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Data Structures

Figure: What permutations can a data structure generate (or sort)?

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1 2 3 4 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2 3 4 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1
2

3 4 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2 3 4 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2

3

4 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2

3
4

5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2

3

4 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2

3

4

5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2

3

4 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

1

2 34 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Generating a permutation

12 34 5

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

General question

Question

How many permutations can some given data structure generate?
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Donald Knuth

Albert, Atkinson, Linton Computing Permutations with Stacks and Deques



Background
Finite state machines

Upper bounds
Lower bounds

Conclusions and questions

Knuth: results

There is one “queue permutation” of every length

There are (2n
n

)
n + 1

“stack permutations” of length n

There are rn “restricted input deque permutations” of length
n where

∞∑
n=1

rnx
n =

1− x −
√

1− 6x + x2

2
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Knuth: questions

Exercise 2.2.1.13: “[M48] How many permutations of n
elements are obtainable with the use of a general deque?”

What about stacks in series? In parallel?
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Data Structures

Figure: Data Structures with unknown enumerations
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Growth rates

We can’t always do exact counting

Approximate the exact count of permutations of length n by
γn; γ is called the growth rate

Eg. For stacks (2n
n

)
n + 1

∼ 4n

n3/2

so growth rate 4.

The growth rate of a sequence (cn) is formally defined as

γ = lim sup
n→∞

n
√

cn
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The research question

Question

What is the growth rate for deques, two stacks in parallel, two
stacks in series?

It is known that, in all three cases, the growth rate is between 4
and 16.
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Regular sets: p(qq∗p)∗q∗

A

B

C

Start Finish

p

q

q
Finish p

Figure: Recognises strings of p’s and q’s beginning with p with no pp

A = 1; B = Ax + Cx ; C = Cx + Bx

B + C =
x

1− x − x2
= x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 · · ·
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The general algebraic method

Start from a FSM (or regular set of strings)

Mechanically produce the “generating function” A(x)

The form of A(x) is always a quotient of two polynomials
p(x) and q(x)

A(x) =
p(x)

q(x)

Either

Expand A(x) as a power series a0 + a1x + a2x
2 + · · · and find

an, the number of strings of length n, or
Find the growth rate of an by solving q(x) = 0

So counting is easy if we begin from a regular set.
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Upper bounds on growth rates – Stacks in series

I = InsertT = TransferD = Delete

Figure: Two stacks in series

IIITITDTDDTD produces 4231 from input 1234
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Upper bounds on growth rates – Stacks in parallel

I1 = Insert

I2 = Insert

D1 = Delete

D2 = Delete

Figure: Two stacks in parallel

I1I1I2D1I2I1D2I1D2D2D1D1 produces 24351 from input 12345
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Upper bounds on growth rates – Deques

I1 = Insert

I2 = Insert

D1 = Delete

D2 = Delete

Figure: Deque

I1I2I1D2I2I2I1D2D1D2D2D2D1 produces 256413
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Permutations as strings

Represent permutations by strings over a 3 or 4 letter
alphabet and count strings. This is an overcount since

1 Not every string represents a permutation, and
2 Many strings represent the same permutation

The first of these doesn’t seem to matter much for growth
rates. The second is much more serious.
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Rewriting rules

Definition

If L,R are strings then L→ R if any permutation which can be
generated by a string ULV is also generated by URV .

σλx

μ ρ

yσλ

μ ρ
x

y

Figure: TDIT → ITTD
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Getting upper bounds

Systematically collect as many rewriting rules as you can

Count strings of length n that have no LHS as a substring

This is a count of strings in a regular set!
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Results – Deque

Length Number of Rules Growth Upper Bound

8 51 8.4925
9 85 8.459

10 175 8.428
11 321 8.410
12 756 8.392
13 1480 8.380
14 3806 8.368
15 7734 8.361
16 21029 8.352
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Results – Parallel Stacks

Length Number of Rules Growth Upper Bound

8 33 8.4606
9 43 8.4474

10 109 8.4087
11 143 8.4031
12 466 8.379
13 615 8.376
14 2366 8.3597
15 3131 8.3578
16 13263 8.3461
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Results – Two Stacks in Series

Length Number of Rules Growth Upper Bound

8 23 14.201
9 35 14.048

10 71 13.826
11 106 13.747
12 215 13.623
13 368 13.552
14 737 13.477
15 1270 13.433
16 2825 13.374
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Lower bounds – via bounded capacities

Consider k-bounded versions of the three structures where the
system is constrained to contain at most k elements at a time.

The system can now be thought of as FSA with states that
correspond to the disposition of elements residing in the
stacks/deque.

It outputs rank-encoded permutations: e.g. 4163752 is
encoded as 4142321 – and the ranks will be at most k
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Bounded deque FSA

2
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4
1

2
3
4
1
5

Figure: The deque FSA when a symbol is added to the bottom
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Bounded deque FSA
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Figure: The deque FSA when a symbol is removed from the top
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Getting lower bounds

Compute the non-deterministic FSA for a k-bounded system

Compute the corresponding deterministic automaton

Compute the growth rate of the k-bounded system which will
be a lower bound for the growth rate of the unrestricted
system

Many tricks to contain the state explosion
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Results

k Growth Lower Bound

Serial stacks 9 8.156
Parallel stacks 18 7.535
Deques 21 7.890
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Bottom line for growth rate γ

1 Background and research question

2 Counting with finite state machines
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4 Lower bounds

5 Conclusions and questions

Two stacks in series: 8.156 ≤ γ ≤ 13.374

Two stacks in parallel: 7.535 ≤ γ ≤ 8.3461

Deque: 7.890 ≤ γ ≤ 8.352
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Open questions

What are the true growth rates?

Do deques and two parallel stacks have the same growth rate?

Why is two stacks in series more difficult?

For deques and two parallel stacks we have efficient
recognition algorithms; is the recognition problem for two
stacks in series NP-complete?

Can we get the exact enumerations for two parallel stacks?
For deques?
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