Pattern avoidance sets and infinite permutations

Mike Atkinson¹ Max Murphy² Nik Ruškuc²

¹Department of Computer Science University of Otago

²School of Mathematics and Statistics University of St Andrews

Permutation Patterns '04, Nanaimo, July 2004

Atkinson, Murphy and Ruškuc

Infinite permutations

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Outline of talk

Review of terminology of closed sets

Examples of their origin

Atomic sets and a new view of closed sets

Main theorem and its proof

Atkinson, Murphy and Ruškuc

Infinite permutations

もちゃく 日本 ふかく ふかく うちゃく

Terminology	Examples	Atomic sets	Main result

 Sets X of permutations that avoid a fixed set of permutation patterns

Terminology	Examples	Atomic sets	Main result

- Sets X of permutations that avoid a fixed set of permutation patterns
- Equivalent to a *closure* property
 - $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$

- Sets X of permutations that avoid a fixed set of permutation patterns
- Equivalent to a *closure* property
 - $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$
- The basis of X is the (unique) minimal characterizing set of avoided patterns that define X; sometimes finite, sometimes not

- Sets X of permutations that avoid a fixed set of permutation patterns
- Equivalent to a *closure* property
 - $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$
- The basis of X is the (unique) minimal characterizing set of avoided patterns that define X; sometimes finite, sometimes not
- The (ordinary) generating function of X gives the number of permutations of each length

Atkinson, Murphy and Ruškuc

- Sets X of permutations that avoid a fixed set of permutation patterns
- Equivalent to a *closure* property
 - $\tau \in \mathcal{X}$ and $\sigma \preceq \tau \Longrightarrow \sigma \in \mathcal{X}$
- The basis of X is the (unique) minimal characterizing set of avoided patterns that define X; sometimes finite, sometimes not
- The (ordinary) generating function of X gives the number of permutations of each length
- To compute the number of permutations of each length we have to work out structural properties of X

Atkinson, Murphy and Ruškuc

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Atkinson, Murphy and Ruškuc

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Atkinson, Murphy and Ruškuc

Stack permutations

Atkinson, Murphy and Ruškuc

Infinite permutations

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Stack permutations

Characterized by avoiding 312

Atkinson, Murphy and Ruškuc

Infinite permutations

もちゃく 白下 ふかく ふかく うちゃく ロット

Atomic sets

Stack permutations

Characterized by avoiding 312

```
\frac{\binom{2n}{n}}{n+1} permutations of length n
```

Atkinson, Murphy and Ruškuc

Infinite permutations

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

Atomic sets

Stack permutations

Characterized by avoiding 312

 $\frac{\binom{2n}{n}}{n+1}$ permutations of length *n*

For a large number of variations see Miklos Bóna's survey [Bóna, 2003].

Atkinson, Murphy and Ruškuc

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Atkinson, Murphy and Ruškuc

Terminology	Examples	Atomic sets	Main result

Token passing networks

Atkinson, Murphy and Ruškuc

Infinite permutations

◆□▶ ◆□▶ ◆三▶ ▲三▶ ◆□▶ ◆□▶

Token passing networks

All token passing sets are enumerated by rational generating functions

Atkinson, Murphy and Ruškuc

Token passing networks

All token passing sets are enumerated by rational generating functions

This one cannot be defined by a finite number of restrictions

Atkinson, Murphy and Ruškuc

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Atkinson, Murphy and Ruškuc

The set of all permutations with at most k inversions

Atkinson, Murphy and Ruškuc

Infinite permutations

ふちゃ きぼう ふかく きょうせい

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions

Atkinson, Murphy and Ruškuc

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions
 - Polynomial growth

Atkinson, Murphy and Ruškuc

- The set of all permutations with at most *k* inversions
 - Definable by a finite number of restrictions
 - Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions
 - Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
 - Defined by avoiding 2143 and 3412

Atkinson, Murphy and Ruškuc

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions
 - Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
 - Defined by avoiding 2143 and 3412
 - Enumerated by

$$\frac{1-3x}{(1-2x)\sqrt{1-4x}}$$

Atkinson, Murphy and Ruškuc

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions
 - Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
 - Defined by avoiding 2143 and 3412
 - Enumerated by

$$\frac{1-3x}{(1-2x)\sqrt{1-4x}}$$

Permutations with at most k descents

Atkinson, Murphy and Ruškuc

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions
 - Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
 - Defined by avoiding 2143 and 3412
 - Enumerated by

$$\frac{1-3x}{(1-2x)\sqrt{1-4x}}$$

- Permutations with at most k descents
 - Finitely based

Atkinson, Murphy and Ruškuc

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions
 - Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
 - Defined by avoiding 2143 and 3412
 - Enumerated by

$$\frac{1-3x}{(1-2x)\sqrt{1-4x}}$$

- Permutations with at most k descents
 - Finitely based
 - Rational generating function

Atkinson, Murphy and Ruškuc

- The set of all permutations with at most k inversions
 - Definable by a finite number of restrictions
 - Polynomial growth
- Skew-merged permutations (increasing merged with decreasing)
 - Defined by avoiding 2143 and 3412
 - Enumerated by

$$\frac{1-3x}{(1-2x)\sqrt{1-4x}}$$

- Permutations with at most k descents
 - Finitely based
 - Rational generating function
- Many other examples

Where closed sets come from

- An explicit set of permutations to avoid
- Permutations generated by stacks and other data structures
- Token-passing networks [Atkinson et al., 1997]
- Ad hoc combinatorial constructions
- Subpermutations of some infinite bijection

Atkinson, Murphy and Ruškuc

Terminology	Examples	Atomic sets	Main result

Infinite bijections

Define subsets of \Re

$$A = \{1 - 1/2^{i}, 2 - 1/2^{i} \mid i = 1, 2, ...\}$$

$$B = \{1, 2, ...\}$$

Atkinson, Murphy and Ruškuc

Infinite permutations

◇□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

Terminology	Examples	Atomic sets	Main result

Infinite bijections

Define subsets of \Re

$$A = \{1 - 1/2^{i}, 2 - 1/2^{i} \mid i = 1, 2, ...\}$$
$$B = \{1, 2, ...\}$$

and let $\pi: A \longrightarrow B$ be defined by

$$\pi(\mathbf{x}) = \begin{cases} 2i - 1 & \text{if } \mathbf{x} = 1 - 1/2^i \\ 2i & \text{if } \mathbf{x} = 2 - 1/2^i \end{cases}$$

		 1.61	

Atkinson, Murphy and Ruškuc

Infinite permutations

◆□▶ < @ ▶ < E ▶ < E ▶ < @ ▶ < □ ▶</p>

Infinite bijections

Define subsets of \Re

$$A = \{1 - 1/2^{i}, 2 - 1/2^{i} \mid i = 1, 2, ...\}$$
$$B = \{1, 2, ...\}$$

and let $\pi: A \longrightarrow B$ be defined by

$$\pi(x) = \begin{cases} 2i - 1 & \text{if } x = 1 - 1/2^i \\ 2i & \text{if } x = 2 - 1/2^i \end{cases}$$

Graph

The set $Sub(\pi)$ of (finite) subpermutations of π is a closed set (in this case defined by the restrictions 321, 2143, 3142)

Atkinson, Murphy and Ruškuc

Atomic sets

A structure theory?

Can we devise a structure theory that says sensible things about closed sets but does not depend on how they are presented?

Atkinson, Murphy and Ruškuc

Atomic closed sets

 $\blacktriangleright \ \, \text{If } \mathcal{Y} \text{ and } \mathcal{Z} \text{ are closed so is } \mathcal{Y} \cup \mathcal{Z}$

Atkinson, Murphy and Ruškuc

Atomic closed sets

- If \mathcal{Y} and \mathcal{Z} are closed so is $\mathcal{Y} \cup \mathcal{Z}$
- ► The closed set X is atomic if it cannot be expressed as

 $\mathcal{X}=\mathcal{Y}\cup\mathcal{Z}$

for proper closed subsets \mathcal{Y}, \mathcal{Z}

Atkinson, Murphy and Ruškuc

Atomic closed sets

- If \mathcal{Y} and \mathcal{Z} are closed so is $\mathcal{Y} \cup \mathcal{Z}$
- ► The closed set X is *atomic* if it cannot be expressed as

$$\mathcal{X}=\mathcal{Y}\cup\mathcal{Z}$$

for proper closed subsets \mathcal{Y}, \mathcal{Z}

If we understand atomic sets all we need do is take unions

Atkinson, Murphy and Ruškuc
The structure of atomic sets

Theorem \mathcal{X} is atomic if and only if there exist sets $A, B \subseteq \Re$ and a bijection $\pi : A \longrightarrow B$ such that

 $\mathcal{X} = \operatorname{Sub}(\pi)$

Atkinson, Murphy and Ruškuc

Infinite permutations

もちゃく 白下 ふかく ふかく うちゃく ロット

The structure of atomic sets

Theorem \mathcal{X} is atomic if and only if there exist sets $A, B \subseteq \Re$ and a bijection $\pi : A \longrightarrow B$ such that

 $\mathcal{X} = \operatorname{Sub}(\pi)$

⇐:: Suppose $\mathcal{X} = Sub(\pi)$ but $\mathcal{X} = \mathcal{Y} \cup \mathcal{Z}$. Choose $\eta \in \mathcal{Y} \setminus \mathcal{Z}$ and $\zeta \in \mathcal{Z} \setminus \mathcal{Y}$. Then η, ζ are represented in π as subsequences. Their union represents a permutation $\theta \in \mathcal{X}$ containing both η and ζ . So $\theta \in \mathcal{Y} \Longrightarrow \zeta \in \mathcal{Y}$ etc.

Atkinson, Murphy and Ruškuc

Natural closed sets

If X = Sub(π) where π : A → B the properties of X depend somewhat on the order types of A and B.
Example

Atkinson, Murphy and Ruškuc

Infinite permutations

ふちん 川川 ふかく 山下 ふぼう ふしう

Natural closed sets

- If X = Sub(π) where π : A → B the properties of X depend somewhat on the order types of A and B.
 Example
- ► Therefore consider the simplest case where the order type of A and B is that of N.

Atkinson, Murphy and Ruškuc

Natural closed sets

- If X = Sub(π) where π : A → B the properties of X depend somewhat on the order types of A and B.
 Example
- ► Therefore consider the simplest case where the order type of A and B is that of N.
- A closed set is *natural* if it has the form Sub(π) where π : ℕ → ℕ is a bijection

Atkinson, Murphy and Ruškuc

A supply of natural sets

Many closed sets have the sum-complete property

$$\sigma, \tau \in \mathcal{S} \Longrightarrow \sigma \oplus \tau \in \mathcal{S}$$

Picture

Atkinson, Murphy and Ruškuc

Infinite permutations

もちゃく 日本 ふかく ふかく うちゃ

A supply of natural sets

Many closed sets have the sum-complete property

$$\sigma, \tau \in \mathcal{S} \Longrightarrow \sigma \oplus \tau \in \mathcal{S}$$

Picture

If S is closed and sum-complete and γ is any (finite) permutation then Sub(γ) ⊕ S is natural

Atkinson, Murphy and Ruškuc

A supply of natural sets

Many closed sets have the sum-complete property

$$\sigma, \tau \in \mathcal{S} \Longrightarrow \sigma \oplus \tau \in \mathcal{S}$$

Picture

- If S is closed and sum-complete and γ is any (finite) permutation then Sub(γ) ⊕ S is natural
 - List the permutations of S as $\sigma_1, \sigma_2, \ldots$ and put

$$\pi = \gamma \oplus \sigma_1 \oplus \sigma_2 \cdots$$

Atkinson, Murphy and Ruškuc

Main result

Theorem

If \mathcal{X} is natural and finitely based then either

- X = Sub(γ) ⊕ S where γ is finite and S is sum-complete and finitely based, or
- ▶ π is periodic from some point on; i.e. there exist integers N and p > 0 such that, for all n > N, $\pi(n + p) = \pi(n) + p$. In this case π is determined by \mathcal{X} uniquely.

Finite basis is necessary

Atkinson, Murphy and Ruškuc

Atomic sets

How the proof begins...

• *B* the basis of $\mathcal{X} = \operatorname{Sub}(\pi)$

Atkinson, Murphy and Ruškuc

- *B* the basis of $\mathcal{X} = \operatorname{Sub}(\pi)$
- Every permutation of *B* expressed as $\lambda \oplus \mu$ with μ indecomposable

- *B* the basis of $\mathcal{X} = \operatorname{Sub}(\pi)$
- Every permutation of *B* expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence s(λ)

- *B* the basis of $\mathcal{X} = \operatorname{Sub}(\pi)$
- Every permutation of *B* expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence s(λ)
- From some point on in π we are beyond all the s(λ)s (finite basis!)

- *B* the basis of $\mathcal{X} = \operatorname{Sub}(\pi)$
- Every permutation of *B* expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence s(λ)
- From some point on in π we are beyond all the s(λ)s (finite basis!)
- From some further point on we only have values larger than those occurring in the s(λ)s (no limit points!)

- *B* the basis of $\mathcal{X} = \operatorname{Sub}(\pi)$
- Every permutation of *B* expressed as $\lambda \oplus \mu$ with μ indecomposable
- Every such (non-empty) λ is represented somewhere in π as subsequence s(λ)
- From some point on in π we are beyond all the s(λ)s (finite basis!)
- From some further point on we only have values larger than those occurring in the s(λ)s (no limit points!)
- From this point in π no subsequences isomorphic to a μ sequence occur

Atkinson, Murphy and Ruškuc

The graph of π

Atkinson, Murphy and Ruškuc

Infinite permutations

<ロト < 団 > < 三 > < 三 > < 回 > < 三 > < 回 > < □ > <</p>

The division into cases

Atkinson, Murphy and Ruškuc

Infinite permutations

もちゃく 日本 ふかく ふかく うちゃ

The division into cases

 All components from some point on are free of μ-sequences; this gives Sub(γ) ⊕ S

Atkinson, Murphy and Ruškuc

The division into cases

- All components from some point on are free of μ-sequences; this gives Sub(γ) ⊕ S
- Finitely many components and the final component contains a μ-sequence; this gives π periodic

Atkinson, Murphy and Ruškuc

Further discussion

► Theorem says that, for finitely based sets, "natural" and "Sub(γ) ⊕ 'sum-complete'" are almost the same

Atkinson, Murphy and Ruškuc

Infinite permutations

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Further discussion

- ► Theorem says that, for finitely based sets, "natural" and "Sub(γ) ⊕ 'sum-complete'" are almost the same
- Only exceptions are when π is periodic

Atkinson, Murphy and Ruškuc

Further discussion

- ► Theorem says that, for finitely based sets, "natural" and "Sub(γ) ⊕ 'sum-complete'" are almost the same
- Only exceptions are when π is periodic
- What can we say about $Sub(\pi)$ when π is periodic?

Atkinson, Murphy and Ruškuc

• Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$

Atkinson, Murphy and Ruškuc

Infinite permutations

シック・ 二回・ ・ ヨ ・ ・ 日 ・ シック

- Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$
- Basis of $Sub(\pi)$ can be computed even if it is not finite

Atkinson, Murphy and Ruškuc

- Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$
- Basis of $Sub(\pi)$ can be computed even if it is not finite
- Sub (π) can be enumerated algorithmically

Atkinson, Murphy and Ruškuc

- Decidable in linear time [Albert et al., 2003] whether $\sigma \in \operatorname{Sub}(\pi)$
- Basis of $Sub(\pi)$ can be computed even if it is not finite
- Sub(π) can be enumerated algorithmically
- Generating function of Sub(π) is rational

Not every periodic $Sub(\pi)$ is finitely based

► If

 $\pi = 23 \{51784\} \{10612139\} \{1511171814\} \dots$

then $Sub(\pi)$ is not finitely based.

Atkinson, Murphy and Ruškuc

Infinite permutations

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Questions?

Atkinson, Murphy and Ruškuc

References

- M. H. Albert, M. D. Atkinson, N. Ruškuc *Regular closed sets of permutations* Theoretical Computer Science 306 (2003), 85–100.
- M. D. Atkinson, D. H. Tulley, M. J. Livesey Permutations generated by token passing in graphs Theoretical Computer Science 178 (1997), 103–118.

🔒 M. Bóna

A Survey of Stack-Sorting Disciplines Electronic J. Combin. 9(2) (2003), Paper A1.

Atkinson, Murphy and Ruškuc

The finite basis assumption is necessary

Let

 $\pi =$ 3 2 5 1 [7,8] 4 [10, 12] 6 [14, 17] 9 [19, 23] 13 [25, 30] 18 . . .

Atkinson, Murphy and Ruškuc

Infinite permutations

·▲□▶ ▲圖▶ ▲들▶ ▲들▶ ▲]= '이오이

The finite basis assumption is necessary

Let

 $\pi =$ 3 2 5 1 [7,8] 4 [10, 12] 6 [14, 17] 9 [19, 23] 13 [25, 30] 18 . . .

Atkinson, Murphy and Ruškuc

Infinite permutations

◆□ ▶ ◆□ ▶ ▲ = ▶ ▲ = ▶ ▲ □ ▶ ● < □ ▶</p>

The finite basis assumption is necessary

Let

 $\pi =$ 3 2 5 1 [7,8] 4 [10, 12] 6 [14, 17] 9 [19, 23] 13 [25, 30] 18 . . .

► π is not periodic and $Sub(\pi)$ is not of the form " $Sub(\gamma) \oplus S$ where S is sum-complete".

Atkinson, Murphy and Ruškuc

Back

Atkinson, Murphy and Ruškuc

I Back

Atkinson, Murphy and Ruškuc

Infinite permutations

◇□▷ 《母▷ 《로▷ 《토▷ 종[티 �)��

The \oplus operation

 $1243 \oplus 3142 = 12437586$

Atkinson, Murphy and Ruškuc

Infinite permutations

▲□▶ ▲圖▶ ▲ 差▶ ▲ 差▶ 差| = 少えの

