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Abstract
This paper presents a technique for assembling Smalltalk
programs out of pieces using propositional Horn clauses.
The technique allows the dependencies and restrictions of
a piece to be stated inside the piece or outside, allowing
components from other dialects to be used. The technique
is applicable to any OO language allowing class extensions.

Categories and Subject Descriptors D.3 [Programming
Languages]: Language Constructs and Features

General Terms Object-Oriented Programming, prepro-
cessing, autoload, Horn clauses

Keywords OOP, preprocessing, autoload, Horn clauses,
conditional requirements

1. Background
In 2002 a student wanted to do a PhD on native code gen-
eration for Smalltalk [8]. We needed a baseline for com-
parisons, so this author began work on a straightforward
Smalltalk to C compiler called ‘astc”. The student was un-
able to get funding, so went elsewhere. The compiler project
continued, now with the aim of conforming to the ANSI
Smalltalk standard [1] as well. It soon became clear that the
speed of generated code was competitive with commercial
Smalltalk systems (thanks to clever C compilers), and that
this was a pleasant tool for writing actual programs, or would
be if only compiling were not so slow.

The compiler does whole-program compilation via C in
the manner of Colnet’s SmartEiffel [4]. Compilation to C is
very fast, but compilation of the resulting C is slow, so in-
cluding the minimum necessary code is important for speed.
It also helps with reliability: you cannot call the wrong
method if it is not there. A simple way to select a minimal
set of components was needed.

[Copyright notice will appear here once ’preprint’ option is removed.]

The following table shows how big the system is. The
library files are Smalltalk code written for reuse, analogu-
ous to other Smalltalks’ initial image. The test files are inde-
pendent test cases. The example files are independent small-
ish programs, some written for demonstration purposes and
some written for actual use. The RosettaCode files are solu-
tions to RosettaCode.org problems. The test files, example
files, and RosettaCode files use the library, but none uses all
of it. The lower half of the table shows the compiler and run-
time support library; roughly half of all the C code is the
BDW garbage collector and its concurrency support. The
“req” column shows the number of unconditional includes
and “req-if” the number of conditional ones.
#files lines SLOC req req-if contents

719 147030 97493 2284 360 Library files.
219 22357 17288 530 0 Test files.
142 23370 15309 438 0 Example files.
655 28600 18884 1028 0 RosettaCode files.

22 27827 18061 94 0 Compiler (.c .h) files.
21 13623 8850 69 26 Runtime (.c .h) files
54 33994 17532 67 235 BDW GC
68 16014 8673 16 53 libatomic ops

For much of its history, astc was developed on a SunBlade
100. Compiling the whole library to C takes 5 seconds; com-
piling the C code without optimisation takes another 8 min-
utes. Compiling with optimisation crashes the C compiler,
which was not designed to handle 971,000 line source files.
To get acceptable compile times, it was vital to compile less
C, and that meant compiling just enough Smalltalk.

On a 2GHz Macintosh with OSX 10.11 and Clang 7.3,
compilation is faster. The following table shows four test
cases: the minimum required for ANSI compatibility, that
plus 4410 SLOC of extra methods for collections, that plus
an XML library and date and time classes, and the full
library plus some test files. The table shows the number of
lines of C code generated, the time for astc to generate that
C code, and the time for Xcode’s C compiler to compile and
link the program, without and with optimisation. All times
are real time in seconds.
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text ST C astc clang clang
source SLOC lines time time -O2
ansi.st 9625 77396 0.09 6.6 17.0
collections.st 14080 127111 0.12 10.1 28.2
core+XML+time 31011 286202 0.12 21.1 56.9
full library 90209 967150 0.61 57.3 193.8

Example
The library includes random number generation and geomet-
ric objects. If you request random.st and geometry.st, then
you probably expect a reasonable set of random selection
from and generation of geometric objects, which random-
geometry.st provides. Conversely, if you request random-
geometry.st, random.st and geometry.st are automatically in-
cluded. This sketches the code before the improvements of
this paper. The last section shows the improved version.

"geometry.st defines Point Rectangle Circle.."

...

require: ’random-geometry.st’ if: ’random.st’

"random.st, defines Random etc."

...

require: ’random-geometry.st’ if: ’geometry.st’

"random-geometry.st"

require: ’geometry.st’

require: ’random.st’

...

Circle

methods:

atRandom

^self atRandom: Random default

atRandom: aStream

"Return a random Point in the receiver"

...

2. Requirements
• The key ideas of the technique should apply to several

languages so that others can benefit from it. It must be
straightforward to implement in a language other than
the language it is used in. The astc compiler is written
in C and does not use the Smalltalk runtime system. The
facility described here was prototyped in AWK.

• It should be declarative to make it easier to reason about
and use correctly.

• Since the goal is to make programs no larger than they
need to be, it should be obvious that the technique selects
a minimal set of components.

• In order to test and debug components written for this
system, it should be possible to develop them in other
Smalltalks and bring them back. That means that it
should be possible to express the dependencies of such

components in some other file, because other Smalltalks
do not support this technique.

• Each included component should be processed just once.
This is for simplicity of semantics: the result of building
should be equivalent to a single file containing no inclu-
sions or duplicates.

• Cyclic dependencies that do not force a textual cy-
cle should be harmless. The random-geometry example
shows why this is useful: requesting random.st and ge-
ometry.st is equivalent to requesting random-geometry.st,
and that involves a cycle.

• It should cope with a manifestation of the expression
problem, where you need method-m-in-class-C if and
only if you have both method-m and class-C. This was
the key problem that led to the present design. We don’t
want random numbers just because we’ve got points, and
we don’t want points just because we’ve got random
numbers.

• It should support some form of conditional compilation.
The system is developed under Solaris and Mac OS X
and ported to OpenBSD, Linux, and Cygwin. They are
not as compatible as they should be. Some of that can be
hidden in C support code, but not all of it.

3. Target programming language
characteristics

The technique was designed for Smalltalk in the first in-
stance, but should be applicable to other languages which
resemble Smalltalk in relevant aspects. The relevant aspects
are

1. a program is a set of classes and/or functions;

2. a class has a structure and zero or more extensions pro-
viding methods;

3. the extensions of a class must follow its structure;

4. the structure of a class must follow the structures of its
superclasses;

5. the order of structures, extensions, and functions is con-
strained only by points 2 and 3;

6. any changes to the syntax of the language (such as
macros or user-defined operators precedence) are or may
be confined to a single compilation unit.

Suitable programming languages include Smalltalk [1,
8], Common Lisp [11, 19], C] (counting partial classes as
extensions) [5, sections 8.7.13 and 17.1.4] [16, section 10.2],
and Swift (counting partial classes as extensions) [2].

4. Model
• A library is a finite map from file names to files.
• A file is a sequence of chunks.
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• A chunk is a class chunk, a method chunk, or a require
chunk.

• A class chunk defines the name, structure, and relation-
ships of a class. For example,

AbstractRationalNumber subclass: #Fraction

instanceConstantNames: ’num den’

• A method chunk defines one or more methods belonging
to a class. For example,

Fraction

methods:

fractionPart

^self pvtClone

pvtNumerator: (num rem: den)

denominator: den

• A require chunk states a dependency between files, anal-
ogous to an include directive. For example,

require: ’collections.st’

There are three kinds of relationships between class
(name)s, method (names), class chunks, and method chunks.
Definition: a class chunk defines a class, and a method chunk
defines one or more methods.
Use: a class chunk may use one or more classes (as super-
class(es), as a pool dictionary, or as an initialisation depen-
dency), and a method chunk uses one class as its container
and may use others as global variables.
Ordering: a class must be defined before it can be used as a
superclass or pool dictionary, or have a method added to it.

5. Dead code elimination does not help
Since astc takes nearly two orders of magnitude less time
than the C compiler, an obvious approach is to compile all
the Smalltalk and generate code for only the live classes and
methods.

The 〈classDescription〉 protocol [1, section 5.3.8] in-
cludes #allSubclasses and #name, meaning that any class
can be looked up by name at run time. So no classes are
dead. The 〈Object〉 protocol [1, section 5.3.1] includes #per-
form: and several other methods for calling a method by
name. So no methods are dead. A clever dead code elimina-
tor could still work if it determined that these methods were
not used. Unfortunately, they are used in the library itself.

6. The C Preprocessor is not declarative
The C [13] preprocessor is almost adequate. The well known
technique of using

#ifndef FOO INCLUDED
#define FOO INCLUDED
#include “foo”
#endif

handles multiple inclusion and cycles, albeit clumsily.
There are three problems. The first is that Smalltalk and C

are lexically different. For example, // /* and */ in Smalltalk
have nothing to do with comments. That simply suggests us-
ing something like cpp with different lexical rules. The sec-
ond is that it is too powerful: the aim for this project was
something that would simply aggregate text, not change it.
Again, this arguments for something like cpp but weaker.
The main problem is that the C processor was influenced
by the PL/I preprocessor [9, Chapter 21] and the m4 macro
processor [12, 21], and like them it remains an imperative
programming language. Macros act as variables, with #de-
fine and #undef as assignment statements. A file included
in different contexts mat yield completely different contents
each time.

At times in the history of astc, m4 [12, 21] and a cpp-like
program have been used for experimental purposes. The cpp-
like program was used to generate OpenSSL interface code
for message digests, before the portability burden of relying
on system installations of OpenSSL became too high. The
outputs of template instantiation still have to be selected and
combined. The cpp-like program is still used for generating
some data files.

7. Autoloading is not enough
Autoloading is an old technique [17, section 12.4.4]. It
works by constructing an inverted index from class names to
file names. When processing a chunk,

• if it has an ordered use of a class that is not defined
yet, look the class up in the index and compile the cor-
responding file now;

• if it has an unordered use of a class that is not defined yet,
look the class up in the index and add the file name to a
set of files to be processed later.

• Whenever there is nothing else to compile, remove any
file name from that set of files and compile it.

Determining what the dependencies are is language-
dependent, but the existence of such dependencies is com-
mon to the languages listed in the introduction. The ideal
would be a technique that does not require autoloading but
is compatible with it.

There are two problems with autoloading. The first is that
it does not generalise to methods. There are two reasons for
that.

• A method might be defined in an ancestral class, but need
overriding in a descendant class if some condition is met.
The fact that a method is available does not mean there is
nothing more to process.

• A library might contain more than one definition of
method-m for class-C (such as MacOSX vs Solaris).
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The second problem is that autoloading does not work
well when there are multiple files defining the same class.
Again, operating system dependencies are the obvious case.

Having said this, autoloading works very well most of the
time. Java compilers do something similar, but the search
path mechanism is complex and means that you cannot tell
simply by inspecting a file what other files it will use.

8. Ruby autoloading is imperative
Ruby has an autoload feature [20]. It is useful but not inno-
vative. It is an executable statement, meaning that both the
name of what is to be loaded and the file name it is to be
loaded from can be computed by arbitrary expressions, and
that an autoload statement in a file might or might not be
executed. In effect, a Ruby autoload command is a delayed
executable statement to load a file, conditional on whether a
name has been defined.

This makes it difficult to analyse Ruby autoload com-
mands reliably other than by having Ruby interpret them.

9. Steps to a solution
Like #include but different
File inclusion seemed like the simplest thing that could
work, but the repeated inclusion of #include is unwanted.
The chosen syntax is “require: 〈file-name〉”; the meaning
is that the file will be processed at this point unless it has
already been processed.

IF appears
ANSI Smalltalk contains a method for iterating over two se-
quences at the same time. The file with.st1 defines gener-
alisations of these, including for example folding over two
sequences. It is similar in spirit to the ListPair module in
the Standard ML Basis Library [6, section 11.21]. The file
lists.st defines a linked-list class similar to ML’s List
module [6, section 11.20]. But while the method implemen-
tations in with.st work well for all the ANSI sequence
classes [1, section 5.7], some of them have to be overridden
for linked lists, so with-lists.st does that.

We want the method (re-)definitions in with-lists.st

to be processed only if the program needs both the two-
sequence iteration methods and linked lists. The C prepro-
cessor would handle this by having you define “feature”
macros to test whether a feature was wanted/had been pro-
vided. But it suffices to test whether a file has been pro-
cessed.

The new syntax is “require: 〈file-name-1〉 if: 〈file-name-
2〉”, meaning

1 The files mentioned in this section can be found through http://

www.cs.otago.ac.nz/staffpriv/ok/software.htm, which links to
an earlier snapshot of astc.

if processing of file-name-2 has already begun, and
processing of file-name-1 has not begun, process file-
name-1 now”.

This worked, and proved adequate for managing a library
of some thousands of files, but it requires duplication:
require: ’with-lists.st’ if: ’lists.st’

in with.st and
require: ’with-lists.st’ if: ’with.st’

in lists.st so that with.st and lists.st can be pro-
cessed in either order. This also introduces coupling between
the files.

The basic problem was that if a requirement wasn’t trig-
gered right now, it was completely forgotten. The notation
was not declarative yet.

Multiple conditions
An unconditional “require: G” occurring in file F is in fact
conditional: G is to be required only if F is. That means
that “require: G if: H” actually means that G is required if
H and F are. So it turned out that non-trivial Horn clauses
(explained in the next section) are useful.

The syntax is “require: F0 if: F1& . . .&Fn”. The mean-
ing is now “if the containing file and F1 to Fn are all re-
quired, so is F0.” If the condition is not satisfied now, the
rule must be put aside for later processing.

The other kind of Horn clause
A positive Horn clause says when something should be true.
A negative Horn clause says that several things should not
be true together. This turns out to be useful.

“forbid: F1& . . .&Fn” says that it is an error for the
containing file and F1 to Fn to all be included in the same
program.

In some programming languages, like normal Smalltalks,
you can replace or redefine a class or method, so simply pro-
cessing two definitions of the same class would not neces-
sarily be an error. But

forbid: ’files-windows.st’ & ’files-posix.st’

says that the two files must not be used together, and says
this even if the files would apparently be compatible (they
might use incompatible foreign code, for example).

10. Horn clauses
A propositional formula is false, true, a variable that could
be true or false, or formulas composed using not, and, or,
implies, and equivalent.

A model of a propositional formula is a mapping from its
variables to {false,true} such that the formula evaluates to
true.

A minimal model of a propositional formula is a model
such if any variable mapped to true in that model is mapped
to false instead, the result is not a model. For example, {x 7→
true, y 7→ true} is not a minimal model of (x ∨ ¬x) ∧ y
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but {x 7→ false, y 7→ true} is. Minimal models are not
necessarily unique: a ∧ b is satisfied by both {a,¬b} and
{b,¬a}.

Any propositional formula can be put into clausal form
[14, pages 197–200], which is a set of clauses, each clause
having the form

h1, . . . , hm ← b1, . . . , bm

where the hi and bj are variables, signifying “if all of
b1, . . . , bm are true, then at least one of h1, . . . , hn must
be true”.

A formula and its clausal form have exactly the same
meaning. In particular, they have the same models and the
same minimal models.

A Horn clause is one in which m ≤ 1. Conversion to
clausal form works for first-order logic, not just proposi-
tional formulas, and the notion of a Horn clause applies there
as well. The programming language Prolog [3, 10] is based
on first-order Horn clauses.

A set of Horn clauses has a unique minimal model. In
logic programming, the meaning of a pure Prolog program is
defined to be this model [15]. Not only that, minimal models
for Horn clause sets are monotonic: if we have concluded
from a set of clauses that something must be true (a file must
be included), adding another rule cannot cause us to change
our minds.

For our purposes, we only need propositional Horn
clauses, and the unique minimal model of a set of propo-
sitional Horn clauses can be found in linear time [18].

11. Final Design
A rule “require: F0 [if: F1& . . .&Fn]” appearing in file G
stands for the Horn clause

F0 ← G ∧ F1 ∧ . . . ∧ Fn

A rule “forbid: F1 & . . . & Fn” appearing in file G stands for
the Horn clause

← G ∧ F1 ∧ . . . ∧ Fn

When one of these rules is encountered, every Fj whose
processing has already begun is crossed off. If the right hand
side is now empty, the left hand side is processed, otherwise
the rule is added to a set of rules. (Multiple occurrences of
the same rule are harmless.)

When processing reaches the end of a file, each rule in
the set of pending rules is checked, and the file just ended
crossed off. As soon as a rule with an empty left hand side
has everything in the right crossed off, the error must be
reported and processing should stop. When a rule with a non-
empty left hand side has everything on the right crossed off,
the left hand side should be queued for processing, because
more than one rule might be activated at the same time. The
set of ready files mentioned in the section on autoloading can

be used for this purpose. Indeed, autoloading as described
above can be implemented as implicitly generated rules;
autoloading and Horn clause requires work well together.

A rule in file F can be moved out and put into another
file by adding F as a condition. This is perfectly safe as long
as the rule does not express an ordered dependency. All the
ordered dependences met so far have been unconditional, so
the practice of writing all ordered dependencies — mostly
avoided by autoloading — then a class thunk then method
chunks, then unordered dependencies works well.

12. Does this satisfy the requirements?
The basic approach is language independent. Combining it
with (compile-time) autoloading requires limited coupling to
the language processor.

The notation is very nearly declarative. The major theo-
retical weakness is the handling of ordered dependencies.
Perhaps something like the Immediate Dominance/Linear
Precedence of Generalized Phrase Structure Grammar [7]
could be used: “order: F1 < F2” would mean that if F1

and F2 are both required, F1 must be processed first. How-
ever, it would be easy to process F2 before encountering
an order rule, which would be unsatisfactory. More work
is needed here. At the moment, ordered dependencies are
mainly handled by the compile-time autoload technique, but
that requires manual insertion of rules when a dependency
has more than one provider.

Conditional compilation can be handled by inverting the
C preprocessor. Cpp uses feature macros because it cannot
ask whether a file has been included. We can use empty files
instead of feature macros. Rules like

require: ’posix-filename.st’ if: ’Posix’

require: ’windows-filename.st’ if: ’Windows’

work well. A marked difference from Cpp is that there is
no #ifndef. All conditional alternatives must be stated posi-
tively.

With these improvements, the example in section 1 looks
like this:

"geometry.st defines Point Rectangle Circle.."

...

require: ’random-geometry.st’ if: ’random.st’

"random.st, defines Random etc."

...

"random.st not coupled to the other files "

require: ’random-geometry.st’ if: ’geometry.st’

"random-geometry.st"

"Circle extended : autoload geometry.st"

"Random mentioned : autoload random.st"

...

Circle

methods:

atRandom
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^self atRandom: Random default

atRandom: aStream

"Return a random Point in the receiver"

...

Because Circle is extended, geometry.st is autoloaded
immediately. Because Random is mentioned, random.st is
autoloaded after other processing is complete. This much
Ruby can do, although the ordering would be different.

Treating require:if: as a logical rule means it only has to
be stated in one file. This means that random.st is no longer
coupled to the other files, nevertheless, if geometry.st is com-
piled before random.st, random-geometry.st will automati-
cally be scheduled for compiling when random.st is finished.

Furthermore, treating require:if: as a logical rule means
that the conditional rule can be moved out of geometry.st as

require: ’random-geometry.st’ if:

’random.st’ & ’geometry.st’

decoupling geometry.st.
In a collection of over 1700 files, there were originally

over 4600 require: lines of which 360 were conditional.
Adding autoloading cut the average number of require: lines
from 2.5 per file to 1.2 per file. Treating requires as logical
rules rather than imperative commands reduced the number
of conditional requires by half. of conditional requires in
half, and moreover allowed coupling to be reduced: it is OK
for a specialised class to know that it might have to plug
into a general service (if that’s wanted); it’s not good for
the general service to have to know about all the specialised
classes.

This simple approach satisfies the requirements and has
proven straightforward to use.
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