THE POP-1@ SYSTEM EDITOR
The "PED" Editor,

By D, J., M, Davies
Date: 25 September 1975
Revised: 1 April 1976

Department of Computer Scilence,
University of Western Ontario,
LondQn, Ontariao, Canada,

This editor and manual are based on the "77-Editor’
designed and implemented by Bob Boyer and J Moore at
Edinburgh, and described in:

‘The 77-Editor’

Bob Boyer, J Moore & Julian Davies

n.C... Memo 62, School of Artificial Intelligence,

Edinburgh, February 1973.

This implementation owes much in detail to the
implementation of the editor in the Edinburgh POP-2
system by Robert Rae, Chief System Programmer there.

THE PED EDITQOR 1-April-1978& Page 2
Introduction

INTRODUGTION,

The PED Editor is a text editor built inteo the POP-10 system for
editing program and data text, Arbitrary ASCII text can be edited,
but the editor is &expected *to be particularly useful during
development of programs for POP-10,

The editor comprises twao main components: a “text buffer’® to
hold the text being edited, and a set of commands for working on the
text in the buffer, There is provision for entering text into the
buffer either from the terminal or from files on disc or other
devices, for manipulating the text, for inspecting part or all of the
buffer on *the terminal, for writing part or all of the buffer
contents to an output file, and also for compiling POP-18 program
text directly from the buffer, A wvery flexible set of editing
commands is provided, including commands which have some 'knowledge'
of POP-18"s syntax.

The Text Buffer is conceptually & character strip with flexible
bounds; it may be extended almost indefinitely by inserting text at
any point, It contains a seaguence of 7-bit ABCII characters, There
is also a ‘Pogsition Pointer’ which is positioned somewhere in the
buffer, The position pointer is always positioned between two
characters, or hefore the first character, or after the last. It may
be moved around guite freely within the +text buffer, either by
specifying a numerical displecement (e.g. in character positions) or
by a search for a specified pilece of text within the buffer, All
insertions of text take place &8t the position pointer (strictly
speaking, just before it), and all deletions from the buffer take
place forwards or backwards from the pointer’'s position (possibly
after moving the pointer first).

In many respects, the editor is similar to the TECO editor. its
main advantage is that it is within the POP-18 system, so that a file
can be edited and recompiled many times without leaving POP-1B, which
means that other programs to be used in conjuncticn with it do not

have to bege recompiled each time it is edited, This is madea
particularly easy by the ability to compile program text directly
from the text buffer; a whole program could be created and debuggsd

during a session, keeping the text anly in the text buffer, and when
correct it can finelly be written toc a file on disk,

The editor is itself an integral component of the POP-10 system,
and all the editing facilities are provided through standard
functions, operations and other variables, Thus it is gquite possible
to use the facilities aof POP-1@ (in the ordinary sense) with those of
the editor, for instance to define an ordinary POP-10 function to
perfaorm a particular seguence of editing operations, It is poussible,
in fact, to define any editing commands you like in terms of +those
srovided &s standard, and this flexibility can he put to good use in
appropriate occasiaons,

THE PED EDITOR 1=April-=1976 Page 3
Introduction

An important feature of this editer, not featured 1n most
‘stand-alone’ text editors, is the UNDO command. All operations on
the text (which change its contents) amount to sequences of deletions

and insertiaons, After any text has heen inserted or deleted in the
buffer, it is possible to reverse the insertion or gdeletion with @an
UNDO command, I+ is therefore easy to recover from mistyped or

misguided modifications to the text buffer., The system, of course,
has to remember information 1f an editing operation is subsecguent ly
to be UNDONE, which uses store, so the system o©only stores this
information, at any time, for the 6 most recent changes to contents
of the buffer. (This limit may he changed if the POP-14 system 1is
reassembled,)}

Because it is possible to compile text directly from the buffer,
it becomes attractive to use the editor as a debugglng tool. The
program to be debugged can be read into the buffer, and extra copode
can be inserted into the wversion in the buffer for debugging
purposes, Unless a FILE or SAVE command is executed, the disk file
will be unaffected by this, Another feature of compiling code from
the buffer is that if the compiler chokes on faulty syntax, etc.,, the
buffer pointer is 1left pointing where the compiler reached in the
text,

The editing commands are summarised in the fille PEDS ,HLFP, and
are described in detail helow.

The Edit Environment

The Editor commands are mostly standard POP-10 operations of
precedence 2, with & few other functions, variables, and operations
of precedence 1. To manipulate text in the editeor buffer, therefore,
normal POP-1# %text is typed to the compiler, which uses these
operations, stc,

In order to keep edit commands as short as possible and not
conflict with operations and functions defined by the user, almost

all edit identifiers are prefixed with the 1letters "PED", and are
usually two letters long without this prefix or five characters long
with it, e.g., "IT"/"PEDIT", "Mc"/“PEDMC", etc. To save the user

having to tvpe PED in front of each edit command, however, a special
mode is provided in the compiler which compiles POP~18 text qguite
normally except that any identifier is automatically prefixed with
"PED" 4if that makes it into an edit command. This mode of compiling
is known as "Edit Mode",

POP-1f can be made to compile text from the terminal in Edit
Mode, at the top level, by calling the function SETEDIT, or by typing
‘F {which calls SETEDIT). SETEDIT is Jjust 1like GSETPOP in exiting
from any programs currently being executed, clearing the stacks, and
then restarting the compiler reading from the terminal, only it

THE PED EDITOR twApnril-1976 Page 4
The Edit Environment.

restarts the compiler in edit mode. An arbitrary input character
repeater can be compiled in edit mode by wusing the Ffunction
PENITFROM, which otherwise is Jjust like COMPILE, If an error occurs
while the system is in edit mode, then SETEDIT is called after the
error instead of SETPOP, Also if the function POPREADY is called, or
a "Ready" break occurs while the system is in in edit mode, then the
break itself also compiles from the terminal in edit mode. When the
system is in edit mode, the standard prompt on the terminal 1is e

(1] "

instead of ' .,

Once "in" the editor, that is, in edit mode, life 1is Jjust the
seme as before except that edit commands may be given in their
unprefixed forms, and errors and breaks will keep the system in edit
mode., To leave edit mode, simply type tG or SETPOP(): .

You may enter and leave edit mode quite freely without changing
the buffer which contains the text. If, in the middle of editing,
you wish to leave edit mode, siwmply type tG, and type {F later to
return., This manoeuvre is sametimes desirable, even though you can
execute arbitrary POP-14 text in edit mode; you may wish to access a
variable whose identifier is the same as an unprefixed edit command.
Accidental CTRL B°'s do not hurt anything; just type tF or LSETEDIT:
again,

Unlike PCPEDIT, when ‘in the editor’, one is not restricted to
typing edit commands, If you wish to output a file, compile =&
function (either as & command you are going to use repeatedly or to

test a new component of your program), experiment with acceptable -

POP-19 syntax before typing it intec your file, inspect the contents
of other files (or edit them) or run your program, you are free to
type the appropriate text and have it executed. However, if you type

VG the editor will type out the current 1line, If you type
IN'FOO': the text ‘FO0° is inserted into the buffer, If you type
58 JAR: the editor searches hackwards for the function definition

of BAR (if BAR is a function),

The prefixed versions of edit commands are available outside
edit mode. That is, you can use the operations PEDVC, PEDIN and
PEDSE at any time just as you would use VC, IN and 5B in edit mode,

The Buffer and Position Pointer

When you wish to edit a file, you type
IT[filespec 1:
where [filespec] is the name of the file to be edited,. This
inserts the characters of the file 4into “the buffer”, which is
conceptually an elastic character strip {but actually a structure
composed of POP-18 records which refer to blocks on disc or to
user-typed character strips which have been inserted). You may then
freely modify the contents of the buffer, and when you are satisfied
with it, write it back to a disc file.

THE PED EDITOR 1=-April-1976 Page 5
The Buffer and Ppsition Pointer

There is a "pointer”, printed as "+", which marks the current
position in the buffer, It is here that insertiaons and deletians
occur. However, you are free to move the pointer at will throughout
the buffer, This is true however long the file is, and however many
pages it contains: vyou have access to the whole file all the time,
Commands that move the pointer include the search commands (which
positiocn the pointer before or after a specified unit of text in the
huffer) and explicit Move commmands {such as 3MC: which moves the
pointer 3 characters forwards, and =~4ML; which moves the pointer 4
lines backwards). You are also able to discover how many characters
yvou are from the start of the buffer {with CP -~ Current Position) so
as to “"remember” & position and return or refer to it later.

You can print text from anywhere in the buffer, or even go to
other places in the buffer and pick up text and move it, Since vou
are free to move backwards as well as forwards you can inspect
previously edited portions of the buffer and re—-edit them, Nothing
is written out until you give an output command, The wusual output
command at the end of editing a file is FILE, which writes the buffer
to a file named by the filename in the variable NAME: NAME is sat to
contain the file‘'s name by the IT command, but it caen be asslgned to
directly.

Errors

When an erraor occurs, the normal POP-1@ error handling routines
are called, Normally, this means that SYSERR is called to print a

message glving the error number and culprit, and then a POPREADY
break is entered. At the start of the break you can type ? to get
an explanation of the error, or : to get a listing of the calling

sequence,

However, if the error is an editor error, and the variable
PEDSHTERR has been set non-zero, then the error message from SYSERR
is abbreviated, and no break is walled, This is to reduce the amount
af tiresome printing from routine editor errors, The message might
lock like this:

?PEDEFL 168
culprit ARC

setedit
'

This is a search-fail error, error 168, but the mnemonic PEDSFL is
enough for the esxperienced user, The mnemonics are given in Appendilx

A, If you thave PEDSHTERR set, type JPOPXPLNEA; to get an
explanation of the most recent error, PEDSHTERR is initially false,
to give a full error message and break on every errar, Note that

PEDSHTERR has this effect for editor errors, irrespective nf whether
or not you are actually in edit mode.

THE PED EDITOR 1-April-1976 Page 6
Syntax of Edit Commands

Syntax of Edit Commands

Since edit commands are operations, their syntax 15 wvery
free-form. You may adopt whatever style is most convenient for you.

Since they are operators, it is not necessary to include dots or
parentheses to get them executed, However, you may give parentheses
if you wish (but an operation may not directly follow =& period).
That is, typing VC(): is exactly the same &as typing VC;.

The following are all equivalent ways to exchange the next
occurence (after the pointer) of the word "FOO" for the string "BAR":

"FOO" XF "BAR":

"FOD"XF 'BAR";

"Foo", "BARXF

XF("FoOo", 'aaR");

“Foo”, ‘BARC,XF:

"FOO", "BARLXF();:
"FOO", "BAR TUNONOP XF;

APPLY ("FOO™, "BAR " ,NONOP XF):
etc,

Just make sure the arguments get on the stack before the command is
executed,

It has been found tkat the simplest sane syntax is to type the
commands in the order they are to be evaluated, with no dots or
parentheses, but with all arguments and commands separated by commas,

Terminate the sequence of commands with : or => as usual in
POP-10.

If a numeric argument directly precedes a command, it is not
necessary to interpose a space or comma, Thus to move to thes next
line in the buffer, it is possible to type any of the following.

TML -
ML 1
1, ML
ML (1) ;
etc,
(to exhibit a few of the variations)

If yvou realise that you are typing the seme sequence of commands
over and over again, define a function which executes them and call
it imstead, The function may have formal parameters and take
arguments if this is desired.

For example, assume you wish to change some of the SUBSCR'S in a
file +o SUBSCRC'S, but vyou do not wish to write a fully autamatic
edit function to decide which occurences, The following command
gperation will make such an exchange and then print the line:

THE PED EDITOR 1=~April-1976 Page 7
Syntax of Edit Commands

OPERATION 2 FOO;
XF (“SUBSCR", "SUBSCARC ") VC;
END:

The following command is equivalent but more efficient:

OPERATION 2 FOO;
“SuUBGCR“SEF: 'CEIN VC;
END:

If you type the above function definition in edit mode, you will then
be able to type FOD; to cause such an exchange and verification,

The following command strings are other ways to make that
exchange throughout the file, verifying every occurence:

JA: <?"SUBSCR"XFT 'SUBSCAC& THEN VC7?7>
ar
JA: <?"SUBGBCR"SEFT THEN "CEIN VC?>

Experiment with the syntax until you get comfortable, Use vCe to
verify the changes until you trust the editor and your model of it,
Remember, all you have to do to undo the last (possibly disastrous)
modification (insert or delete) is type UNDD;:. (It takes two UNDO's
to undo an exchange.)

Argument Types for Edit Commands

Edit cammands take a varisty of arguments depending on the
reguirements, however, all arguments must be POP-10 items of one sort
or another, The commands always conform to general rules of POP-18
syntax, The type of argument sometimes affects the precise action of
the command, These relationships will be described for each command,
Some commands will supply default arguments if applied when the stack
is empty. This facility should be used with caution, however, since
stray items o0n the stack wmay be gobbled up with unexpected
consequences,

The conventions for specifying argument types are as follows.

(1) STRINGBS - items typed in using string quotes, or made with
INITC,

(2) TEXT-ITEMS - items which are POP-1D words, or (positive)
numhers

Y INTEBERS - POP~1@ integers

) FILE-NAMES - POP-1f 1list structures

) REPEATER - POP-10 character repeater functions

) FUNCTION 0OBJECTS -~ either any POP 10 function, gperation or
macra with & name in its FNPROPS, or any pair with & word in

{
(
(
{

o B W

THE PED EDITOR 1-April-1976 . Page 8
Argument Types for Edit Commands

its front and UNDEF in its baok,

(7) GRABBED 0SJECTS -~ items returned by the GW command

(8) An INSERT ITEM - a string, text-item, filename, repeater, or
grabbed object: these are permissible arguments of IN and IT.

{9} A SEARCH ITEM -~ a string, text-item, or function object: these
are permissible arguments for search commands.

The idea behind Function Objects is as follows. Tog find the text
defining & function FOD, one can type: -~ FOO SF;. The variable FOO
will sither contain a function FOO, in which case the neme of the
function can be obtained by §SF from its FNPROPS, or else FOO was
previously undefined, in which case the system will dinitialise it
with the pair [FOD . UNDEF]}, and SF can extract the desired name fraom
this pair, This 1is discussed further in the secticn on search
commands , '

The difference between strings and text-iteams is that strings
represent a particular sequence of characters in the buffer,
irrespective of context, but text-item arguments represent & seguencs
of characters in the buffer in such a context that the itemiser would
construct the given text item while reading the text in the huffer,
For example, searching for the string 'X1' will find the substring

X1 in the string COORX1Y1; searching for the word "X1" would
reject that substring as a match, and would only find a string "X1°
if it is properly delimited as the word X1 in the text: B.d. in
VARS X1 Y1: or SRAT(X1+3).

Another difference between words and cstrips as search items is
in the treatment of lower-case characters, In a cstrip, the upper
sase letters and the characters "€" “{" "\" "1" "+ and "=" are
treated as equivalent to their lower-case forms; in & search for a
word, the characters must match exactly because the search routine
reads an item out of the buffer and checks that it equals {=) the
search item.

Similarly, searching for the number 123 would find only
occurences of that integer, and not the substring in the texts X123
or 1234.8, Similar rules apply during insertion of text-items; the

characters required are inserted, but & space will be put at either
end if necessary. Inserting a string will insert anly exactly the
characters in the string. When a search is made for a number, the
number is printed with PR, and the search Ffunction looks for the
seguence of characters made by PR (less the initial space). Thus,
searching for 123 will not find the text 2:1111011 (but it will find
the text 8:123).

THE PED EDITOR 1-April-1976 Page 9
Windows

Windows in the Buffer

Several commands take a pair of arguments called Window
Specifiers, which specify a "Wwindow" in the buffer. A "Window" is
simply some part of the text in the buffer (possibly of zero length).

The first window specifier may be either an integer, or else a
search item, An integer argument is +taken as the CP count of
characters to the start of the window; a search item is searched for
in both directions in turn to find the window start (SF first, then
S8 if that failed).

The second window specifier may be an integer, a search item, or
the special item PEDME., If an integer, it defines the CP count at
the end of the window, and must be >= to the CP gount at the start of
the window, If it is & search item, 1t is searched for forwards from
the start of the window, and its End is taken as the end of the
window (GEF). Gtherwise, the item PEDME signifies that the end of
the window is at the Matching End of the text starting at the start
of the window, as defined by the command M .

‘ The commands whirh use windows are: PCOMP, OP, VW, DW, GW and
PEDARPYW , These commands, &and certaln others which use a windaow
internally, will print the warning message 'oLbuffer empty’ if applied
when the buffer is empty.

As examples of the use of window specifiers, you may compile the
function FOO from the buffer by typing
PCOMP (FOO,ME):
or you can compile the whole buffer hy typing
PLOMP (8,22)
You can type out the definition of the function FOO by typing
vw {FQO ,ME);
gr write it into a file with
0P ([Filename] ,FOO ,ME);
You can grab the text of the Tunction definition with
GW(FOO,ME) which deletes the text and returns a '*grabbed
object’ which can be inserted elsewhere (possibly in another file),

Compilation

— s —— i ————— "

PCOMP

Formats:
PCOMP £ @ => ()
PCOMP E filename => ()
PCOMP E window-specs => ()

THE PED EDITOAR 1-April-1976 Page 17
Compilation

PCOMP compiles PUOP-18 text from the buffer, gither & window from
the current buffer, or after first filling the buffer from the
specified file.

PCOMP (@) complles *the = function, operation ar macrao
definition whirh the pointer is curry poi?Iwg too. If the
pointer is not currently pointing inside such a definitian, PCOMP
compiles the 1last preceding definition and following text until
the poifter is reached (or further if necessary to reach the end
of an enclosing syntactic structure)., If there are no preceding
function, operatieon, or macro definitions in the buffer, then tsxt
is compiled from the start of the buffer up ta the pointer.

If PCOMP is applied with the stack empty, then P is taken as
default argument,

PROMP (FILENAME) saves the current buffer (with GW), inserts
the specified file into the buffer, and compiles it from there.

PCOMP (WINDOW-SPECS) compiles the text in the specified
window of the buffer,

If compilation is successful in PCOMP, then the buffer
contents and pointer position are always restored te what they
were beforehand, However, if an error occurs during compiling,
then the pointer is positioned Just after the character last read
by the compiler, If a file was being compiled, then the old
buffer position and contents are lost, If the error is due to a
syntax error, you will generally find that the pointer is only =a

few characters after the bug, so VOC; or =2VB 2; (for example)
will display the context of the error, You are still 4in the
geditor (if you were befare), so fixing the error is easy: edit

the text in the buffer, and then type

PCOMP (F0O,Z22);
where FOD is the function definition containing the error. This
will recompile the changed definition and the rest aof the file
following it. If another error 1is discovered, this procedure can
be repeated,

PCOMP makes it very easy to debug POP-18 programs in this
way . When a file all compiles from the buffer, you might give a
SAVE command to write a copy in disk, while keeping it in the
buffer, Further bugs may appear when vyou attempt to run the
program, so you can edit any functian definition in the buffer and
recompile it from there with PCOMP(B):. When you are satisfied
with the program, you can say FILE; %o write it back to disk.

PCOMP compilles text in ordinary mode, gven though vyour
terminal is in edit mode, That is, unprefixed edit commands in
the buffer are not recognised as gdit commands, To caompille a

window from the buffer in edit mode, you have to say:
PEDAPPW (window-specs ,PEDITFROM);

THE PED EDITOR 1=April-~1976 Page 11
Compilation

PEDITFROM

Format:
PEDITFROM E <character repeater> => ()
PEDITFROM E <filename> => ()

PEDITFROM is a function, not an operation. It compiles the
character stream delivered by the repeater function, in Edit Mode,.
Thus, non-prefixed edit commands met in the stream are prefixed

with PED, Apart from compiling in edit mode, it is just like
COMPILE, To compile a file of your own standard edit commands,
execute

PEDITFROM({ filespec]);
To compile edit commands in a file with COMPILE or in INIT ,POP,
you must give all edit commands in prefixed form,

The variable POPCREP is local to PEDITFROM (es it is to
COMPILE) and contains the repeater function argument; this may be
useful after an errpr to determine where the error occured,
PEDITFROM does not change whether your terminal is in Edit Mode.

SETEDIT

Format:
SETECIT E () => !

SETEDIT is a funetion, not an operation. It causes all currently
executing functions to be abandoned {as if by & JUMPOUY function},
and restarts the campiler, compiling from the terminal in Edit
MDdE-

SETEDIT clears the stacks and system workspace, and sets
POPEDMODE to TRUE. Then it applies the function POPEDFN, whose
default value is IDENTFN but which can be changed by the user, If
POPEDEN returns (as it usually will), then the compiler 1s
restarted, compiling from the terminal in Edit Mode, The compiler
‘actually reads the input repeater in PEDCHARIN, which defaults to
CHARIN. It 1is possible to replace PEDCHARIN by another repeater
function, but obviously it should take its characters from CHARIN,
possibly after manipulating them in some way. (This facility can
be useful 1in implementing a *transcription’ faecility, which
records all proceedings at the terminal in a disc file.)

The prompt is set to "! " by SETEDIT, If a ready break is
called, then POPREADY will also compile in Edit Mode, giving the
prompt "n!! " to indicate this (where <n> 1is the break level},

THE PED EDITOR 1=-April-=1976 Page 12
Inserting :

IT

IN

Inserting

edIT file

Format:
IT E <filename> => ()

IT is an operation tu start editing a file. It is applied to the
filename, a 1list, and the file is inserted into the buffer. This
is the standard way to begin an edit,

An error is given if the buffer 1is not empty (you should
gither write +the buffer oput, or clear it with LRESET:), If the
buffer is empty, the file is inserted, and its filename is saved
in NAME for future reference; the buffer pointer 1s left at the
top of the buffer (which is different from the other insert
commands). When you have finished editing, it is usual to write
the new file with the commands FILE or SAVE, which write the
buffer to a file named as in NAME: you can assign & new filename
to NAME if you wish the new file to have a different name.

Technically it is possible to insert any Insert ITtem with IT,
IT is equivalent to IN, except that it first checks that the the
buffer is empty, and afterwards puts the poilnter at the tap of the
buffer, However, IT prints @& warning ‘%not a file' if its
argument is not a filename,

E.o.:
[MYPHDG.PDP]IT:

INsert item

Format:
IN E <insert items» => ()

IN inserts the given Insert Item into the buffer just before the
position pointer, That is, text is inserted at the pointer, and
the pointer is left at the end of the new characters, The text
inserted depends an the insert item.

(1) IFf the insert item is & string, the characters aof the
string are inserted, (If the string is of zero length,
then IN is a no-op, and does not make an UNDD entry
either,) '

(2) if the argument is & word, the characters of the word are
inserted, with spaces before or after as necessary to
delimit it properly.

(3) if the argument is a numher, then characters of its
decimal representation are inserted, with spaces before
or after as necessary to delimit it, The characters will
be those that PR prints for that number.

THE PED EDITOR 1-April-1976 Page 13
Inserting

IR

(4) if the item is a 1list, it is assumed to he a filename,
and that file is inserted, Furthermore, if the buffer is
empty, then the fllename is also put into NAME,

(5) If the item is a function, it is assumed to be =&
character repeater, and 8all the characters it produces
are inserted {with IC).

(6) If the item is a grebbed object (made by GW), then the
characters in the object are inserted, provided that the
object has not been inserted previously anywhere. If the

grabbed object has already been inserted, then an error
is gilven.

If the buffer is empty, then IN always changes the wvalue of
NAME , If the argument is a filename, then it is copied to NAME;
if the insert item is anything else, then NAME is cleared. N
never changes NAME unless the buffer is empty.

E.g.:
"A-3%XIN VC:
IN "XX", IN "=", IN 34:
POPMESS ([INSOS FILE.TXT])IN;
[LIB:RANDOM ., LIB)IN:

Insert Character

Format:
IC E <character codss => ()

The character represented by the code 1s inserted into the buffer

just before the pointer, If IC is applied to TERMIN, i1t has no
effect.

IC is designed to be efficient in its use of store. If it is
applied repeatedly in succession, the characters are stored in
order with a minimum of overhead, It can therefore be used as an
putput repeater if desired, e.g.:

NONOP IC -» CUCHAROUT;
When IC hess besen applied repeatedly 1in this manner, Gne
appliration of UNDD removes all the characters inserted. IN uses

IC repeatedly in this way if its insert ditem is & character
repeater,

E.g., 32I0C; inserts a space

Insert Aead

Format:
InE () => ()

IR is a command which reads characters from the terminal and

THE PED EDITOR 1=April=1976 : Page 14
Inserting

inserts them into the buffer at the pointer. It stops reading
when either 7 or <ESC> is typed. The terminal prompt is set to a
rnull string while it is reading. I8 is used to insert large
blocks of typed text, Characters ars inserted as they ars typed
(l1ine by line), so {6 or tF will abort the TR but do not lose the

text already typed,

One applircation of UNDO will remove a1l the characters typed
to IR, in actually reads characters from PEDCHARIN, which is

normally CHARIN,

E.g.:
IR
otext.,
V2
Moves
JA, JZ Jump ts top, dJump to bottom
Formab:

JA, 47 all £ () => ()

JA moves the pointer to the top of the buffer, before the first
character 1if any. JZ moves the pointer to the bottom of the

buffer, after the last character if any,

AT, ZT top-Test, bottom-Test

Format:
AT, ZT a1l E () => <truthvalue>

AT and ZT are operations of precedence 1, which return TRUE
respectively if the pointer is at the Top ("A") or 8ottom (“2") of
the buffer, or otherwise FALSE in each case.

An efficient way to test whether the buffer is empty is with

AT AND ZT7
which is & true conditional anly when the buffer is empty.

JC Jump to Character

Format:
JC E <integer> => ()

THE PED EDBITOR 1=April-1976 Page 15
Moves

CP

2z

JL

MG

JC takes an integer argument N, and puts the pointer Just after
the N’'th character in the buffer, It is equivalent to JA if N 1is
zero or negative, or to JZ if N is larger than the number of
characters in the bufls:2'{plly the argument of JC will be =
count obtainped from CP at an earlier time, and JC will then
restore the pointer to the same position again {provided that no
insertions or deletions have subseguently been made in the buffer
before that position).

Current Position

Format:
CP £ () =» <positive integers>

CP is an operation of precedence 1, and it returns the number of
characters between the top of the buffer and the pointer, It
returns zerpo if the pointer is at the top.

27 is a protected variable which contains a wvery large positive
integer, I+ is commonly used to supply a window specifier item
for the end of the buffer, since JC{(ZZ); will be eaguivalent to
dZ 1.

Jump to Line

Format:
JL E <line number> => ()

JL tekes an integer argument N, and puts the pointer at the start
of the N'th line. JL(1): is eguivalent to JA; as is JL with a
zero or negative argument, JL is equivalent to JZ if its argument
is larger than the number aof 1ines din the file. Lines are
regarded as terminated by line~feed characters, so JL goes to the
top of the buffer and searches forwards for N-1 line-feeds, Note
that formfeeds, vertical tabs and carriage returns are ignored 1in
counting lines,

Move Characters

Format:
MC E <integer> => ()

MC takes a signed integer and wmoves the pointer forwards or
backwards by that number of characters {relatively). gmMc; is =

THE PED EDITOR 1-April=1976 Page 16
Moves

ML

MM

no-op. MC moves the pointer forwards if its argument is positive,
gtherwise backwards. If +the argument would place the pointer
outside the buffer, then the pointer is left at the top or bottom
of the buffer depending on the direction of movement.

Move Lines

Format:
ML £ <integer> => ()

ML takes & signed integer and moves the pointer forwards or
backwards hy that number of lines, gHlL: positions the pointer
at the start of the current line; 1ML ; positions it at the
start of the next 1line forwards, etc., Like MO, ML leaves the
pointer at the top or bottom of the buffer if the magnitude of the
argument is too large.

Move to Matching end

Format:
MM E () => ()

If the item immediately following the pointer (in the buffer) is &
pumber or string censtant or a word other than those listed below,
the pointer is moved to the end of that item, except that if that
item is immediately followed by a semicolon, then MM leaves the
pointer just after that semicolon,

If the item fllowing the pointer is one of the following
‘open bracket’ words, then the pointer is moved to just after the
correspending matching “closing bracket’ {unless that is
immediately foX!{;+# by a semicolon, when the polnter is moved to
just after the semicolon). IFf the matching closing item cannot be
found because aof incorrect nesting of brackets of that type, then
an error is given and the pointer is not moved,

If there is no item between the pointer and the end of the
buffer, then MM lesves the pointer at the bottom of the buffer.

THE PED EDITOR 1~April=1976 Page 17
Moves

opening breckat matching closing bracket

CANCEL :

COMMENT :

FORALL CLOSE or EXIT

IF CLOSE or EXIT

LOORIF CLOSE or EXIT

UNLESS CLOSE or EXIT

VARS :

LAMBDA END

FUNCTION END

OPERATION E8s

MACRO END

ﬁECTIDN ENDSECTIDN

()

{ % %)

[i

[% %]
Note: recognition of closing brackets depends on the syntactic
properties of the words (borrowing compiler rputines):; cancelling
a closing bracket word will make it wumrecognisable. Also MM

simply skips two items if it meets *Mr, even if the second of
these is not asctually another word guote,.

MMT Move to Matching end and Test

Format:
MMT E ()} =»> <truthvalue>

MMT has the same effect as MM except that it returns a
truth-value, If it can find the correctly nested matching end of
text in the buffer, then it moves the pointer there and returns
TRUE . If, however, the text in +the buffer is incorrectly
structured, with a missing closing bracket, then MMT lsaves the
pointer unmoved and returns FALSE., MMT also returns FALSE 1if it
moves the polnter to the end of the buffer without meeting any
items, (In this case, both MM and MMT leave the pointer at the
end of the buffer.)

Note that MMT may still give rise ta errors in the itemiser
if, for example, a bracket decorator appears out of context, or a
number contains two decimal points,

THE

PED EDITOR t-April-i976 Page 18

Searching

SF
58
SEF
S5EB

Searching

Search Forwards (for start of item)
Search Sackwards (for start of item)
Search for End Forwards
Search for End Backwards

Format:
SF, SB, SEF, BEB all E <search item?>, <count?> => ()

These commands search forwards or backwards for the specified
piece of text, starting from the current position of the buffer
pointer, If the text is found in the buffer, then the pointer is
moved to the start or end of it, as specified. If the text is not
found, the pointer is not moved, and a ‘search fail’ error is
called,

If the top item on the stack, on entry, is an integer, it is
taken as the count argument. It must be & positive integer.
Otherwise, the count argument defaults to 1. The search command
will search for the N'th matching piece of text in succession if
the count dis N.

If a search item is supplied as argument, it must be one of
the -cases listed below, and it defines the text to be sought,
Otherwise, if the stack is empty, the current content of the
variable PEDSS is used as the search item. When a search item is
supplied, it is saved in 885 for future reference. 58 may be
assigned to directly.

The search item may be one of the following:

(1) a STRING: the buffer is scanned for a wmatching group of
characters, except that upper and lower case alphabetic
characters are regarded as equivalent (in their
corresponding pairs). All characters in the string are
significant.

(?) & WORD: the buffer is scanned for a matching group of
characters in the buffer which parses as the given word
item, This means that upper and lower case characters are
regarded as distinct, unlike the string searching case,

(3) a NUMBER: the number is ’‘printed’ with PR to determine a
sequence of characters tao search for, and that sequence 1is
sought. Then the characters are read back, taking account
of leading zeros, etc.,, to check that the text in the buffer
parses as the same number,

Negative numbers cannot be sought, because the itemiser
cannot construct negative numbers for the check., A search
for 2 will not find 2.8 , because these are not equal,

{(4) & Function Object:

A Function Object is either
(a) & function item with a name, or
(b} a pair whose front is a word, and whose back is

THE PED EDITOR 1=-April-f976 Page 19
Searching

OFT
S8BT
SEF
SEB

UNDEF ,

In case {a), the name of the function is determined from its
FNPROPS, and IDENTPROPS is applied to it to discover whether
it is an operation or macro, In case (b), the front of the
pair is taken as the name of the function, and it is assumed
to be a normal function, not an operatiocn or macro.
in either case, one of the key-words “FUNCTION",

"DPERATICN" or “MACRO" is sought as appropriate, and when
found, the follaowing text items in the buffer are inspected
(with CI),. The text in the bhuffer is deemed to match if it
canforms to one of the following cases:

FUNCTION <name> or

MACRO <name> or

OPERATION <any item> <name>

Note that this procedure still works in case (a) if the
function item has been ‘bugged’, becaus e BUG copies the
FNPROPS of the original funestion to the new closure function
that it creates.

In the case of searching for the end of a function
definition, the pointer is left at the Matching End of the
entire function definitian.

A search failure commonly results from searching in the wrang

direction, for example: searching forwards when already at the
bottom of the buffer., In such cases, it is easy to try agsin by
typing e.g. SR ar 25E8; etc., as reguired. The stack is

always empty Jjust after an error, sc it is safe to implieitly wuse

the wvalue of 85, whirh will have been set by the previous search
command,

Search Forwards and Test

Search Backwards and Test
T Search for End Forwards and Test
T Search for End Backwards and Test
Format:

5FT, 88T, SEFT, SEBT all E <search itam?>, <count?>
=>» <btruthvalue>

These four commands exactly parallel the previous four search
commands in the way they search for a piece of text in the buffer,
If the search is successful, they pasition the pointer in the same
way as the previous commands, respectively, and also return TRUE,
If, on the other hand, the search fails, then they 1leave the
pointer unmoved and return FALSE instead of calling an error,

These versions of the search commands are commonly used in
*automatic’ editing programs for determining whether the editing
procedure has anything left to do. For example, they are useful
as the conditionals of iterative expressions, such as:

THE PED EDITOR 1=April=1976 Page 20
Searching

VL

«<? SFT'string’ THEN edit actions 7>

Verification

All verifying commands send output through CUCHAROUT to the
current goutput stream, When this is CHAROUT, sending the
characters to the terminal, then the characters sent are slightly
modified as described below, Otherwise, if the current output is
to any other device, the characters sent are exactly those in the
selected portion of the editor buffer, without modification. This
enables the contents of the buffer to be written on some device
other than disk, by placing an output character repeater function
in CUCHAROUT and then using a verificaetion command, However, it
will be necessarqg ¢to explicitly close that output stream, since
the verification commands do not close the output stream when they
have finished.

When the current output is %o the terminal (through CHARQUT),
the character stream is transformed in three respects,

(a} a 'marker’ character is printed at the position of the
pointer if that is within the text being verified, The "marker’
is initially "t", but can be changed to any other ASCII code with

POPMESS ([PEDMARK <ASCII cheracter code>])
A useful alternative markesr is code 1B, which 1s line-feed, No
marker is printed if the code is set to zero.

(b} upper or lower case letters and special characters may be
flagged if the terminal does not have dual~-case hardware, If the
terminal is in TTY LC mode, then all characters are sent as they
appear in the buffer (except for translation of control characters
to arrow format). However, if lower-~case mode is turned off, then
the *treatment of letters and special characters depends on the
value of the variable PEDEY, EU is initielly zero, and 1n this
case lower-case range characters are each converted to their
Upper-case eguivalents and prefixed with a single quote, If EU is
positive, then lower-case characters are replaced by their Upper
case counterparts, but Upper—-case characters from the buffer are
prefixed with single quotes, If EU is negative, then all
slphabetic-range characters are printed unchanged, even though the
terminal is not in lower-case mode.

(c) & form-feed or vertical tab character is printed as two
line-feeds, tp save time and paper.

Verification commands never move the position pointer,

Verify Lines

Format:

THE PED EDITOR 1=April-1976 Page 21
Verification

VB

VW

VL E <integer> => ()

VL takes a signed integer as argument, and verifies that number of
lines forwards or backwards from the current position. <n>VL:
will print out the same characters as <mDL; will delete.

Verify Block of lines

Format:
VB E n1, n2 => ()

VB takes two integers as arguments, defining a bleck of complete
lines to be printed out, (n2=n1) lines will be printed out,
starting with the line that ML(n1); would move the pointer to.
vB(~-3,3): is enuivalent to =3VL ,3VL; but VB may also print a
block of 1lines not including the current poimnter position, B,J.
VB(2,ZZ); .

Verify Current line
Format:
VC E () => ()
VC 4is equivalent to VB3 (%@, 1%), and takes no arguments, It is

often convenient to include VC as the last command in & string of
edit commands, It types out the characters of the line which the
pointer is currently paointing to.

Verify Window
Format: VW £ <window specifiers> => ()

Vi takes a pair of window specifiers, and prints the charecters in
the speciflied window. vwi(g,zz) will print ocut the entire
contents of the buffer, VW(FOO,ME) will print out the definition
of the function FOO,

VMAC Verify window with MACro expansiaon

Format:
YMAC E <window specifierss => ()}

VMAC verifies the contents of a window rather like VW, but any
mecros 1in the +text are expanded. VMAC prints what the compiler
sees after macro expansion., Note that VMAC will only recognise
words as macros if they have been compiled before VMAC is used or

THE
Ver

DL

DAZ

DW

GW

PED EDITOR 1-April-1976 Page 22
ificaticn

if they are standard macraos, (Remember some standard macrpos such
as BUG and UNBUG do not make any replacement text at all.) This
command is valuable when debugging programs which use macro
facilities extensively. Unfortunately the original indentation
and spacing information in the file is 1lost, so VMAC will not
print the text very neatly. It tries to insert newlines in the
correct places.

Deleting Text

. ——— — - — —— T B

Delete Characters
Delete Lines

Format:
DC, DL all E <integer> => ()

DC delstes the specified number of characters from Just
before or just after the pointer, DL deletes the specified number
of lines forwards or backwards fraom the pointer paosition. If the
grgument is pasitive, then N characters or lines are deleted from
after the pointer, or text is deleted to the end of the buffer if
this 1is reached sooner, If the argument is negative, then N
characters or 1lines are deleted from hefore the pointer, or toc the
start of the buffer if this reached sooner,

@oc: is & no-op.

Format:
DAZ E () => ()

L] ”n

DAZ deletes from "A" to "2", i.e.: the whole buffer.
Delets Window

Faormat:
W E <window specifierss> => ()}

OW deletes the contents of the specified window, The pointer 1is
left at the point of the deletiaon.

Grab Window

THE PED EDITOR 1=April-1976 Page 23
Deleting text

DSF
0s8

XE

. AB

Format:
GW E <window specifiers» =»> <grabhed objecit>

OW deletes the contents of a window like OW, but it returns a
"grabbed object” on the stack, which may he INserted in the buffer
at a later time. The grabbed object may only be inserted once,

and if the GW is UNDOne that counts as amn insertion of the grabbed
ohject,

If a grabbed object is saved somewhere, and the core image is
saved with POPMESS-SAVE and later restaored, then the grabbed
object will no longer be usable if the text in it was originally
inserted from a disc file, In this case, the I/0 channel being
used for that inserted file is no longer connected to the file
after the core image has bheen RESTOREd, and the characters of the
grabhed object cannot be accessed. An error 173 (buffer contents
using unassigned channel) will be caused when an attempt is made
to access those characters.

Delete: Search Forwards
Delete: Sparch Backwards

Format: 0DSF, DSB all <search item?>, <count> => ()

DSF and DBB take arguments 1like GSEF and 8B respectively, and
delete from the current position forwards to the end or backwards
to the start of the specified search item (if it is found).

"AND "DSF will cdelete forwards from +the pointer poasition
through to the end of the next occurence of the word "<and” in the
buffer,

Exchange commands

o s . i A AL Y

eXchange Forwards
eX change Backwards

Format:
XF, XB all E <search item?>, <count?>, <insert items> => ()

These commands search for a search item, like a search
command, and then delete the text found, and insert the Insert
item supplied in its place,

THE PED EOITOR 1-April-1976 P age 24
Exchange commands

KFT

orP

The Insert Item is treated exactly as in the IN command, and

~is supplied ‘on the top af the stack, The remaining items an the

stack (if any) then define the search string and count exactly as
for +the search commands., A search fail srror is given if the
search item cannet be found, Otherwise, the pointer is 1left at
the end of the inserted item, as for IN,

Normally twg UNDO's are necessary to reverse an exchange, the
fFirst to remove the 1inserted item, the second to reinsert the

deleted search item, However, it is sometimes convenient to give
the insert item °e ~ an empty string - which has the effect
simply of deleting the search item: in this case, only one UNDO

is regquired,

A common error with an exchange command 1s to delete the
correct text, bhut insert the wrong item in its place. In this
caseg, a single UNDO will remove the wrong insert item, after which
you can insert a replacement,

gXchange Forwards a
XBT eXchange Backwards and Test

Format:
XFT, XBT all £ «<search item?>, <cnunt?>, <insert item>
=>» <truthvaluss>

These commands parallel the previous exchange commands, but
return THUE 4if the sxchange is performed, or FALBE otherwise, In
the latter case, the pointer will not have heen moved,

These cammands are used similarly to the Search and Test
commands, for example as the conditions of iterative expressions.
For example,

<?"FNCTION"XFT'FUNCTION® THEN VC?»

will replace all occurences of "FNCTION" by “FUNCTION", wverifying
in each case.

——

OutPut

Formats:
P E <filename>» => ()
OP E <« filename>, <window specifierss> =» ()

THE RPED EDITOR 1-April-1976 ‘ Page 25
Output

CP is & command for writing part of the buffer to a specified
file on disk, It takes a filename argument (2 1list) and
optionally a window specification. The window of the whole buffer
is dimplied if no window is specified, The tontents 430Ce windaow
is then written to the specified file, with &an OUTBAK repeater,
and the output file is claosed,

If no window was specified, then 0P also applies PEDRESET,
which clears the bhuffer and the UNDO 1list, Note that this may
destroy a file if the buffer was empty.

The normal way to write the complete buffer to disk after
editing a file is with the FILE command described below, If
output is reguired through a nonstandard character consumer, the
consumer should be put into CUCHAROQUT, and a verifg command used
to print characters into it.

FILE FILE edited file on disk

Format:
FILE E () => ()

FILE is the usual command to terminate an editing session,
It uses OFP to write the entire buffer to the file whase name is in
the variable PEDNAME (presumably put there by IT earlier),

FILE gives an error i1f NAME is zero, or 1if the buffer is
empty, Dtherwise, the buffer is written out and cleared, and the
UNDDO list reset,

SAVE SAVE file {during editing)

Format;
SAVE E () => ()

S5AVE is useful during editing to write the current version aof
the fille +to disk, while alsoc keeping it in the buffer, It
remembers the current pointer poeosition CP, and does a FILE, and
then re-~inserts the file afresh with IT and restores the pointer
position,

This has the effect of clearing the UNDO l1list, as the price
of gleaning up the buffer chain of records, If yvyou wish to be
aple to uvundo back through a SAVE, vou can get this effect by the
command:

OP (NAME ,8,Z2Z);
but he sure that NAME is set and the buffer is not empty . This
use of 0P will not clear the buffer since the window is given
explicitly,

THE PED EDITOR 1-April-=19746 Page 26
Miscellaneous commands '

Miscellaneous Commands

T e e e S e e S ol A —

PEDMKS Make String

Format:
PEDMKS E <window specss =» <cstrip>

The PEDMKS command takes & pair of window specifiers, like
Gw, and returns a string of the characters in that window, The
window is NOT deleted, and the string may hbe idinserted anywhere
else as many times as desired, or used for other purposes,

UNDO undo edit action

Format:
UNDO E () => ()

The UNDO command will reverse an individual insertion or
deletion 1in the buffer, Tao save memory, the command remembers
only up to six elementary undo-able actions back at any time, and
an error is given if you attempt to UNDO too many.

There is one opther constraint on its use: if GW is used and
the ‘grabbed object’ is reinserted somewhere, the BW cannot he

UNDCNE, and an attempt to undo it will cause an error,

The PEDRBESET function e¢lears the UNDO list +to caontain
nothing: it is called by FILE and SAVE,

PEDRESET

Format:
PEDRESET £ () => ()

PEDRESET is & function which resets the editor. It cledars
the buffer and the UNDD list.,

POPMESS ~PEDMARK
POPMESS ([PEDMARK <character code>]):

changes the “marker’ character printed by wverification commands at
the position of the pointsr,

PEDAPPYW APPLY function to Window

THE PED EDITOR 1=April-1976

Page 27
Miscellansous commands
Format:
PEDAPPY E <window specifierss, <functigny => ()
PEDAPPW is a function: it takes an argument function and a

window specification. It then creates an input character repeater
reading from that window, and applies its argument function *to
that repeater function., As the repeater function is applied, it
moves the polnter to the character in the buffer just returned,

For example PEDAPPW(g,7Z ,COMPILE) will compile the contents

of the buffer 1like PCOMP(E,7ZZ). This TFfumction 1s used to
implement PEDVMAC, PCOMP, and similar facilities.

The edit commands are summarised in the ile PEDS ,HLP, which can
be printed by the HELP PEDS command,

Brror

160
161
162

163
164
165
166
167
168

169
178
171
172
173

code

PEDWNF
PEDIWA
FEDIIA

PEDNDF
PEDBNE
PEDRGD
PEDIMA
PEDSGFL
PEDISA

PEDFBB
PEDUNF
PEDMMF
PEDIBA
PEDUAC

APPENDIX A

PED ERROR CODES

meaning

Window bound Not Found
Illegal Window bound Argument
Illegal Insert Arg:
not string, word, number, file or grabbed cbject
Not a Disk File in FEDIN
Buffer Not Empty in PEDIT
Reinserting Grabbed Object, already inserted or undone
Illegal Move Argument:; not an integer
Separch Fail; i1tem net found, position unchanged
Illegal Search Arg:)
not string, word, number or function ohject
Filing Bad Buffer: buffer empty, or no NAME
UNDO Fail; nothing to undo
MM Fail; text not properly nested
Illegal BVAL Arg: assigning non-pos.integer
buffer contents using unassigned channel
probably due to POPMESS-SAVE /RESTORE

Argument

Argument types faor

AT . - L] [] » . []

Br‘eak . . N * .
Buffer ., « « ¢

Compilation ., .
CP L] L] L] T L] * L]

DAZ & « &+ « 2
DC v « v « + +
Deleting Text .,
DL . L)] . .] .
DEB & « ¢« « «
DSF v &« & v «
DW *) . . .] L]

Edit commands .
Error codes v .
Errors+

Exchange commands

FILE + ¢ &+ « «
FILE-NAMES . . .
Function Objects

Grabbed DObjects
BW L] 1] * 1] - . -

IC & . v ¢« « &
IN &« o o o o« &
Insert Item . .
Inserting . . .
INTEGERS . « .+ .
INTRODUCTION ,
IH] L] [] . -] []
IT « o v v &« o &

JA W s e e e
o
o
JZ » [] . . » » -

MC . a . L] . [L]

« = @ @

L]

edit commands

Miscellaneous Commands

ML 4 .] L] L] . L]
MD‘Q] L] * a » . .
MMT . .] . . .

INDEX

14
14
15
14

15
26
16
16
17

Fage I ndex-=1

Moves v v a

DP . . . Ll . L] -*
OQutput . . + « &

PCOMP .,
PEDAPPW ., ., . .
PEDITFROM . . .
PEDMKS +» + +« .
PEDRESET . . .« .
PEBSHTERR , , .
POPMESS -PEDMARK
POPREADY . . .
POPXPLNER ., . .
Position pointer

12 E’.Edy . 4 e & a
REPEATER

SAVE v & &« & .
58 4 v v e e 0 e
SBT v &« « v « .
Search Item . .
Searching , . .
=
BEBT o & « o . .
SEF 4 4 4 s s
SEFT (] - L] £l L] L]
SETEDIT
SF - - [L] » L] L]
5FT v & v &+
STRINGS

] (] -
L) L] A
L] a .
. . .
- * (]
L] L] .
- " L}
-+ il 2
] « .
L) L] .
L L] L]
[] L] -
. . L]
[(] (]
L] L] .
[L] *
[] . L]
L] » L]
» » -
[] [»
L]] -

Syntax of edit commands

SYGERR , ., . . .

TEXT~ITEMS ., . .

The buffer and position painter

The edit environment . .

Unassigned channel

UNDOD o v & & & &
VB v 6 v e s e
V(e (] [] . + o .
Verification , .
VL W v s 0 e e
VMAG &« o o & 4 W
V W [} 3 [)

Window Specifiers

W indows « e o+ »

arror
T s e
« 5 .
LR T
. s e
. v .
. e s
L
. = s
" = #

Windows in the Buffer .

XB . - [] L] L] L]

XBT , + * 8 8 s &
XF L L T |
XFET 0 6 s o o s
ZT L R . I T
ZZ v v s e e e

L] L -
. * L]
. L] L]
E - .
» ® L]
L] L] L]

» [}
(] L
[] .
1] .
] .
. L]
] .
] L]
] .
] .
s .
. .
[}]
. .
. »
. .
.]
. .
. .
. *
L] +
» .
L] .
. .
. .
] .
] .
. .
L] L]
-]
. *

14

24
24

26

26

23
18
19

18
18
19
18
19
1M1
18
19

W

23
26
21
21
20
20
21
21

fleJaNa JENe)

23
24
23
24
14
15

11

25

