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Infinite permutations



Terminology Examples Atomic sets Main result

Pattern avoidance sets

I Sets X of permutations that avoid a fixed set of
permutation patterns

I Equivalent to a closure property
I τ ∈ X and σ � τ =⇒ σ ∈ X

I The basis of X is the (unique) minimal characterizing set of
avoided patterns that define X ; sometimes finite,
sometimes not

I The (ordinary) generating function of X gives the number
of permutations of each length

I To compute the number of permutations of each length we
have to work out structural properties of X
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Where closed sets come from

I An explicit set of permutations to avoid
I Permutations generated by stacks and other data

structures
I Token-passing networks [Atkinson et al., 1997]
I Ad hoc combinatorial constructions
I Subpermutations of some infinite bijection
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Infinite permutations



Terminology Examples Atomic sets Main result

Stack permutations

2,3,1,..

.

1,2,3,..

.

Characterized by avoiding 312

(2n
n )

n+1 permutations of length n

For a large number of variations see Miklos Bóna’s survey
[Bóna, 2003].
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Token passing networks

1,2,3,...2,3,1,...

,...

SourceDestination

All token passing sets are enumerated by rational generating
functions

This one cannot be defined by a finite number of restrictions
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Infinite permutations



Terminology Examples Atomic sets Main result

Token passing networks

1,2,3,...2,3,1,...

,...

SourceDestination

All token passing sets are enumerated by rational generating
functions

This one cannot be defined by a finite number of restrictions

Atkinson, Murphy and Ru škuc
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Ad hoc combinatorial constructions
I The set of all permutations with at most k inversions

I Definable by a finite number of restrictions
I Polynomial growth

I Skew-merged permutations (increasing merged with
decreasing)

I Defined by avoiding 2143 and 3412
I Enumerated by

1− 3x

(1− 2x)
√

1− 4x

I Permutations with at most k descents

I Finitely based
I Rational generating function

I Many other examples
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Infinite bijections

Define subsets of <

A = {1− 1/2i , 2− 1/2i | i = 1, 2, . . .}
B = {1, 2, . . .}

and let π : A −→ B be defined by

π(x) =

{
2i − 1 if x = 1− 1/2i

2i if x = 2− 1/2i

Graph

The set Sub(π) of (finite) subpermutations of π is a closed set
(in this case defined by the restrictions 321, 2143, 3142)
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A structure theory?

Can we devise a structure theory that says
sensible things about closed sets but does not
depend on how they are presented?

Atkinson, Murphy and Ru škuc
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Atomic closed sets

I If Y and Z are closed so is Y ∪ Z

I The closed set X is atomic if it cannot be expressed as

X = Y ∪ Z

for proper closed subsets Y,Z
I If we understand atomic sets all we need do is take unions

Atkinson, Murphy and Ru škuc
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The structure of atomic sets

Theorem
X is atomic if and only if there exist sets A, B ⊆ < and a
bijection π : A −→ B such that

X = Sub(π)

⇐=: Suppose X = Sub(π) but X = Y ∪ Z. Choose η ∈ Y \ Z
and ζ ∈ Z \ Y. Then η, ζ are represented in π as
subsequences. Their union represents a permutation θ ∈ X
containing both η and ζ. So θ ∈ Y =⇒ ζ ∈ Y etc.

Atkinson, Murphy and Ru škuc
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Natural closed sets

I If X = Sub(π) where π : A −→ B the properties of X
depend somewhat on the order types of A and B. Example

I Therefore consider the simplest case where the order type
of A and B is that of N.

I A closed set is natural if it has the form Sub(π) where
π : N −→ N is a bijection

Atkinson, Murphy and Ru škuc
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A supply of natural sets

I Many closed sets have the sum-complete property

σ, τ ∈ S =⇒ σ ⊕ τ ∈ S

Picture

I If S is closed and sum-complete and γ is any (finite)
permutation then Sub(γ)⊕ S is natural

I List the permutations of S as σ1, σ2, . . . and put

π = γ ⊕ σ1 ⊕ σ2 · · ·

Atkinson, Murphy and Ru škuc
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Main result

Theorem
If X is natural and finitely based then either

I X = Sub(γ)⊕ S where γ is finite and S is sum-complete
and finitely based, or

I π is periodic from some point on; i.e. there exist integers N
and p > 0 such that, for all n > N, π(n + p) = π(n) + p. In
this case π is determined by X uniquely. Periodic example

Finite basis is necessary

Atkinson, Murphy and Ru škuc
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How the proof begins. . .

I B the basis of X = Sub(π)

I Every permutation of B expressed as λ⊕ µ with µ
indecomposable

I Every such (non-empty) λ is represented somewhere in π
as subsequence s(λ)

I From some point on in π we are beyond all the s(λ)s (finite
basis!)

I From some further point on we only have values larger
than those occurring in the s(λ)s (no limit points!)

I From this point in π no subsequences isomorphic to a µ
sequence occur

Atkinson, Murphy and Ru škuc
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The graph of π

n

!(n)

All s(") are here No points here

No µ sequences here
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The division into cases

n

!(n)

The components of !

I All components from some point on are free of
µ-sequences; this gives Sub(γ)⊕ S

I Finitely many components and the final component
contains a µ-sequence; this gives π periodic
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Infinite permutations



Terminology Examples Atomic sets Main result

The division into cases

n

!(n)

The components of !

I All components from some point on are free of
µ-sequences; this gives Sub(γ)⊕ S

I Finitely many components and the final component
contains a µ-sequence; this gives π periodic

Atkinson, Murphy and Ru škuc
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Further discussion

I Theorem says that, for finitely based sets, “natural” and
“Sub(γ)⊕ ‘sum-complete’” are almost the same

I Only exceptions are when π is periodic
I What can we say about Sub(π) when π is periodic?
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Properties of Sub(π) for periodic π

I Decidable in linear time [Albert et al., 2003] whether
σ ∈ Sub(π)

I Basis of Sub(π) can be computed even if it is not finite
I Sub(π) can be enumerated algorithmically
I Generating function of Sub(π) is rational
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Not every periodic Sub(π) is finitely based

I If

π = 2 3 {5 1 7 8 4} {10 6 12 13 9} {15 11 17 18 14} . . .

then Sub(π) is not finitely based.

Atkinson, Murphy and Ru škuc
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Questions?
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The finite basis assumption is necessary

I Let

π = 3 2 5 1 [7, 8] 4 [10, 12] 6 [14, 17] 9 [19, 23] 13 [25, 30] 18 . . .

I π is not periodic and Sub(π) is not of the form “Sub(γ)⊕ S
where S is sum-complete”. Back to theorem
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This limit point has

implications for the

structure of Sub(!)
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The ⊕ operation

1243⊕ 3142 = 12437586

! =
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Periodic !
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