W we attach labels

to the edges of T'(W).

Each edge of T'(W) corresponds, as described above, to a p-u pair of W. To
each such edge e we attach a label from the set

L= {(p, 1), (p, uA), (pA, 1), (pA, pA) }

depending on whether p and p corresponding to e are followed by A in W.
Trees arising in this way are called IGM-trees. We also call the unlabelled
tree T(W) the shape of the IGM-word W.



Fig. 2. An IGM-tree
Example 4.2 The /GM-word

PAPAPAPALppp Ap i p A ppAppApe
gives rise to the /G M-tree shown in Figure 2.

The IGM-word W can be reconstructed from its IGM-tree T(W) in the
intuitively obvious way, which can be formalised as follows. Let T be any
plane tree with edges labelled by elements of the set £. To each vertex V of T
we associate two words o(V') and 7(V') defined recursively. If V is a leaf, and
if the edge leading to it is labelled by (z,y) then

o(V)=zu, (V) = zy.

(Note that if 7" is an IGM-tree then o(V) = 7(V) = pAu, because W does
not contain a subword pu or pAuA by Proposition 3.4.) If V' is neither a leaf
nor the root, with children C4, ..., C,, and with the edge from V to its parent
labelled by (z,y), then define

o(V)=uar(Cy)...7(Cp)pu,
(V) =ar(Cy)...7(Cp)y.

Note that either o(V) = 7(V) or else 7(V) = o(V)A. Finally, if V is the root,
and if its children are C,... ,C,, then define

o(V)=7(V)=pAr(Cy)...7(Cp)p.

Clearly, if T'= T(W) is an IGM-tree, and if R is its root, then o(R) = 7(R) =
Ww.

We now give some properties of the words o(V) and 7(V).
Lemma 4.3 Let T = T(W) be an IGM-tree, and let V be any vertex of T'.
(i) For every initial segment 7 of o(V') we have §,(7) > (7).

(ii) For every terminal segment U of o(V') we have §,(U) > §A(U).

10
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i) If f,(o( ix(a(V)) then o(V) is an S*-word, and hence o(V) = (V).
iv) t(r(V) (r(V))-

PrROOF: If V is a leaf then all the statements hold. Consider now the case
where V' is not a leaf, and assume inductively that all the statements (i)—(iv)

hold for all of its children C4, ... ,C,. By the definition we have

1%
)

v
=

(i) Let Z be an initial segment of o(V). If the length of Z is 1 or 2 the statement
is obvious. Otherwise, if Z is a proper initial segment of length greater than
2, we can write

Z=zar(Ch)...7(Cy) 7',
where 7' is either empty or else it is a proper prefix of 7(Cy41) (and hence a

prefix of o(Cry1)). We have

k

hp(Z) =1+ Z ﬁp(T(Oi)) + ﬁp(Zl)v

Ba(2) = (@) + 2 0 (7(C0) + (2.

Now note that 1 > f,(z), as z is either p or pA. Next note that, by induction, we
have £,(r(C)) > (7(Co)) (property (iv)) and £,(7') > (7" (property(7).
We conclude that §,(Z) > §,(Z) in this case. Finally, the case where Z = (V)
follows also by noting that the last g of o(V') does not contribute anything to
either of §,(7(Z)) or §.(7(2)).

(ii) Let U be a terminal segment of o(V). If U has length 1, the statement
is obvious. Otherwise, if U is a proper terminal segment of o(V) of length
greater than 1 we can write

U=U7(Cy)...7(Cy)p,

where either (1) U’ = X, or (2) 6(Cjy—1) = 7(Cx—1) and U’ is a terminal segment
of 6(Cy-1),or (3) U' = U"X and U" is a terminal segment of o(Cy_;). We now
have that

4(0) = 8.(U) + éma» i, 1)
D(0) = B (U) + z () 2)

11



By induction (property (iv)) we have

Also, in each of the three possibilities for U’ we have
1u(U) +1 = 45(U7). (4)

Indeed in the case (1) this is obvious, while in the cases (2) and (3) it follows
from the inductive hypothesis (property (ii)). Combining (1)—(4) we conclude
that #,(U) > §.(U), as required.

(iii) We are going to show that conditions (S1) and (S2) are satisfied for o (V).
Indeed, (S1) is satisfied by assumption. Also, if Z is an initial segment of o (V)
then §,(Z) > §:(Z) by (i). Write now o(V) as (V) = ZU. By (ii) we have
#,(U) > #:(U), and hence we have

I\(Z) = fa(e(V) = a(U) 2 4u(o(V)) = §.(U) = 4.(2),

thus proving (S2) as well. The final statement follows from the assumption

that W is an IGM-word and condition (GM3) for such words.

(iv) If (V) =0o(V) t
We know that §,(c(V)
by (iii). Since f(7(V)

follows from (i). Otherwise we have (V) = o(V)A.
(o(V)). In fact, we must have f,(a(V)) > $:(c(V))
(o(V)) + 1, the statement follows. [ |

Definition 4.4 Let T be a plane tree with edges labelled by elements of the
set £, and let V' be a vertex of T'. The A-deficit at V' is the number

d(V) = £,(r(V)) = (7 (V).

his
) >
) =t

In the next result we give a characterisation of IGM-trees.

Proposition 4.5 A plane tree T with edges labelled by elements of the set L
ts an [GM-tree if and only if the following conditions are satisfied:

(T1) every leaf edge is labelled by (pA, p);
(T2) d(V) > 0 for every vertex V;
(T3) d(R) =0, where R is the root.

PrOOF: (=) U T =T(W)is an IGM-tree, then (T1) follows from (GM2)
and (GM3), (T2) is Lemma 4.3 (iv), and (T3) follows from (S1).

(<) Assume now that T satisfies (T1)—(T3). We are going to check that
the word W = o(R), where R is the root of T, satisfies all conditions (S1),
(S2), (GM1)-(GM3), and that it is irreducible. Indeed, (S1) follows from (T3),

12



(GM1) follows from the definition of the words o(V'), (GM2) follows from (T1),
and (GM3) follows from (T2).

Next we prove that for every initial segment Z of W we have §,(Z) > §,(2),
(the first inequality in (52)). We do this by induction on the length of Z. If Z
has length 1, or, more generally, if Z contains no occurrence of i, the assertion
is obvious. Otherwise Z has one of the forms Zyo(V) or Z;7(V)Z;, where V
is a vertex and Z, contains no occurrences of p. (This is obtained by ‘reading’
7 until its last g, and then finding the corresponding p in front of it.) Then
we have

8o(Z1) = A (Z1)

by induction,

8o(a(V)) 2 1a(a(V)), ,(r(V)) = ha(7(V))

by (T2), and
8o(Z2) > 8:(72)
since Z, contains no . Combining the above inequalities as appropriate we

conclude that §,(Z) > §,(Z).

A similar induction shows that §,(U) > §,(U) for any terminal segment U
of W. This, together with (T3) implies that §,(Z) > §,(Z) for any initial
segment Z of W, thus completing the proof of property (S2). Finally, again by
induction, one easily proves that 4,(7) > #,(7) for a proper initial segment
7 of W, and this implies that W is irreducible. For, if W = W W,, where
Wi and Wy are GM-words, then W, is a proper initial segment of W with

ﬂp(Wl) = ﬁu(Wl)- u

Definition 4.6 Let T be a rooted plane tree, and let V' be a non-root vertex
of T. We define the branch of V' to be the tree H(V') obtained by taking the
subtree of T rooted in V and adding to it the parent P of V and the edge
linking P and V.

Definition 4.7 Let T be a rooted plane tree. To each non-root vertex V' we
associate a sequence

A(V) = (d0,01,62,...),
where 4, is the number of different labellings of edges of H(V') by elements of
the set £ which satisfy conditions (T1) and (T2) (but not necessarily (T3))
and for which d(V) = r.

Proposition 4.8 Let T be a rooted plane tree, let R be its root, let Cy, ... ,C,
be the children of R, and let

A(Cs) = (60,031,040, ...) (1 =1,...,p).

The number of IGM -trees with shape T is equal to 610020 . .. dpo.
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PROOF:  For a given labelling of edges of T' satisfying (T1) and (T2) from
Proposition 4.5, we have that o(R) is an [GM-word if and only if (T3) is
satisfied, i.e. if and only if d(R) = §,(7(R)) — §1(7(R)) = 0. Since

T(R) = pAT(Cy)...7(Cy)p,

and since d(C;) > 0 (+ = 1,...,p), we have that d(R) = 0 if and only if
d(C;) =0forall: =1,...,p. The number of different labellings of any H(C})
satisfying d(C;) = 0 is precisely d;o and the result follows. [ |

We now give a recurrence for the sequences A(V).

Proposition 4.9 Let T be a rooted plane tree, let V' be a non-root vertex of
T, and let
A(V) = (60,01,02,...).
If V is a leaf then
50:1, 5ZZO(Z>O)
Otherwise, if Cy,...,C, are the children of V with

A(OZ) = (52'07 5i17 5i27 s )7

then

8= > 01,095, - Opj, + 2 ( > 610, 5%)

Jit.Fip=r—1 JiteFip=r

+ > 81,025, - - - Opj,-

Jitetip=r4l

Proor: Note that

A(V) = byey) — a(zy) + Y d(C),

=1

where (z,y) is the label of the edge connecting V' to its parent. Clearly

Oifz=p, y=uy,
fo(zy) =1, fa(zy) = lifz=p)\, y=porz =p, y=pl,
2if x = pA, y = pA.
Hence, to be able to label H(V) so that d(V) = r, the trees H(C;) (1 =
1,...,p) must be labelled so that
P

Y d(C;) e {r—1,r,r+1}.

=1
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Alabelling of H(C;) (i = 1,...,p) with >27_, d(C;) = r +1 can be extended in
a unique way to a labelling of H(V') with d(V') = r by setting = pA, y = pA
or x = p, y = u respectively. Similarly, a labelling of H(C;) (: = 1,...,p)
with 37, d(C;) = r can be extended in two ways to a labelling of H(V)
with d(V') = r by setting x = pA\, y = g and z = p, y = pA. Finally note
that the number of labellings of H(C;) (: = 1,...,p) with 37_, d(C;) = k €
{r—1,r +1,r} is precisely

DT R T

ietin=k

proving the formula. We remark that the argument remains valid for r = 0,
when the term
Yo Gy by,
Jit.tip=—1
is zero, reflecting the fact that the A-deficit of every C; is non-negative (Propo-
sition 4.5 (T2)). [ ]

Remark 4.10 Although A(V)is an infinite sequence, only finitely many of its
entries are non-zero. In other words the generating function A(V,z) = ¥ §;2°
of A(V) is a polynomial. From the recurrence of Proposition 4.9 we easily
derive the polynomial equations:

AV,z)=1 (5)
if Vis a leaf, and
1 ) P
=1 =1
if V' is a non-leaf, non-root vertex with children C4,... ,C,. By Proposition

4.8 the number of /G M-trees of shape T' is
P
[1A(C:,0) (7)
i=1

where (., ..., (), are the children of the root.

Example 4.11 Consider the plane tree of Figure 3. For each vertex V; (i =
1 ,7) we calculate the corresponding polynomial A(V;, z). First

PRI

AVi,z) = A(Va,z) = A(Va,z) =1,

15



V1 Vo

Fig. 3.

because they are the leaves. Now, V; has one child, Vi. Applying (6) we obtain

1

A(Vi,z)=—((1+ :z:)2 —1)=2+z.
x

Similarly,

A(Vs,z) = A(Ve,z) =2 + x.
The vertex V7 has two children, V; and V5, so

1
AVi,z)=—((2 + $)2(1 + .TL‘)2 -4 =12+ 13z + 622 + z°.
T
By Proposition 4.8 we can conclude that there are A(Vg,0)-A(V7,0) =2-12 =
24 G M-trees with this given shape.

5 IGM-trees and 3(0,1)-trees: enumeration

In this section we introduce the concept of 3(0,1)-trees, as rooted plane trees
with labelled vertices. Then we establish a recurrence formula, giving the
number of (0, 1)-trees over a given rooted plane tree (with no labels), and
establish connections between this recurrence relation and the one from the
last section. From here it then follows that the numbers of G M-trees and
B(0, 1)-trees over a given rooted plane tree are equal. Finally, we use this fact
to give a proof of Theorem 1.2.

Definition 5.1 A 3(0,1)-tree is a rooted plane tree with non-negative integer
labels I(V') on its vertices, satisfying the following conditions:

(B1) if V is a leaf then [(V) = 0;

(B2) if V' is an internal vertex, and if C,... ,C, are its children then [(V) <
HC)+UC) + ...+ 1(Cp)+1;

(B3) if V is the root then [(V) = 0.
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We note that this differs from the definition of a 3(0, 1)-tree given in [2] (and
the more general definition in [3]) where one requires that (V) = [(C}) +
[(Cy)+...4+1(C,) when V is the root with children C1,... ,C,. However, this
difference will not affect the number of 3(0, 1)-trees, as both give no freedom
of choice for the label of the root.

The following result was given in [2]. Proofs may be found in [6] and [7].

Proposition 5.2 The number t, of 3(0,1)-trees on n vertices is equal to the
number of rooted bicubic maps on n — 1 vertices.

From the enumeration of rooted bicubic maps given in [11] (see also [8] for
a combinatorial proof) we have {; = 1 and, for n > 1, ¢, = 3-2"7%. (2n —

N/(n + 1)l(n — 1)L,

Definition 5.3 Let T be a rooted plane tree. To each vertex V' we associate
a sequence

B(V) = (50,51,52, cen )7
where 3, is the number of different labellings of the subtree of T' rooted in V
which satisfy conditions (B1) and (B2) of Definition 5.1 (but not necessarily
condition (B3)), and in which V' is labelled by r.

Remark 5.4 If R is the root of 7', and if B(R) = (5o, 31, 52,...), then the
number of 3(0, 1)-trees with shape T is equal to .

Remark 5.5 As with A(V), we see that B(V) is an infinite sequence with
only finitely many non-zero entries.

In the following proposition we give a recurrence for computing the sequences
B(V) in an arbitrary rooted plane tree.

Proposition 5.6 Let T' be a rooted plane tree, let V' be any vertex in it, and
let B(V) = (Bo,b1,02,...). If V is a leaf, then

IfV is not a leaf, and if Cy, ... ,C, are ils children, with

B(C;) = (Bio, Bir, Bizy - - ),

then
/67" = Z /81]'152]'2 "'5}3]}7'

Jitetip2r—1

PrROOF: A leaf must be labelled by 0, hence the first assertion. For the
second, note that one is allowed to label V' by r if and only if the sum of its
children’s labels is at least r — 1. [ |
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Remark 5.7 The recurrence of Proposition 5.6 also gives relations between
the polynomials B(V,z) = Y 3;z". Indeed we have:

B(V,z)=1 (8)
if Vis a leaf, and
1 P P
B(V,z) = — (=" [[ B(Ci,2) = [I B(Ci, 1)) (9)
T — =1 =1
if V' is a non-leaf vertex with children C, ... ,C,. An easy consequence of (9)
is
P
[I B(C:, 1) = B(V,0). (10)

=1

Also, from the definition B(V,0) = . So if R is the root node and C4, ... ,C,
are the children of the root then the number of 3(0, 1)-trees of shape T is

B(R,0) = f[B(Ci,l). (11)

Example 5.8 Consider the plane tree shown in Figure 3. For each vertex V,
we calculate the corresponding polynomial B(V;, z). First

B(Vi,z) = B(Va,2) = B(Va,z) = 1.
because they are the leaves. The vertex Vj has but one child, Vi, giving:

Similarly,
B(Vs,z) = B(Vg,z) =1+ z.

Now, V; has two children, V; and Vs. From their polynomials we obtain:

(14 :1:)2:102 —1

z—1

B(Vz,x) = =4+ 4z + 322 + 25,

Finally, a similar calculation for Vg involving its children Vg and V7, gives:

444 24 2%)(1 294
B(Ve,o) = GFdet3r +o)(1+a)e = 24424242022 +122°+ 52t + 2.

z—1

We conclude that there are B(Vz,0) = 24 3(0,1)-trees with this given shape.

If we compare the equations of Remarks 4.10 and 5.7 we obtain:
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Proposition 5.9 Let T be a plane tree and let 'V be a non-root vertex of T.
Then the following polynomial equality holds:

AV, —1)= B(V,z)
PrROOF: We prove the proposition by induction. If V is a leaf then
AV,e—=1)=1= B(V,z)

Otherwise, if V has children C4, ... ,C, and if we assume that the proposition
holds for C,...,C),, then

AV —1) = - ! (2 f[A(CZ» 1) — f[ A(C,0)) (by (6))
= - i 1(:1;2 f[ B(Ci,z) — f[B(C’Z', 1)) (induction)
= B(V,z) (by (9))

as required, thus completing the proof.
|

Theorem 5.10 Let T be a rooted plane tree. The number of IGM -trees with
shape T is equal to the number of 3(0,1)-trees with shape T.

ProoF: Let R be the root of T and let C,...,C, be its children. Then
the number of IGM-trees with shape T is [Ti—; A(C,0), by Remark 4.10. On
the other hand, by Remark 5.7, the number of 3(0,1)-trees with shape 7' is

"1 B(C;,1). By Proposition 5.9 these are equal. [ |

PROOF OF THEOREM 1.2: First we observe that the number of /G M-words
of length 3n is equal to the number, ¢,, of 8(0,1)-trees on n vertices. This
follows from Theorem 5.10 by summation over all tree shapes, and the fact
that /G M-words and /G M-trees are in one-to-one correspondence. By Lemma
4.1 this number is also equal to the number of indecomposable permutations
of length n in M; so this number is ¢,,.

We complete the proof by following an argument similar to that used in [2]. Ev-
ery permutation o of M has a unique factorisation (as a word) 0 = 71y ... 7y,
with a < b whenever a € 7;,,b € 7,41. The subwords 7; are order isomorphic to
indecomposable permutations of M. Conversely, every sequence of indecom-
posable permutations of M determines a permutation of M in this way. It
follows from this that the generating function for the numbers z,, of permuta-
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tions of length n in the set M. including the empty permutation, is

> 1
Flz)f = ———
I-:Z:%) 1 - F(z)

where F(z) is the generating function for the (non-empty) indecomposable
permutations of M. However, Tutte [11] has proved that

> 822 4+ 122 — 1 + (1 — 8x)%/?
F = tpx” =
(:1;) 7; ‘ 32z
and our theorem now follows. [ ]
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