530 ARCH. MATH.

Some perinutation groups of degree p=64+1

By

M. D. ATRINSON

Abstract. Transitive permutation groups of degrees 43, 67, 79, 103 and 139 are
classified. ‘

In this note we consider insoluble transitive permutation groups of degree p =
6¢ -- 1 where p and ¢ are primes and summarise the computations whereby these
groups have been classified for some small values of ¢g. The result which allows
progress on this problem is due to McDonough [1]; he showed that if such a group
has a Sylow p-normaliser of order 3p then it is isomorphic either to PSL(3, 3) or
PSL(3, 5) (of degrees 13, 31 respectively). Using this theorem machine computations
along the lines of those done by Parker, Nikolai and Appel [3, 2] for degrees p =
2q -+ 1and p =49+ 1 give the following

Theorem. Every insoluble transitive permutation group of degree 43, 67, 79, 103, 139
contains the alternating group of that degree.

To describe the calculations leading to this result we let G denote an insoluble
transitive group of degree p == 6¢ + 1, p and ¢ prime, with ¢ > 5 and let P be
a Sylow p-subgroup of G. In trying to prove that G o~ A, or S, we can of course
assume that G < A4,. Because of this we have |N(P)| = kp where k divides
1(p — 1) = 3¢. However, Burnside’s transfer theorem ensures that k=1 and Me-
Donough’s theorem ensures that k==3; thus ¢ divides k. Moreover a theorem of [3]
guarantees that IV (P) contains a Sylow g-subgroup @ of G.

Hence G contains the metacyeclic (non-abelian) group P@ of order pgq and degree p.
All such metacyclic groups are isomorphic as permutation groups and so we may
take the set of symbols permuted by & to be the residues modulo p, P to be gen-
erated by an element

a: ar>o-+ 1modyp
and @ to be generated by an element

b: > r8q mod p

where 7 is a primitive root modulo p.
Again by Burnside’s transfer theorem there is an element ¢ € N (@) — C(@) and,
as ¢ & N (P), <{a,c) is insoluble. To prove that G = 4, it is clearly sufficient to
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prove that <{a,c) = Ap. A large part of what follows is concerned with showing
that ¢ may be assumed to satisfy several restrictive conditions.

Because N (Q)/C(Q) is cyclic of order dividing ¢—1, we may assume that ¢ has
order /¥ where £ is a prime dividing ¢—1 and we may also assume that ¢f € C(Q).
Then ¢~1bc = b® where s has order ¢ modulo g. The residue classes modulo ¢ which
have order ¢ are all powers of each other and therefore for a given ¢ we need con-
sider only one value s (because we can replace ¢ by an appropriate power).

Next, b is represented as a product of 6 g-cycles yq, 91, ..., 5 and one fixed
point 0. The element ¢ permutes the orbits of @ = <(b) and transforms each y; to
the s-th power of some y;. As a permutation of the 6 g-cycles ¢ has one of the fol-
lowing cycle structures:

() 18, (i) 1151, (iii) 1222, (iv) 32, (v) 1331, (vi) 2141
(vii) 1241, (vii) 23, (ix) 1421, (x) 112131, (xi) 61.

Of these possibilities (x) and (xi) are immediately excluded because ¢ would not
have order t. Case (ix) can also be excluded, for here ¢ = 2, ¢2 € (@), and since
¢? fixes each y; setwise it fixes it pointwise; thus ¢2=1 and ¢ consists of 3¢ — 2 trans-
positions and 5 fixed points, i.e. ¢ is an odd permutation. For similar reasons cases
(vii) and (viii) do not occur: ¢ would have cycle structure 1123¢ or 1329-144¢. Cases (i)
to (v) cannot be excluded on these grounds but at least it follows that ¢ has prime
order ¢. This leaves case (vi) where ¢4 =1. Here ¢2 has cycle structure 12¢+122¢ gnd
so ¢ ¢ N (P); thus ¢? is of type (iii) except that ¢ e C(Q).

Thus only cases (i) to (v) need be considered provided that in case (iii) we allow
the possibility that ¢ € C(Q). In case (ii) t =5, in case (iii) {=2 and in cases (iv) and
(v) t = 3. For a particular p not all of these cases may arise (for example when p = 103,
g¢=17 and only cases (i) and (iii) give possibilities for ¢ dividing g— 1).

To further reduce the possibilities that have to be considered for ¢ we consider the
element ge S, defined by

g: ar>ramodp.
Clearly g% = b and g—lag = a'. Since {a, ¢} 2= {a, g~lcg) once we have dealt with
one possibility for ¢ we need not consider possibilities which are conjugate under (g>
to the first possibility.

The permutation ¢ is determined uniquely by the number s and the image of
6 points, one from each cycle of . In case (i) it is most convenient to specify ¢ by s
and the 6 peints, one in each cycle of b, fixed by ¢. If we choose the notation so that
7é € y; then these 6 points may be denoted by

¢6u, 76v+1 76W+2 Tex+3= rby+d 6245

The fixed points of a suitable conjugate of ¢ under a power of g6 = b may then be
taken to include the point 1, i.e. in specifying ¢ we may take u = 0. Moreover,
if ¢ fixes

1, r6v+1  p6w+2 6243 rbyt4 6245

then the conjugate of ¢ under g-6v-1 has fixed points
1, r6@-0+1 p6(z-0)+2 p6(y~2)43,  pB(=0)+4  p6(-1-)+5

34*
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In this way the number of possibilities for ¢ with a fixed s can be reduced from ¢8
to about ¢5/6.

In cases (ii), (iii) and (v) transformation by ¢ allows us to assume that ¢ fixes the
cycle yo setwise and the point 1 within this cycle. In case (iv) the number of pos-
sibilities for ¢ as a permutation of v, ¥1, y2, ¥3, Y4, ¥5 may be reduced to just 10
and moreover for each of these 10 the image of the point 1 may be specified.

Subject to the above restrictions the possibilities for ¢ are generated in turn and
for each one the group {a, ¢} is examined. Sample permutations in this group are
formed and their cycle lengths calculated. These cycle lengths often imply that
{a, ¢) is the alternating group by virtue of results of Manning and Jordan (see [4]).
Manning’s results concern the primes which divide the group order, for example if
p = 67 no prime in the range 17 to 61 can divide the group order unless the group
is alternating; Jordan’s result is that the group is alternating if it contains a prime
cyele with more than two fixed points.

‘When performed for p = 43, 67, 79, 103, 139 these calculations required several
hours of machine time and all groups <a, ¢) were found to be alternating. The pro-
gram was also run with p = 31 whereupon it discovered the following generators
for PSL(5,2):

a=1(0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30),

¢ =(0) (1) (3) (5) (14) (26) (29) (2, 16) (4, 8) (6,17) (7, 28) (9, 20) (10, 18)
(11, 22) (12, 24) (13, 21) (15, 23) (19, 25) (27, 30).
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