Pattern avoidance sets and infinite permutations

Mike Atkinson ${ }^{1}$ Max Murphy ${ }^{2}$ Nik Ruškuc ${ }^{2}$
${ }^{1}$ Department of Computer Science
University of Otago
${ }^{2}$ School of Mathematics and Statistics University of St Andrews

Permutation Patterns '04, Nanaimo, July 2004

Outline of talk

Review of terminology of closed sets

Examples of their origin

Atomic sets and a new view of closed sets

Main theorem and its proof

Pattern avoidance sets

- Sets \mathcal{X} of permutations that avoid a fixed set of permutation patterns

Pattern avoidance sets

- Sets \mathcal{X} of permutations that avoid a fixed set of permutation patterns
- Equivalent to a closure property
- $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$

Pattern avoidance sets

- Sets \mathcal{X} of permutations that avoid a fixed set of permutation patterns
- Equivalent to a closure property
- $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$
- The basis of \mathcal{X} is the (unique) minimal characterizing set of avoided patterns that define \mathcal{X}; sometimes finite, sometimes not

Pattern avoidance sets

- Sets \mathcal{X} of permutations that avoid a fixed set of permutation patterns
- Equivalent to a closure property
- $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$
- The basis of \mathcal{X} is the (unique) minimal characterizing set of avoided patterns that define \mathcal{X}; sometimes finite, sometimes not
- The (ordinary) generating function of \mathcal{X} gives the number of permutations of each length

Pattern avoidance sets

- Sets \mathcal{X} of permutations that avoid a fixed set of permutation patterns
- Equivalent to a closure property
- $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$
- The basis of \mathcal{X} is the (unique) minimal characterizing set of avoided patterns that define \mathcal{X}; sometimes finite, sometimes not
- The (ordinary) generating function of \mathcal{X} gives the number of permutations of each length
- To compute the number of permutations of each length we have to work out structural properties of \mathcal{X}

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Stack permutations

Atkinson, Murphy and Ruškuc
Infinite permutations

Stack permutations

Characterized by avoiding 312

Stack permutations

Characterized by avoiding 312
$\frac{\binom{2 n}{n}}{n+1}$ permutations of length n

Stack permutations

Characterized by avoiding 312
$\frac{\binom{2 n}{n}}{n+1}$ permutations of length n
For a large number of variations see Miklos Bóna's survey [Bóna, 2003].

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Token passing networks

Atkinson, Murphy and Ruškuc
Infinite permutations

Token passing networks

All token passing sets are enumerated by rational generating functions

Token passing networks

All token passing sets are enumerated by rational generating functions

This one cannot be defined by a finite number of restrictions

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
- Defined by avoiding 2143 and 3412

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
- Defined by avoiding 2143 and 3412
- Enumerated by

$$
\frac{1-3 x}{(1-2 x) \sqrt{1-4 x}}
$$

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
- Defined by avoiding 2143 and 3412
- Enumerated by

$$
\frac{1-3 x}{(1-2 x) \sqrt{1-4 x}}
$$

- Permutations with at most k descents

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
- Defined by avoiding 2143 and 3412
- Enumerated by

$$
\frac{1-3 x}{(1-2 x) \sqrt{1-4 x}}
$$

- Permutations with at most k descents
- Finitely based

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
- Defined by avoiding 2143 and 3412
- Enumerated by

$$
\frac{1-3 x}{(1-2 x) \sqrt{1-4 x}}
$$

- Permutations with at most k descents
- Finitely based
- Rational generating function

Ad hoc combinatorial constructions

- The set of all permutations with at most k inversions
- Definable by a finite number of restrictions
- Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
- Defined by avoiding 2143 and 3412
- Enumerated by

$$
\frac{1-3 x}{(1-2 x) \sqrt{1-4 x}}
$$

- Permutations with at most k descents
- Finitely based
- Rational generating function
- Many other examples

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Infinite bijections

Define subsets of \Re

$$
\begin{aligned}
A & =\left\{1-1 / 2^{i}, 2-1 / 2^{i} \mid i=1,2, \ldots\right\} \\
B & =\{1,2, \ldots\}
\end{aligned}
$$

Infinite bijections

Define subsets of \Re

$$
\begin{aligned}
A & =\left\{1-1 / 2^{i}, 2-1 / 2^{i} \mid i=1,2, \ldots\right\} \\
B & =\{1,2, \ldots\}
\end{aligned}
$$

and let $\pi: A \longrightarrow B$ be defined by

$$
\pi(x)= \begin{cases}2 i-1 & \text { if } x=1-1 / 2^{i} \\ 2 i & \text { if } x=2-1 / 2^{i}\end{cases}
$$

Infinite bijections

Define subsets of \Re

$$
\begin{aligned}
& A=\left\{1-1 / 2^{i}, 2-1 / 2^{i} \mid i=1,2, \ldots\right\} \\
& B=\{1,2, \ldots\}
\end{aligned}
$$

and let $\pi: A \longrightarrow B$ be defined by

$$
\pi(x)= \begin{cases}2 i-1 & \text { if } x=1-1 / 2^{i} \\ 2 i & \text { if } x=2-1 / 2^{i}\end{cases}
$$

The set $\operatorname{Sub}(\pi)$ of (finite) subpermutations of π is a closed set (in this case defined by the restrictions 321,2143, 3142)

A structure theory?

Can we devise a structure theory that says sensible things about closed sets but does not depend on how they are presented?

Atomic closed sets

- If \mathcal{Y} and \mathcal{Z} are closed so is $\mathcal{Y} \cup \mathcal{Z}$

Atkinson, Murphy and Ruškuc
Infinite permutations

Atomic closed sets

- If \mathcal{Y} and \mathcal{Z} are closed so is $\mathcal{Y} \cup \mathcal{Z}$
- The closed set \mathcal{X} is atomic if it cannot be expressed as

$$
\mathcal{X}=\mathcal{Y} \cup \mathcal{Z}
$$

for proper closed subsets \mathcal{Y}, \mathcal{Z}

Atomic closed sets

- If \mathcal{Y} and \mathcal{Z} are closed so is $\mathcal{Y} \cup \mathcal{Z}$
- The closed set \mathcal{X} is atomic if it cannot be expressed as

$$
\mathcal{X}=\mathcal{Y} \cup \mathcal{Z}
$$

for proper closed subsets \mathcal{Y}, \mathcal{Z}

- If we understand atomic sets all we need do is take unions

The structure of atomic sets

Theorem
\mathcal{X} is atomic if and only if there exist sets $A, B \subseteq \Re$ and a bijection $\pi: A \longrightarrow B$ such that

$$
\mathcal{X}=\operatorname{Sub}(\pi)
$$

The structure of atomic sets

Theorem

\mathcal{X} is atomic if and only if there exist sets $A, B \subseteq \Re$ and a bijection $\pi: A \longrightarrow B$ such that

$$
\mathcal{X}=\operatorname{Sub}(\pi)
$$

\Longleftarrow : Suppose $\mathcal{X}=\operatorname{Sub}(\pi)$ but $\mathcal{X}=\mathcal{Y} \cup \mathcal{Z}$. Choose $\eta \in \mathcal{Y} \backslash \mathcal{Z}$ and $\zeta \in \mathcal{Z} \backslash \mathcal{Y}$. Then η, ζ are represented in π as subsequences. Their union represents a permutation $\theta \in \mathcal{X}$ containing both η and ζ. So $\theta \in \mathcal{Y} \Longrightarrow \zeta \in \mathcal{Y}$ etc.

Natural closed sets

- If $\mathcal{X}=\operatorname{Sub}(\pi)$ where $\pi: A \longrightarrow B$ the properties of \mathcal{X} depend somewhat on the order types of A and B.

Natural closed sets

- If $\mathcal{X}=\operatorname{Sub}(\pi)$ where $\pi: A \longrightarrow B$ the properties of \mathcal{X} depend somewhat on the order types of A and B.
- Therefore consider the simplest case where the order type of A and B is that of \mathbb{N}.

Natural closed sets

- If $\mathcal{X}=\operatorname{Sub}(\pi)$ where $\pi: A \longrightarrow B$ the properties of \mathcal{X} depend somewhat on the order types of A and B.
- Therefore consider the simplest case where the order type of A and B is that of \mathbb{N}.
- A closed set is natural if it has the form $\operatorname{Sub}(\pi)$ where $\pi: \mathbb{N} \longrightarrow \mathbb{N}$ is a bijection

A supply of natural sets

- Many closed sets have the sum-complete property

$$
\sigma, \tau \in \mathcal{S} \Longrightarrow \sigma \oplus \tau \in \mathcal{S}
$$

A supply of natural sets

- Many closed sets have the sum-complete property

$$
\sigma, \tau \in \mathcal{S} \Longrightarrow \sigma \oplus \tau \in \mathcal{S}
$$

- If \mathcal{S} is closed and sum-complete and γ is any (finite) permutation then $\operatorname{Sub}(\gamma) \oplus \mathcal{S}$ is natural

A supply of natural sets

- Many closed sets have the sum-complete property

$$
\sigma, \tau \in \mathcal{S} \Longrightarrow \sigma \oplus \tau \in \mathcal{S}
$$

- If \mathcal{S} is closed and sum-complete and γ is any (finite) permutation then $\operatorname{Sub}(\gamma) \oplus \mathcal{S}$ is natural
- List the permutations of \mathcal{S} as $\sigma_{1}, \sigma_{2}, \ldots$ and put

$$
\pi=\gamma \oplus \sigma_{1} \oplus \sigma_{2} \cdots
$$

Main result

Theorem
If \mathcal{X} is natural and finitely based then either

- $\mathcal{X}=\operatorname{Sub}(\gamma) \oplus \mathcal{S}$ where γ is finite and \mathcal{S} is sum-complete and finitely based, or
- π is periodic from some point on; i.e. there exist integers N and $p>0$ such that, for all $n>N, \pi(n+p)=\pi(n)+p$. In this case π is determined by \mathcal{X} uniquely.

How the proof begins...

- B the basis of $\mathcal{X}=\operatorname{Sub}(\pi)$

Atkinson, Murphy and Ruškuc
Infinite permutations

How the proof begins...

- B the basis of $\mathcal{X}=\operatorname{Sub}(\pi)$
- Every permutation of B expressed as $\lambda \oplus \mu$ with μ indecomposable

How the proof begins...

- B the basis of $\mathcal{X}=\operatorname{Sub}(\pi)$
- Every permutation of B expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence $s(\lambda)$

How the proof begins...

- B the basis of $\mathcal{X}=\operatorname{Sub}(\pi)$
- Every permutation of B expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence $s(\lambda)$
- From some point on in π we are beyond all the $s(\lambda) s$ (finite basis!)

How the proof begins...

- B the basis of $\mathcal{X}=\operatorname{Sub}(\pi)$
- Every permutation of B expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence $s(\lambda)$
- From some point on in π we are beyond all the $s(\lambda) s$ (finite basis!)
- From some further point on we only have values larger than those occurring in the $s(\lambda) s$ (no limit points!)

How the proof begins. . .

- B the basis of $\mathcal{X}=\operatorname{Sub}(\pi)$
- Every permutation of B expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence $s(\lambda)$
- From some point on in π we are beyond all the $s(\lambda) s$ (finite basis!)
- From some further point on we only have values larger than those occurring in the $s(\lambda) s$ (no limit points!)
- From this point in π no subsequences isomorphic to a μ sequence occur

The graph of π

Atkinson, Murphy and Ruškuc

The division into cases

Atkinson, Murphy and Ruškuc
Infinite permutations

The division into cases

- All components from some point on are free of μ-sequences; this gives $\operatorname{Sub}(\gamma) \oplus \mathcal{S}$

The division into cases

- All components from some point on are free of μ-sequences; this gives $\operatorname{Sub}(\gamma) \oplus \mathcal{S}$
- Finitely many components and the final component contains a μ-sequence; this gives π periodic

Further discussion

- Theorem says that, for finitely based sets, "natural" and "Sub $(\gamma) \oplus$ 'sum-complete'" are almost the same

Further discussion

- Theorem says that, for finitely based sets, "natural" and "Sub $(\gamma) \oplus$ 'sum-complete'" are almost the same
- Only exceptions are when π is periodic

Further discussion

- Theorem says that, for finitely based sets, "natural" and "Sub $(\gamma) \oplus$ 'sum-complete'" are almost the same
- Only exceptions are when π is periodic
- What can we say about $\operatorname{Sub}(\pi)$ when π is periodic?

Properties of $\operatorname{Sub}(\pi)$ for periodic π

- Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$

Properties of $\operatorname{Sub}(\pi)$ for periodic π

- Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$
- Basis of $\operatorname{Sub}(\pi)$ can be computed even if it is not finite

Properties of $\operatorname{Sub}(\pi)$ for periodic π

- Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$
- Basis of $\operatorname{Sub}(\pi)$ can be computed even if it is not finite
- $\operatorname{Sub}(\pi)$ can be enumerated algorithmically

Properties of $\operatorname{Sub}(\pi)$ for periodic π

- Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$
- Basis of $\operatorname{Sub}(\pi)$ can be computed even if it is not finite
- $\operatorname{Sub}(\pi)$ can be enumerated algorithmically
- Generating function of $\operatorname{Sub}(\pi)$ is rational

Not every periodic $\operatorname{Sub}(\pi)$ is finitely based

- If

$$
\pi=23\{51784\}\{10612139\}\{1511171814\} \ldots
$$

then $\operatorname{Sub}(\pi)$ is not finitely based.

Questions?

Atkinson, Murphy and Ruškuc
Infinite permutations

References

(M. H. Albert, M. D. Atkinson, N. Ruškuc Regular closed sets of permutations Theoretical Computer Science 306 (2003), 85-100.
R. D. Atkinson, D. H. Tulley, M. J. Livesey

Permutations generated by token passing in graphs
Theoretical Computer Science 178 (1997), 103-118.
圊 M. Bóna
A Survey of Stack-Sorting Disciplines
Electronic J. Combin. 9(2) (2003), Paper A1.

The finite basis assumption is necessary

- Let

$$
\pi=3251[7,8] 4[10,12] 6[14,17] 9[19,23] 13[25,30] 18 \ldots
$$

The finite basis assumption is necessary

- Let

$$
\pi=3251[7,8] 4[10,12] 6[14,17] 9[19,23] 13[25,30] 18 \ldots
$$

The finite basis assumption is necessary

- Let

$$
\pi=3251[7,8] 4[10,12] 6[14,17] 9[19,23] 13[25,30] 18 \ldots
$$

- π is not periodic and $\operatorname{Sub}(\pi)$ is not of the form ${ }^{\operatorname{~} \operatorname{Sub}(\gamma) \oplus \mathcal{S}}$ where \mathcal{S} is sum-complete".

Atkinson, Murphy and Ruškuc
Infinite permutations

Atkinson, Murphy and Ruškuc

The \oplus operation

$1243 \oplus 3142=12437586$

Atkinson, Murphy and Ruškuc
Infinite permutations

Periodic π

Atkinson, Murphy and Ruškuc
Infinite permutations

