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Decisions, decisions
Count, count, count

Proofs and conclusion

Terminology

Subpermutation: 3142 is a subpermutation of 5624713

Pattern class: set of permutations closed under taking
subpermutations

Every pattern class X is defined by a minimal forbidden set B
(its basis) which may or may not be finite.

Write X = Av(B) (because Av stands for “avoids”)

Write Xn for the permutations of X of length n

Generating function of X

f (u) =
∞∑

n=0

|Xn|un
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History – I

Theorem (Erdős-Szekeres, 1935)

A pattern class is finite if and only if its basis contains an
increasing permutation and a decreasing permutation.

“Av(12 · · · r , s · · · 21) is finite.”
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History – II

Theorem (Marcus-Tardős, 2004)

If a pattern class X does not contain every permutation then, for
some constant c, and all n

|Xn| ≤ cn

“Av(B) is exponentially bounded if B is non-empty.”
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History – III

Theorem (Kaiser-Klazar, 2003)

If a pattern class X has

|Xn| < Fibn for some n

then |Xn| is a polynomial for all sufficiently large n

“If the growth rate of a class is less than τn (τ = 1+
√

5
2 ) the class

has polynomial growth.”
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Landscape of classes by enumerative properties

 

Colour key 

Polynomial 

Rational 

Algebraic 

P-recursive 
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The land of polynomial growth

All polynomial growth classes have a finite basis and are
partially well-ordered

Kaiser-Klazar: Polynomial growth functions have the form

M∑
i ,j=0

aij

(
n − i

j

)
where M, aij are integers.

Huczynska-Vatter:

Reproved KK’s results and characterised polynomial growth
classes in terms of “grid classes” of matchings.
It is decidable from the basis B whether Av(B) has polynomial
growth
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The decision problem - I

Theorem (H-V, and implicit in K-K)

Av(B) has polynomial growth if and only if it does not contain
arbitrary long permutations of any of the forms

1 21436587 · · · ,
2 its reverse,

3 a1b1a2b2 · · · with {a1, a2. . . .} < {b1, b2. . . .}
4 its inverse
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The decision problem - II

Theorem (Different approach based on Ramsey theory)

Av(B) has polynomial growth if and only if B contains a
permutation of each of the following shapes

 

or 

or 

1. 2. 3. 4. 

5. 6. 7. 8. 

9. 10. 
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The decision problem - III

Corollary (of last theorem)

If |B| = 2 then Av(B) has (non-zero) polynomial growth if and
only if (to within symmetry) the permutations of B look like

 
r 

p 

q 
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The decision problem - IV

Corollary (of last theorem)

Let Av(α, β, γ) have polynomial growth. Then, up to symmetry
and re-ordering α, β, γ, we have one of seven cases each pinning
down the forms of α, β, γ (see abstract).

For four or more restrictions the situation becomes too complicated
to classify all the cases — and not particularly interesting to do so!
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Enumeration with two restrictions - I

Theorem

If α, β have the form

 
r 

p 

q 

then Av(α, β) is enumerated by a polynomial of degree d where

(r−1)(p+q)−1 ≤ d ≤
{

(r − 1)2(p + q)− r if p > 0 and q > 0,
(r − 1)2(p + q)− 1 if p = 0 or q = 0.
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Enumeration with two restrictions - II

Theorem

If α, β have the form

 
r 

 

p=0, q=1 

then Av(α, β) is enumerated by a polynomial of degree 2r − 3 and
leading coefficient cr−3 (Catalan number)
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Enumeration with two restrictions - III

Theorem

If α, β have the form

 
r=3 

p 

q 

then Av(α, β) is enumerated by a polynomial of degree
2p + 2q + 1 (if p, q > 0) or 2p + 2q (p = 0 or q = 0)
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A hint at the enumeration proofs

Lower bounds — explicit exhibition of enough permutations in
the class

Upper bounds — several applications of Erdős-Szekeres
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Irreducible permutations

Definition

A permutation is irreducible if it has no segment of the form
i + 1, i .

Every permutation has a reduction to a unique irreducible
permutation (e.g. 659871432 reduces to 3412)

The number of permutations of length n that reduce to a
fixed irreducible permutation of length m is(

n − 1

m − 1

)
= O(nm−1)

If the irreducibles in a pattern class have maximal length m
the class has polynomial growth of degree at most m − 1 and
possibly less.
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Lower bounds

Produce irreducible permutations and large “expansible”
subsequences

 

Expansible point 

Non-expansible point 

 

p+q-1 

p+q-1 

= 
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Upper bounds via longest decreasing subsequence

An irreducible permutation in Av(α, β) and marked longest
decreasing subsequence

 

p 

q 
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An irreducible permutation in Av(α, β) and marked longest
decreasing subsequence - a bounded number of boxes
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Upper bounds via longest decreasing subsequence

An irreducible permutation in Av(α, β) and marked longest
decreasing subsequence - a bounded number of separating boxes

 

p 

q 
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Beyond Erdős-Szekeres

1

 

FINITE

2

 

POLYNOMIAL

3

 

RATIONAL; g.r. < 3 + 2
√

2

4

 

????
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