Simple permutations, partial well-order, and enumeration

Michael Albert

Mike Atkinson

Plan of talk

- Setting the scene

Plan of talk

- Setting the scene
- Simple permutations

Plan of talk

- Setting the scene
- Simple permutations
- Finitely many restrictions

Plan of talk

- Setting the scene
- Simple permutations
- Finitely many restrictions
- Algebraic generating functions

Plan of talk

- Setting the scene
- Simple permutations
- Finitely many restrictions
- Algebraic generating functions
- Some particular results

Permutation pattern containment

- $\pi \preceq \sigma$ the usual pattern containment partial order (eg 231 亿 541632)

Permutation pattern containment

- $\pi \preceq \sigma$ the usual pattern containment partial order (eg 231 亿 541 $\underline{6} 3 \underline{2}$)
- \mathcal{S} : the set of all permutations (of all lengths)

Permutation pattern containment

- $\pi \preceq \sigma$ the usual pattern containment partial order (eg 231 亿 541 $\underline{6} 3 \underline{2}$)
- \mathcal{S} : the set of all permutations (of all lengths)
- $\mathcal{S}[T]$: the set of permutations that avoid every permutation of T

Permutation pattern containment

- $\pi \preceq \sigma$ the usual pattern containment partial order (eg 231 亿 541 $\underline{6} 32$)
- \mathcal{S} : the set of all permutations (of all lengths)
- $\mathcal{S}[T]$: the set of permutations that avoid every permutation of T
- $A[T]$: the subset of the set of permutations A that avoid every permutation of T.

Permutation pattern containment

- $\pi \preceq \sigma$ the usual pattern containment partial order (eg 231 亿 541632)
- \mathcal{S} : the set of all permutations (of all lengths)
- $\mathcal{S}[T]$: the set of permutations that avoid every permutation of T
- $A[T]$: the subset of the set of permutations A that avoid every permutation of T.
- A is closed if $\sigma \in A$ and $\pi \preceq \sigma$ implies $\pi \in A$

Permutation pattern containment

- $\pi \preceq \sigma$ the usual pattern containment partial order (eg 231 〔 541632)
- \mathcal{S} : the set of all permutations (of all lengths)
- $\mathcal{S}[T]$: the set of permutations that avoid every permutation of T
- $A[T]$: the subset of the set of permutations A that avoid every permutation of T.
- A is closed if $\sigma \in A$ and $\pi \preceq \sigma$ implies $\pi \in A$
- Closed sets are those of the form $\mathcal{S}[T]$ for some T

Understanding closed sets A

Decision: given A (somehow) and $\pi \in \mathcal{S}$ decide whether $\pi \in A$

Understanding closed sets A

Decision: given A (somehow) and $\pi \in \mathcal{S}$ decide whether $\pi \in A$

- Basis: find (the minimal) T such that $A=\mathcal{S}[T]$; is T finite?

Understanding closed sets A

- Decision: given A (somehow) and $\pi \in \mathcal{S}$ decide whether $\pi \in A$
- Basis: find (the minimal) T such that $A=\mathcal{S}[T]$; is T finite?
- Enumeration: $a_{n}=\# \pi \in A,|\pi|=n$. Is a_{n} exponentially bounded? Formula for a_{n} ? Is $\sum a_{n} x^{n}$ algebraic, rational?

Understanding closed sets A

- Decision: given A (somehow) and $\pi \in \mathcal{S}$ decide whether $\pi \in A$
- Basis: find (the minimal) T such that $A=\mathcal{S}[T]$; is T finite?
- Enumeration: $a_{n}=\# \pi \in A,|\pi|=n$. Is a_{n} exponentially bounded? Formula for a_{n} ? Is $\sum a_{n} x^{n}$ algebraic, rational?

In many cases solutions of these problems "go together"

Building up permutations

A component of a permutation is a segment whose values form a consecutive set

Building up permutations

A component of a permutation is a segment whose values form a consecutive set Example
$\pi=279153648$ has a component $\chi=5364$

Building up permutations

A component of a permutation is a segment whose values form a consecutive set Example
$\pi=279153648$ has a component $\chi=5364$
Think of π as being constructed from 246135 by "expanding" symbol 3 into 3142 with appropriate relabelling.

Building up permutations

A component of a permutation is a segment whose values form a consecutive set Example
$\pi=279153648$ has a component $\chi=5364$
Think of π as being constructed from 246135 by "expanding" symbol 3 into 3142 with appropriate relabelling.
A permutation with no non-trivial component is called simple.

Simple permutations

- Length 1: only 1

Simple permutations

- Length 1: only 1
- Length 2: 12 and 21

Simple permutations

- Length 1: only 1
- Length 2: 12 and 21
- Length 3: none

Simple permutations

- Length 1: only 1
- Length 2: 12 and 21
- Length 3: none
- Length 4: 2413 and 3142

Simple permutations

- Length 1: only 1
- Length 2: 12 and 21
- Length 3: none
- Length 4: 2413 and 3142

The number of simple permutations

5	6	7	8	9	10
6	46	338	2926	28146	298526

Simple permutations

- Length 1: only 1
- Length 2: 12 and 21
- Length 3: none
- Length 4: 2413 and 3142

The number of simple permutations

5	6	7	8	9	10
6	46	338	2926	28146	298526

Theorem. The number of simple permutations of length n is asympotic to $n!/ e^{2}$.

Simple permutations of a class

From now on, F denotes a set of simple permutations, and \mathcal{F} the largest closed class whose set of simple permutations is F.

Simple permutations of a class

From now on, F denotes a set of simple permutations, and \mathcal{F} the largest closed class whose set of simple permutations is F. Let A be a closed class with simple set F.

Simple permutations of a class

From now on, F denotes a set of simple permutations, and \mathcal{F} the largest closed class whose set of simple permutations is F. Let A be a closed class with simple set F. Clearly $A \subseteq \mathcal{F}$.

Simple permutations of a class

From now on, F denotes a set of simple permutations, and \mathcal{F} the largest closed class whose set of simple permutations is F. Let A be a closed class with simple set F.
Clearly $A \subseteq \mathcal{F}$.
We find properties of A by first investigating \mathcal{F}.

Simple permutations of a class

From now on, F denotes a set of simple permutations, and \mathcal{F} the largest closed class whose set of simple permutations is F. Let A be a closed class with simple set F. Clearly $A \subseteq \mathcal{F}$.
We find properties of A by first investigating \mathcal{F}. Elementary example

$$
\begin{aligned}
F=\{1,12,21\} & \Longrightarrow \mathcal{F}=\mathcal{S}[3142,2413] \\
A & =\mathcal{S}[231]
\end{aligned}
$$

has simple set F and so $A \subseteq \cdot \mathcal{F}$. .

Wreath operations

Given a permutation α with $|\alpha|=n$ and permutations $\beta_{1}, \ldots, \beta_{n}$ define

$$
\alpha\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

to be the permutation $\beta_{1}^{\prime} \cdots \beta_{n}^{\prime}$ which has components β_{i}^{\prime} order isomorphic to β_{i} and where the pattern of the components is α.

Wreath operations

Given a permutation α with $|\alpha|=n$ and permutations $\beta_{1}, \ldots, \beta_{n}$ define

$$
\alpha\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

to be the permutation $\beta_{1}^{\prime} \cdots \beta_{n}^{\prime}$ which has components β_{i}^{\prime} order isomorphic to β_{i} and where the pattern of the components is α.
Example

$$
\begin{gathered}
\alpha=231, \beta_{1}=21, \beta_{2}=132, \beta_{3}=321 \\
\alpha\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=54 \mid 687
\end{gathered}
$$

Partial well-order

Lemma. If F and \mathcal{F} are as above then, for all $\alpha \in F$ and $\beta_{1}, \ldots, \beta_{n} \in \mathcal{F}$, we have $\alpha\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{F}$.

Partial well-order

Lemma. If F and \mathcal{F} are as above then, for all $\alpha \in F$ and $\beta_{1}, \ldots, \beta_{n} \in \mathcal{F}$, we have $\alpha\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{F}$.
Proof The simple subpermutations of $\alpha\left(\beta_{1}, \ldots, \beta_{n}\right)$ are subpermutations of α or some β_{i}.

Partial well-order

Lemma. If F and \mathcal{F} are as above then, for all $\alpha \in F$ and $\beta_{1}, \ldots, \beta_{n} \in \mathcal{F}$, we have $\alpha\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{F}$.
Proof The simple subpermutations of $\alpha\left(\beta_{1}, \ldots, \beta_{n}\right)$ are subpermutations of α or some β_{i}.
Theorem. If F is finite then \mathcal{F} is partially well-ordered by pattern containment.

Partial well-order

Lemma. If F and \mathcal{F} are as above then, for all $\alpha \in F$ and $\beta_{1}, \ldots, \beta_{n} \in \mathcal{F}$, we have $\alpha\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{F}$.
Proof The simple subpermutations of $\alpha\left(\beta_{1}, \ldots, \beta_{n}\right)$ are subpermutations of α or some β_{i}.
Theorem. If F is finite then \mathcal{F} is partially well-ordered by pattern containment.

Proof \mathcal{F} is an algebra under the wreath operations. Use Higman's theoorem,

A finite number of restrictions

Corollary. Every closed class with just a finite set of simple permutations is defined by a finite number of restrictions.

Proof Main step: prove that \mathcal{F} itself is defined by a finite number of restrictions. Then appeal to partial well-order.

Simple decompositions

Assume σ is not simple.

Simple decompositions

Assume σ is not simple. Then it has a non-trivial component.

Simple decompositions

Assume σ is not simple.
Then it has a non-trivial component.
Let γ, δ be two maximal components, $\gamma \neq \delta$, and suppose γ overlaps δ.

Simple decompositions

Assume σ is not simple.
Then it has a non-trivial component.
Let γ, δ be two maximal components, $\gamma \neq \delta$, and suppose γ overlaps δ. Then $\gamma \cup \delta$ is a component, so $\gamma \cup \delta=\sigma$

Simple decompositions

Assume σ is not simple.
Then it has a non-trivial component.
Let γ, δ be two maximal components, $\gamma \neq \delta$, and suppose γ overlaps δ.
Then $\gamma \cup \delta$ is a component, so $\gamma \cup \delta=\sigma$
Lemma. One of the following holds:

- $\sigma=\alpha \beta$ where either $\alpha<\beta$ or $\alpha>\beta$
- $\sigma=\xi_{1} \cdots \xi_{m}$ where each ξ_{i} is a maximal component and the pattern formed by the ξ_{i} is simple.

Structure

Let $F=\left\{1,12,21, \phi_{3}, \phi_{4}, \ldots\right\}$.
Every permutation in $\mathcal{F} \backslash\{1\}$ has one of the forms

$$
\phi\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

where $\phi \in F \backslash\{1\}$.
The representation is unique except for when $\phi=12$ or $\phi=21$.
Notation $\phi\left(B_{1}, \ldots, B_{n}\right)$ the set of all $\phi\left(\beta_{1}, \ldots, \beta_{n}\right)$
with $\beta_{i} \in B_{i}$

Structure Theorem

F, \mathcal{F} as above
\mathcal{F}_{+}(resp. \mathcal{F}_{-}) permutations in \mathcal{F} with no $\alpha \beta$ decomposition where $\alpha<\beta$ (resp. $\alpha>\beta$).

$$
\text { - } \mathcal{F}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}
$$

Structure Theorem

F, \mathcal{F} as above
\mathcal{F}_{+}(resp. \mathcal{F}_{-}) permutations in \mathcal{F} with no $\alpha \beta$ decomposition where $\alpha<\beta$ (resp. $\alpha>\beta$).

$$
\begin{aligned}
& \mathcal{F}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G} \\
& \mathcal{F}_{+}=\{1\} \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}
\end{aligned}
$$

Structure Theorem

F, \mathcal{F} as above
\mathcal{F}_{+}(resp. \mathcal{F}_{-}) permutations in \mathcal{F} with no $\alpha \beta$ decomposition where $\alpha<\beta$ (resp. $\alpha>\beta$).

$$
\begin{aligned}
& \mathcal{F}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G} \\
& \text { - } \mathcal{F}_{+}=\{1\} \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G} \\
& \text { (} \mathcal{F}_{-}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup \mathcal{G}
\end{aligned}
$$

Structure Theorem

F, \mathcal{F} as above
\mathcal{F}_{+}(resp. \mathcal{F}_{-}) permutations in \mathcal{F} with no $\alpha \beta$ decomposition where $\alpha<\beta$ (resp. $\alpha>\beta$).

- $\mathcal{F}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{F}_{+}=\{1\} \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{F}_{-}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{G}=\bigcup \phi(\mathcal{F}, \ldots, \mathcal{F})$
$\phi \in F,|\phi|>2$

Structure Theorem

F, \mathcal{F} as above
\mathcal{F}_{+}(resp. \mathcal{F}_{-}) permutations in \mathcal{F} with no $\alpha \beta$ decomposition where $\alpha<\beta$ (resp. $\alpha>\beta$).

- $\mathcal{F}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{F}_{+}=\{1\} \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{F}_{-}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{G}=\bigcup \phi(\mathcal{F}, \ldots, \mathcal{F})$

$$
\phi \in F,|\phi|>2
$$

- All unions are disjoint.

Structure Theorem

F, \mathcal{F} as above
\mathcal{F}_{+}(resp. \mathcal{F}_{-}) permutations in \mathcal{F} with no $\alpha \beta$ decomposition where $\alpha<\beta$ (resp. $\alpha>\beta$).

- $\mathcal{F}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{F}_{+}=\{1\} \cup 21\left(\mathcal{F}_{-}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{F}_{-}=\{1\} \cup 12\left(\mathcal{F}_{+}, \mathcal{F}\right) \cup \mathcal{G}$
- $\mathcal{G}=\bigcup \phi(\mathcal{F}, \ldots, \mathcal{F})$

$$
\phi \in F,|\phi|>2
$$

- All unions are disjoint.

Enumeration of \mathcal{F}

Equations satisfied by ordinary generating functions

$$
\begin{aligned}
& f(x)=x+f_{+}(x) f(x)+f_{-}(x) f(x)+g(x) \\
& f_{+}(x)=x+f_{-}(x) f(x)+g(x) \\
& f_{-}(x)=x+f_{+}(x) f(x)+g(x) \\
& g(x)=\sum_{\phi \in F,|\phi|>2} f(x)^{|\phi|}
\end{aligned}
$$

Generating function of \mathcal{F}

$f(x)$ satisfies

$$
f^{2}-f+(x+g)(f+1)=0
$$

In particular,
Theorem. If $|F|$ is finite, $f(x)$ (the generating function of \mathcal{F}) is algebraic.

Subclasses of \mathcal{F} (for finite F)

Theorem. If F is finite, every closed subclass of \mathcal{F} has an algebraic generating function.

Subclasses of \mathcal{F} (for finite F)

Theorem. If F is finite, every closed subclass of \mathcal{F} has an algebraic generating function.
General idea

- Subclasses have the form $\mathcal{F}[T]$ for some finite number of restrictions T
- \mathcal{F} is a disjoint union of terms of the general type $\phi\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ where ϕ is simple.

Subclasses of \mathcal{F} (for finite F)

Theorem. If F is finite, every closed subclass of \mathcal{F} has an algebraic generating function.
General idea

- Subclasses have the form $\mathcal{F}[T]$ for some finite number of restrictions T
- \mathcal{F} is a disjoint union of terms of the general type $\phi\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ where ϕ is simple.

So, how do we enumerate $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$?

Enumeration of $\phi\left(A_{1}, \cdots, A_{n}\right)[T]$

- $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$ is a finite intersection of sets $\phi\left(A_{1}, \ldots, A_{n}\right)[\tau]$ for $\tau \in T$.

Enumeration of $\phi\left(A_{1}, \cdots, A_{n}\right)[T]$

- $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$ is a finite intersection of sets $\phi\left(A_{1}, \ldots, A_{n}\right)[\tau]$ for $\tau \in T$.
- To find $\phi\left(A_{1}, \ldots, A_{n}\right)[\tau]$ consider how we can have $\tau \preceq \alpha_{1} \cdots \alpha_{n} \in \phi\left(A_{1}, \ldots, A_{n}\right)$ (and then negate).

Enumeration of $\phi\left(A_{1}, \cdots, A_{n}\right)[T]$

- $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$ is a finite intersection of sets $\phi\left(A_{1}, \ldots, A_{n}\right)[\tau]$ for $\tau \in T$.
- To find $\phi\left(A_{1}, \ldots, A_{n}\right)[\tau]$ consider how we can have $\tau \preceq \alpha_{1} \cdots \alpha_{n} \in \phi\left(A_{1}, \ldots, A_{n}\right)$ (and then negate).
- $\tau \preceq \alpha_{1} \cdots \alpha_{n}$ if and only if τ has a block decomposition $\tau_{1} \cdots \tau_{l}$ where each $\tau_{i} \preceq \alpha_{s(i)}$ for some $s(i)$ and the pattern of the τ_{i} is a subpermutation of ϕ.

Technical calculations omitted

- $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$ can be expressed as a union and intersection of sets of the form $\phi\left(A_{1}\left[T_{1}\right], \ldots, A_{n}\left[T_{n}\right]\right)$ where the restrictions T_{j} are subpermutations of the restrictions T.

Technical calculations omitted

- $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$ can be expressed as a union and intersection of sets of the form $\phi\left(A_{1}\left[T_{1}\right], \ldots, A_{n}\left[T_{n}\right]\right)$ where the restrictions T_{j} are subpermutations of the restrictions T.
- Written in disjunctive normal form, each term of the union is a complicated intersection of sets of the form $\phi\left(B_{1}, \ldots, B_{n}\right)$.

Technical calculations omitted

- $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$ can be expressed as a union and intersection of sets of the form $\phi\left(A_{1}\left[T_{1}\right], \ldots, A_{n}\left[T_{n}\right]\right)$ where the restrictions T_{j} are subpermutations of the restrictions T.
- Written in disjunctive normal form, each term of the union is a complicated intersection of sets of the form $\phi\left(B_{1}, \ldots, B_{n}\right)$.
- $\phi\left(B_{1}, \ldots\right) \cap \phi\left(C_{1}, \ldots\right)=\phi\left(B_{1} \cap C_{1}, \ldots, B_{n} \cap C_{n}\right)$

Technical calculations omitted

- $\phi\left(A_{1}, \ldots, A_{n}\right)[T]$ can be expressed as a union and intersection of sets of the form $\phi\left(A_{1}\left[T_{1}\right], \ldots, A_{n}\left[T_{n}\right]\right)$ where the restrictions T_{j} are subpermutations of the restrictions T.
- Written in disjunctive normal form, each term of the union is a complicated intersection of sets of the form $\phi\left(B_{1}, \ldots, B_{n}\right)$.
- $\phi\left(B_{1}, \ldots\right) \cap \phi\left(C_{1}, \ldots\right)=\phi\left(B_{1} \cap C_{1}, \ldots, B_{n} \cap C_{n}\right)$
- Use inclusion-exclusion and argue by induction

Technology

The proof is, in principle, constructive and we have managed to compute the (polynomial satisfied by) the generating function in some explicit cases.

Technology

The proof is, in principle, constructive and we have managed to compute the (polynomial satisfied by) the generating function in some explicit cases.
The techniques are capable of producing some general results too. For example

Technology

The proof is, in principle, constructive and we have managed to compute the (polynomial satisfied by) the generating function in some explicit cases.
The techniques are capable of producing some general results too. For example
Theorem. Every proper closed subclass of \mathcal{S} [231] has a rational generating function.

Conclusion

Every closed class A has a set of simple permutations F and it is profitable to study the superclass \mathcal{F}.

Conclusion

Every closed class A has a set of simple permutations F and it is profitable to study the superclass \mathcal{F}.

- If F is finite, A is finitely based and has algebraic generating function.

Conclusion

- Every closed class A has a set of simple permutations F and it is profitable to study the superclass \mathcal{F}.
- If F is finite, A is finitely based and has algebraic generating function.
- Many special results from the methods.

Conclusion

- Every closed class A has a set of simple permutations F and it is profitable to study the superclass \mathcal{F}.
- If F is finite, A is finitely based and has algebraic generating function.
- Many special results from the methods.
- Even if F is infinite, much can be said.

Conclusion

- Every closed class A has a set of simple permutations F and it is profitable to study the superclass \mathcal{F}.
- If F is finite, A is finitely based and has algebraic generating function.
- Many special results from the methods.
- Even if F is infinite, much can be said.

Theorem. If the generating function of F is algebraic then the generating function of \mathcal{F} is algebraic.

