PROGRAMMING IN POP-2

R. M. Burstall
J.S. Collins
R. J. Popplestone

at the University PvesSs
Edinbuvgh

nped
1 be

© 1971 The Round Table and

Edinburgh University Press

22 George Square, Edinburgh

Printed in Great Britain by

Unwin Brothers Limited

The Gresham Press,Old Woking, Surrey.

ISBN 0 85224 197 6

vii

s

o
t
|

CONTENTS

Preface vii
Part One
A quick guide to the main features of POP-2 1

R. M. Burstall & R. J. Popplestone

Part Two
A primer of POP-2 programming 3
R. M. Burstall & J. 8. Collins
1. Introduction 3
2. Simple arithmetic 4
3. Statements, declarations, variables 7
4. The stack 9
5. Function declarations 11
6. Conditionals 14
7. Labels and goto statements 16
8. Printing results 19
9. Words 19
10. Lists, list processing 20
11. Lambda expressions 24
12. Recursion 25
13. Defining new operations 27
14. More about lists 28
15. Records 33
16. Example of record processing 36
17. Arrays 39
18. Strips 40
19. Partial application 42
20. Input and output facilities 47
21. Cancel and sections 52
22. Macros and popval 54
23. Jumpout , 56
24, Useful standard functions 57
Appendix. Answers to exercises 59
Part Three
POP-2 reference manual 7

R. M. Burstall & R. J. Popplestone

1. Introduction 77
1.1 Aims Vi
1.2 Main features 77
1.3 Examples 78
1.4 Notation for syntactic description 79
1.5 Notation for functions 80

2. Items 81
2.1. Simple and compound items 81
2.2 Integers 82
2.3 Reals) 82
2.4 Truth values 82
2.5 Undefined 83
2.6

Terminator 83

iii

iv)

Contents

3. Variables
3.1 Tdentifiers
3.2 Declaration and initialization
3.3 Cancellation
3.4 Sections

L

Functions

Definition of functions
Application of functions
Nonloc¢al variables
Partial application
Doublets

Arithmetic operations

B g
QT W DN

5. Expressions and Statements

1 Expressions

2 Precedence

3 Statements and imperatives
4 Labels and goto statements
5 Assignment

6

Comments

[3: 51 3 I)) IS |

6. Conditionals
6.1 Conditional expressions
6.2 Conjunctions and disjunctions

7. Data Structures
7.1 Functions of data structures
7.2 Records
7.3 Strips
7.4 Garbage collection

8. Standard Structures
.1 References
Pairs

Lists

Arrays
Words
Functions

_oopooooooocooo
IO U W

9. Input and Output
9.1 Input
9.2 Output

10. Machine Code

11. Modes of Evaluation
11.1 Immediate evaluation
11.2 Macros
11,3 Evaluation of program text

Full strips and character strips

Appendix 1. Standard POP-2 character set

Appendix 2. Optional functions

Appendix 3. Changes to the reference manual which affect the
language, made since the previous edition

R . - . I -
Wm R T N B s =

83
83
84
85
85

100

105

105
105
106
106
108
109
110
110

111
111
113

114

114
114
115
116
117
117

120

Contents

83
83
84
85
85

87
87
88
89
90
91
92

93
93

100

105

105
105
106
106
108
109
110
110

111
111
113

114

114
114
115
116

117
117

h affect the 120
ion

Contents (v

Part Four: Program Library 123

LIB ALLSORT A program which sorts lists of items 124
into the order specified by the user.

LIB ASSOC A package for associating pairs of 127
items to construct and handle
association sets.

LIB CALL AND A package for monitoring POP-2 133

EXPLAIN functions to allow conversational
tutoring in the use of POP-2
programs.

LIB DCOMPILE A simple line editor for use with the 138
disc.

LIB DEBUG A powerful debugging aid for POP-2 141
programs.

LIB EASYFILE A simple but comprehensive disc 145
filing system.

LIB EQUATIONS A teaching aid which provides a 160
simple facility for checking the mani-
pulation of algebraic expressions.

LIB FOR Provides FOR statements (DO loops) 164
in POP-2.

LIB FOURS Plays a game of three-dimensional 168
noughts and crosses with the user.

LIB FULL A program generalizing the memo 175

MEMOFNS function facility so as to handle
arguments and results grouped into
sets.
LIB GRAPH A heuristic problem-solving 184
TRAVERSER algorithm.

LIB INDEX A program to sort index references 192
into alphabetical order.

LIB INVTRIG Contains Aresin, Arctan and Arccos. 196
LIB KALAH A program which plays the game of 198
Kalah with the user.

LIB MATRIX A package which gives matrix handling 204

- facilities.

LIB MEMOFNS A program which improves the run- 209
time speed of POP-2 programs.

LIB NEW A program to provide non-numerical 215

STRUCTURES arrays and pseudo-records.

LIB PLOT ° Allows users to plot, or tabulate, 221
functions over given ranges.

LIB POPEDIT A file-editing program.- 227

LIB POPSTATS A conversational, online, statistical 234

package.

V1) . Contents

LIB PROOF A program which enables a person to 248
CHECKER develop proofs of predicate calculus
theorems by the Resolution method.
LIB QUIZZING A conversational self tutorial pro- 261
MACHINE gram which quizzes the user in
selected subjects.
LIB RANDOM A pseudo-random number generator. 272
LIB RANDPACK A package for generating pseudo- 274
random numbers in several standard
distributions.
LIB SETS A collection of useful list-processing 276
functions.
Note added in proof. A language extension: generalized jumps 279

and back-tracking

Bibliography 283
Index to the primer 285
Indexes to reference manual 287
Technical terms 287
Syntax definitions 288
Standard functions and variable 288
Optional functions : 289
Syntax words 290

R

Contents

'
|
rson to 248 PREFACE r

lculus {
ethod. |
pro- 261 POP-2 is a programming language designed by R. M. Burstall and R. J. ‘

n ‘ Popplestone and based on R. J. Popplestone's POP-1 (1968). POP-2 I

i differs from most programming languages because it is designed for
non-numerical as well as numerical applications. In addition, POP-2

erator. 272 is a conversational language allowing the user to communicate with his i
fo- 74 program and vice versa while it is running. This conversational pro- .

wndard . perty enables POP-2 to be used as a rather powerful calculating
_ machine as well as a conventional computing system. A combination
_of these two modes produces a tool which can be matched to the parti-

essing 276 cular problem being solved. ' ;
The first part of this publication is a quick guide to the aims and
| jumps 279 : features of POP-2, ' '
The Primer of POP-2 Programming, forming the second part, acquaints [
283 the reader with the POP-2 language and its terminology. Not all details }
of the language are described,; enough is described, however, to provide 1
285 the reader with a solid foundation in the language so that further [
questions about it can be directed to the Reference Manual, Although
287 no previous experience of programming languages is required on the '
287 part of the reader, any such experience will be an advantage. ‘
288 The Reference Manual, forming the third part, is a precise definition of J
288 ‘ the POP-2 language. Although the Primer can be read in its entirety
289 ; before looking at the Reference Manual, it is recommended that the two ’
290 i parts are read in conjunction with each other. Thus, having read a

section of the Primer on, say, conditionals, the corresponding section of |
the Reference Manual should be studied.

The final part consists of descriptions and listings of programs from ‘
the software library, mostly written at Edinburgh, and tested on the ICL i
4100 system there. It illustrates the scope of the language and displays
a number of programming tools and techniques. Examples are DEBUG—
a debugging and tracing aid—and EASYFILE, which provides a disc 3
filing system for programs and data. |

The Reference Manual was originally published in Machine Intelligence i
2 (Edinburgh University Press 1968) and then republished with a brief '
introduction in POP-2 Papers by Oliver and Boyd (later distributed by

Edinburgh University Press). J

errors, ambiguities, and omissions have come to light, and further
experience of using the language has shown the need for a few minor
changes and two additions of some significance. The first of these
additions is jumpout,a facility which allows immediate exit from execu-
tion of one or more nested function bodies (see also the note on p.279
on an extension giving generalized jumps and back-tracking). The second
is the ability to break the program down into sections, somewhat anal-

i ogous to ALGOL blocks, thus preventing clashes of identifiers.

|
f Since the reference manual was completed two years ago a number of
|

The significant changes are listed in Appendix 3 of the Reference
Manual. Many existing POP-2 programs should run unchanged and the
remainder will need only a few simple alterations.

The 'Introduction to POP-2' which originally accompanied the reference

manual, was brief and covered only the main points of the language. It

! has now been rewritten and greatly expanded to appear here as 'A
primer of POP-2 programming’.

Vit

viii) Preface

Acknowledgements

The suggestions and criticism of many members of the Department of
Machine Intelligence and Perception at Edinburgh University, especially
Mr Ray Dunn, and of others outside it, especially Mr Michael Healy and
Mr Michael Woodger and those who have implemented POP-2 systems,
are gratefully acknowledged. Technical consultations with Dr Michael
Foster and Dr David Park about storage control were valuable, Thanks
are due to Mrs Pat Ambler who has helped in the editing of this book,
to Mr Bruce Anderson who has provided answers to the exercises in
the primer and made many useful comments, and to Miss Eleanor
Kerse who typed the new manuscript through numerous drafts.

POP-2 has been implemented on the ICL 4100 by Messrs Robin Popple-~
stone, Ray Dunn, and David Pullin, on the ICL 1900 by Mr John Scott, and
on the ICL System-4 and IBM 360 by Mr John Barnes and Mr Rod Steel
(using a machine independent version of the compiler written in POP-2).
The library of programs has been built up by many hands and organized
by Mr Ray Dunn and Mr Robert Owen. The work has been part of a
machine intelligence project, directed by Professor Donald Michie,
whose guidance and encouragement have been invaluable, and supported
by Edinburgh University, the Science Research Council, and the Medical
Research Council.

We would like to thank Edinburgh University Press for their painstaking
work on a very technical book, especially Dr Helen Muirhead, whose
care and patience never failed us.

R. M. Burstall (Editor)

Preface

 Department of
ersity, especially
ichael Healy and
POP-2 systems,
7ith Dr Michael
raluable. Thanks
1g of this book,

> exercises in

ss Eleanor
drafts.

rs Robin Popple-
[r John Scott, and
nd Mr Rod Steel

ritten in POP-2).

ds and organized
en part of a
nald Michie,
e, and supported
,and the Medical

their painstaking
rhead, whose

“handling non-numerical objects of computation (lists).

PART 1 A QUICKGUIDE TOTHE MAIN
FEATURES OF POP-
R.

R.M.BURSTALL AND J.POPPLESTONE

SUMMARY

POP-2 is a new computer language. Conceptual affinities can be traced
to
1. John McCarthy's LISP (1962), from which it takes ideas for

2, Christopher Strachey's CPL (1963) and Peter Landin's ISWIM
(1966), which foreshadow the aim of making a programming language
into a notation with full mathematical generality, akin to algebra.

3. Cliff Shaw's JOSS (1964), which it resembles in its 'conversational'
facilities.

4. Robin Popplestone's POP-1 (1968) of which POP-2 represents a
rationalized and greatly-extended development.

These ingredients have produced a powerful but compact language for
non-numerical programming. POP-2 was designed for implementation
on a medium-sized machine with a modest investment in system pro-
gramming. Because the language had to be stripped down to the level
of the basic mathematical principles of programming, it is unrestric-
tive and open-ended.

The main distinctive features of POP-2 are

1, The syntax is very simple but the programmer has some freedom
to extend it.

2. The programmer can create a wide variety of data structures:
words, arrays, strings, lists, and records. A 'garbage collector' auto-
matically controls storage for him.

3. Functions can be used in the same manner as in mathematics or
logic, for example, as arguments or results of other functions, with no
unfortunate restrictions on free variables.

4. The novel device of 'partial application' allows one to fix the value
of one or more parameters of the function. This has a surprising mul-
tiplicity of uses, for example, to generalize the notion of an array to
non-numerical subscripts and to disguise the distinction between
stored values and computed values.

5. Another technique, 'dynamic lists', enables a physical device like
a paper tape reader to be treated as if it were an ordinary list.

6. The programmer can call for immediate execution of statements
at any time, giving facilities for conversational use and rapid debugging
of complex programs.

7. The facility for immediate execution together with the variety of
data structures available makes POP-2 suitable for use as the control
language of a time-sharing system, enabling the user to effect filing,
editing, compilation, and execution.

8. In the context of the widespread shortage of system programmers,
a crucial feature is the open-endedness of the language. Work normally
done in machine code by highly-skilled system programmers can be
done in POP-2 itself.

9. POP-2 is compact and easy to implement. On the ICL 4100, for
example, the whole system for compiling, running, and time sharmg
occupies only 22K of core (24-bit words). The effort needed to con-
struct the complete system was less than 5 man-years. A machine-
independent POP-2 in POP-2 compiler has been written.

1

viii)
Ack

The
Mac
Mr

Mr

are
Fos
are
to D
the

Ker
PO.
stol
on !

The

2) Part 1: A Quick Guide to the Main Feature

AVAILABILITY

POP-2 compilers are now available for the ICL 4100, ICL 1900, ICL
System 4, and IBM Systems 360 series of machines. A PDP-10 com-
piler is being written. Multi-POP/4130 is a single-language system
for a 64-K machine with disc, serving 8 simultaneous users. The
other three implementations in their present form provide POP-2
programming in single-user mode, time-shared with batch operations

These systems are available to academic or research bodies from
the Department of Machine Intelligence and Perception, and through
arrangements with the National Research and Development Corporatic
from Conversational Software Ltd. CSL will also contract, on suitable
terms, to develop extended versions of the present systems, and also
new POP systems for other machine ranges. Enquiries may be
addressed to

POP-2 Enquiries

Department of Machine Intelligence and Perception

Forrest Hill

Edinburgh EH1 2QL.
or to

Conversational Software Ltd

Hope Park Square

Edinburgh EH8 9NW

PART 2 A PRIMER OF POP-2
PROGRAMMING
R.M.BURSTALL AND J.S.COLLINS

1. INTRODUCTION

Two important features of the POP-2 programming language distin-
guishing it from many other languages are its inherent ability to be
used in an on-line mode and the fact that it is not restricted to numeri-
cal manipulations.

One way of using a computer to solve a problem is to specify the prob-
lem, write a program to solve the problem, keypunch the program and
have it executed by the computer. This method of using a computer
assumes that: the problem is well defined; an accurate program is
available; the user is a perfect typist. In some cases, such as routine
data processing, these conditions are met fairly easily. In many cases,
however, such as for computing research or any other research prob-
lem, or when the user is not an experienced programmer, these condi-
tions cannot easily be met. It is then necessary for a dialogue to take
place between the user and the machine. In this dialogue, the computer
is asked to perform some computation. Having studied the results, the
user requests another computation. The dialogue continues in a series
of steps, each of which depends on what has happened up to that point.

In this situation, the user must be able to request the computer to
carry out tasks without having to specify them all at the start of the
session. POP-2 is a language designed for this kind of use. A funda-
mental property of the language is the ease with which the language
can be extended in ad hoc directions.

Using a calculating machine is clearly an on-line activity with alter-
nate action by the user and the machine. A notable deficiency of the
calculating machine is that it can only execute one step at a time, so
that the user is forced to interact with the machine even when he knows
what the next step will be. Extending the POP-2 language is like adding
extra keys to a calculating machine and attaching to them a meaning
defined in terms of existing operations.

NON-NUMERICAL COMPUTING

Most programming languages fall into the class of either commercial
or scientific programming languages. COBOL, a well-known example
of a commercial programming language, facilitates the writing of pro-
grams to manipulate large quantities of information, such as payroll
files. ALGOL and FORTRAN are well-known examples of scientific
programming languages. Both are particularly suitable for engineering-
type calculations where the bulk of the computing is simply arithmetic.
The more recently introduced PL/1 attempts to meet both commercial
and scientific requirements. None of these languages, however, is
really suitable for writing programs to play chess, prove theorems, or
carry out other complex non-numerical activities. This deficiency

has long been felt and list-processing languages such as LISP, or text-
processing languages such as COMIT have been developed for this
type of application. Both LISP and COMIT are classed as non-numeri-
cal languages.

It is not easy to class POP-2 with the above languages. It has the
basic numerical capability of ALGOL, the list-processing capability

3

T o NESRER s

4) Part 2: A Primer of Programming

of LISP, and elementary record-handling facilities similar to those of
COBOL. POP-2 is not, however, just a mixture of these languages; it

is essentially a simple language which includes the fundamental con-

cepts of FORTRAN, ALGOL, LISP, and COBOL, and has the ability to

add new features in a natural way. For example, it is easy to write A
a matrix-processing package in POP-2 which enables the user to

write arithmetic expressions of any complexity involving matrices.

To get a quick idea of the flavour of the language it may be helpful to
look at the example of POP-2 program text in section 1.3 of the
Reference Manual {see Part 3) and at some of the programs in the
Program Library (see Part 4).

USING A POP-2 SYSTEM

The Reference Manual defines fully the POP-2 language. It does not,
however, deal with problems like correcting typing errors, punching
POP-2 programs, or getting permission to log into a POP-2 system;
these are likely to vary from one installation to another. Each imple-
mentation of POP-2 for a particular computer system is described in
a functional specification for the particular implementation. There
are, therefore, as many functional specifications as there are different
computer systems for which POP-2 has been implemented. Before’
any of the examples or exercises in this book can be tried out, the
appropriate POP-2 functional specification must be consulted. It will
describe what peripheral devices are available, how to log into the
system, how the user is charged, and all such details.

A feature of most POP-2 systems is the console, through which com-
munication takes place between the user and his program. This is
usually a teleprinter, which allows the user to type his requests on
the keyboard and the computer to print the results. Some POP-2 sys-
tems use another input-output mode, such as punched cards, as the

- main means of communication, but we will talk here as if a console
were being used.

2. SIMPLE ARITHMETIC

The simplest use of a POP-2 system is as a rather high-powered cal-
culating machine. Having logged into the system, the system is ready
to execute any POP-2 statement we type. If we type the statement

2 + 2 => the answer ** 4 appears almost immediately. The print
arvow sign => indicates that we wish the value of the preceding arith-
metic expression to be printed. All results printed by this sign are
preceded by the double asterisk.

The rules for writing numbers are very free. They are fully defined
in sections 2.2 and 2. 3 of the Reference Manual. Briefly, numbers
may be integers or reals. Integers are written without a decimal point
as a sequence of digits. Reals are written with a decimal point with at
least one digit after the decimal point.

For example,

2,13 .2845 4.0
are legal reals but
4,

is not allowed.

Reals may have an exponent part consisting of the symbol ., followed
by a positive or negative integer. The integer is a power of ten by
which the number is scaled.

v of Programming

milar to those of

se languages; it

ndamental con-

s the ability to
easy to write
the user to

ing matrices.

ay be helpful to
1.3 of the
grams in the

ge. It does not,
rors, punching
POP-2 system;
er. Each imple~
is described in
fation. There
ere are different
nted. Before
ried out, the
nsulted. It will
) log into the

1gh which com-
am. This is
 requests on
me POP-2 sys-
ards, as the
5 if 2 console

rh-powered cal-
ystem is ready
e statement
The print
receding arith-
this sign are

e fully defined
1y, numbers

a decimal point
1al point with at

ool followed
er of ten by

Simple Avithmelic (5

For example,
2.13;01 .213;52 213.0,,—1 21.3
all represent the same number.

ARITHMETIC EXPRESSIONS

The usual arithmetic operations + — * (for multiply) and / (for divide)
are available. Arithmetic expressions involving these operations are
evaluated following the usual rules of arithmetic; multiplication and
division are carried out before addition and subtraction.

Thus if we type the statement

12,0+ 2.5 * 3,16 — 4

on the POP-2 console, the result

*%15.9

is printed because the multiplication operation is carried out first.
Notice that reals and integers can be mixed in arithmetic expressions.

Two further arithmetic operations are provided. The exponential
operation T enables a value to be raised to a power. For example, the
arithmetic expression

(—2.5) 72

means minus two point five squared and produces the value 6. 25,
Similarly 4.0 T 0.5 has the value 2.0.

An alternative division operation which may be used only between two
integers is provided. This is written as //. This integer division
operation produces two results; the quotient and the remainder.

Thus if the statement

25 // 3=>

is typed on the console, the results

*x1 .8

are printed, because 3 goes into 25 eight times with remainder one.
Notice that the print arrow is able to print a sequence of results as
well as just a single result.

PRECEDENCE AND PARENTHESES

Each of the operations described in the previous section has a prece-
dence associated with it. A precedence is a number which determines
the order in which the operations are applied. Both + and — have a
precedence of 5. *,/,and // however have a precedence of 4, indicat-
ing that these operations are applied before addition and subtraction.
The precedence table for arithmetic operations is as shown below.

Operation Precedence
i) 3
*/// 4
+ — 5

Using this table, it can be seen that the result of typing the statement
3—2.572%1.5/3 =>.

on the POP-2 console will be

**-0.125

6) Part 2: A Primey of Progvamming

The order of evaluation is as follows:

Original expression 3—2.5712*1,5/3
Apply operations of precedence 3 3—6.25%1,5/3

" " " " 4 33— 3.125

" " " " 5 —0.125

In the case of operators of equal precedence they are applied from
left to right, thus 6/2 * 5 = 15, not 0. 6.

The precedence associated with each operation defines an order of
evaluation of an expression. If another order is required, parentheses
can be used in the conventional way.

For example, the statement
(3—2.5)12*1.,5/3=>
produces the result
**0.125

The rules of precedence apply to each expression within a pair of
parentheses.

9
g
£

Thus the statement
(3—2.57T2)* 1.5/ 3 =>
produces the result
**_1.625

(The number of figures printed after the decimal point may vary from
one computer implementation to another.) Parentheses may be nested
to any depth, the expressions within inner parentheses being evaluated
first.

STANDARD FUNCTIONS

A number of mathematical functions are available for the POP-2 user.
The list may vary from one implementation to another, so the func-
tional specification for the particular implementation should be con-
sulted for the precise list. The usual list is:

sin trigoncmetric sine, -angle in radians
cos " cosine, "o "

tan " tangent’ " " "
arctan " arc tangent " " "
sqrt square root

log natural logarithm

exp " anti-logarithm

In POP-2, the argument of a function is enclosed in parentheses after
the name of the function. So V2 is written sq7t (2).

Thus the POP-2 statement
exp(2 * log(1.414)) =>
produces the result

**2.0

The standard functions are listed at the end of the Reference Manual.
So are some optional functions which an implementation of POP-2 on

a particular computer may or may not provide (Appendix 2 of the
Manual). Most implementations will provide a library of extra pro-
grams and functions with a simple method of compiling these, for
example, compile (libravy ([statistics])) might make available functions
mean, covrelation, chisquave, and so on, to do statistical tests. Part 4
'Program Library' gives descriptions and listings of many POP-2
library programs. They will be found to be of interest as examples

f Progvamming

plied from

an order of
d, parentheses

| a pair of

nay vary from
nay be nested
eing evaluated

e POP-2 user.
o the func-
ould be con-

ntheses after

ence Manual.
of POP-2 on

. 2 of the
‘extra pro-
hese, for

lable functions
lests. Part 4
ny POP-2

5 examples

Simple Avithmelic (7

of POP-2 programming. The contents of the library may vary from
one implementation to another.

EXERCISES
Answers are given as an appendix to this primer.

1. The arithmetic features of POP-2 have been described in this
section. These facilities enable a POP-2 console to be used in a cal-
culating machine mode. What would you type on a POP-2 console to
evaluate the following arithmetic expressions?

(a) 2.56x2 () 1+205—3 (c) V32 + ¢2
—1.5 X4
(d) sin20.13 + cos20.13 (e) tan~11.5

2. What is the value of the following POP-2 expressions?
(a) 8/2*6

(b) 1+2.0,5-2%*8

(¢) 7% (sqrt(16) + 2)

3. The following are not POP-2 expressions. Why not?
) (@*3)+ @ —(6+3)

(b) sin 0.5
) 1.25.40.5

(@ 6.+ .5

3. STATEMENTS, DECLARATIONS,
AND VARIABLES

An imperative is a request to the POP-2 system to do something. An
arithmetic expression followed by a print arrow is an imperative and
requests that the expression be evaluated and the result printed. The
imperative is actually carried out as soon as the print arrow is en-
countered. Thus, as well as being a printing operator, the print arrow
is an imperative separator. The basic imperative separator is the
semicolon and, in a sequence of imperatives, the individual impera-
tives must be separated from each other by a semicolon (or print
arrow if appropriate).

There are two quite distinct types of imperative: the declavation and
the statement. A declaration serves to introduce a new name or
identifier by which some quantity will be known. The simplest kind

of declaration introduces one or more variables. It consists of the
word vars followed by the identifiers of the variables being introduced.
For example, if we propose to use three variables called x,yI and y2
then the declaration

vars x y1 y2

should be given. This declaration reserves space for the storage of
three values. The three variables do not yet have any particular
values. (Some POP-2 systems initialize them with values [x.undef],
[31.undef], and [y2, undef | respectively.) Identifiers can be made up

of any group of letters and digits, beginning with a letter. Alternatively,
they can be made up of any group of the following signs:

%/ §a=<>:81
For example: ++ —*— 1z T:17

If more than eight characters are used the extra ones are ignored:
thus variablel is the same identifier as vavriable2.

8) Part 2: A Primev of Progvamming

Some identifiers are reserved as the names of standard variables,
mostly those whose values are standard functions such as sin, cos,

and sqvt, Others are reserved for syntactic purposes such as =>,
:,—>,end. These are called syntax wovds. Syntax words such as

end are printed in bold face in this book to remind the reader that

they are so used, but in the actual POP-2 text they are not distinguished
from any other identifier. Attempts to use reserved identifiers, for
example, by writing vars end; are illegal.

A statement is an imperative that causes some computation to take
place. An expression followed by a print arrow is an example of a
statement. Another type of statement is an assignment, which enables
a new value to be assigned to a variable. The assignment

24+2—>x

assigns the value 4 to the variable x replacing whatever was the pre-
vious value of x. Note that a semicolon must separate this statement
from any statement or declaration preceding or following it. A typical
imperative sequence might be:

vars x y1 y2;

2+2—>x;

x+1-—>9y1 ;

y1 =>

**5

112 —> y2;

y2 =>

**25

Notice that, assuming this imperative sequence is typed on the console
keyboard, the imperatives are executed one by one as they are typed.

It is quite all right to write
x +1—>x%;

This means that the new value of ¥ is to be the old value plus one.

If a variable is used without declaring it first, it will be automatically
declared and a message will be printed to indicate that this has
happened.

Note that only variables may appear on the right-hand side of an
assignment (a later section will indicate how certain kinds of expres-
sion may appear in this position too). It is not correct to execute
assignments such as

x —>2;
or
5—>x +y;

The first is wrong because 2 is a constant—mot a variable. The second
assignment is incorrect because ¥ + y is an expression.

Note that it is illegal to attempt to assign a new value to a standard
variable, for example, 2 —> sin;

The reader may have wondered when, if ever, it is necessary to put

in spaces or newlines. There is no distinction between a space and

a newline, or between these and any sequence of spaces and newlines.
They all serve to separate sequences of characters which might
otherwise be confused. For example, if we want to write the identifier
x2 followed by the number 3 we must write x2 3 not x23 which would
form a single identifier, but 3x2 would be a number followed by an

R =X - _ . PR - - -k

v of Progvamming

rd variables,

h as sin, cos,
 such as =>,

rds such as

» reader that

e not distinguished
dentifiers, for

itation to take
example of a

11, which enables
nent

er was the pre-
> this statement
ving it. A typical

ed on the console
they are typed.

lue plus one.

be automatically
it this has

| side of an
kKinds of expres-
t to execute

able. The second
n.,

' to a standard

essary to put

n a space and

s and newlines.
hich might

ite the identifier
23 which would
llowed by an

Statements, Declarvations, and Variables (9

identifier since it could not form a single identifier. Similarly

/// —> **x is three identifiers whilst ///—>*** is one, but x —> y is

the same as x—>v. In the case of real numbers spaces and newlines are
not permitted in the middle of the number. :

EXERCISES

1. Write assignments to exchange the value of two variables x and y.
This can be done using a third variable.

2. What will be printed after typing in the following sequences of
imperatives?
(a) varsxl x2;°

3—>x1;5 —>x2;

x1 +x2 —>x2,

x1 +x2 =>

(b) varsabd c
6—>a;7—>bya+b—>c;
c*a—>b;
a,b,c=>

3. Introduce a new temporary variable to write the following program
more briefly and efficiently.

sqrt(sin(x + a)) * exp(sin(x + a)) =>

4, THE STACK

Consider the type of statement which consists of an arithmetic expres-
sion followed by a print arrow. This causes the arithmetic expression
to be evaluated and the result to be printed on the console.

This process can be considered to take place in two stages:
(1) The arithmetic expression is evaluated.
(2) The result is printed.

In order that this can happen, the result obtained by evaluating the
arithmetic expression must be left in some communication area for
the print function to pick it up. This communication area is known as
the stack. The stack is like a stack of cards on a table. When a new
result is placed on the stack it becomes the new top of the stack and
the first to be removed. The stack is therefore a last-in-fivst-out
device.

Because the stack can accommodate more than one result, it is possible
to write several expressions separated from each other by commas.
For example, '

2.5+ 3.6,5/ 2,203
results in the three results 6.1, 2. 5, and 8. 0 being placed on the stack
with 8.0 at the top.

The print arrow => does more than was implied in the previous section.
It prints the entire stack, starting from the bottom, and empties it.

Thus if the three expressions above were followed by a print arrow,

the result

*%6,1,2.5,8.0

would be printed and the stack would be left empty. Note that the top
element of the stack is printed last. If we want to print just the top
element instead of the whole stack we may write p»();.

We may write a whole sequence of statements which put numbers onto

D S S

10) Part 2: A Primey of Programming

the stack or remove them from the stack. Thus' the sequence of four
statements

1;2;,—>y;—>%;

puts 1 on the stack, then 2 on top of it, then removes 2 assigning it to
y, then removes 1 assigning it to x, leaving the stack in its original
state. We have now met the following kinds of statement

(a) expression => '

(b) expression;

(c) expression —> variable;

(d) —> variable;

In any of these the expression may be replaced by a sequence of ex-
pressions separated by commas, and in (c) or (d) the part —> vaviable
may be replaced by a sequence of variables each preceded by an
arrow. Thus instead of the sequence above we could write

1,2 —>9Y —>X%

CAUTION. Leaving numbers around on the stack and using them later
is an easy way to make mistakes. Do not do it wantonly.

The standard function stacklength which has no arguments tells the
number of items on the stack. Thus we can discover this by typing

pr(stacklength 0
The standard function setpop, also of no arguments, clears the stack.

POP-2 functions take their parameters, if any, from the top of the
stack, and leave their results, if any, on the stack. Thus the function
sin removes the top item from the stack, computes its sine, and places
this number on the stack. When we write ' :

sin(0. 143)

0. 143 is loaded on the stack and function siz is called. If we write
sin() :

whatever is currently on top of the stack is used by the function sin.
If this expression were executed with the stack empty, an error mes-
sage would be printed indicating that the stack had underflowed.

Provided the number of parameters (arguments) put on the stack when
a function is called is the same number as taken by the function, any
numbers previously on the stack are unaffected by the transaction.

Npte the difference between writing

xizl'lyxlich loads the sin function itself onto the stack and

zvltﬁ(c;l actually causes the sin function to be executed. An alternative
way of writing the latter is

;;}:;’tch has an identical effect.

There is a standard function evase which takes one parameter and
produces no result. Evase simply removes one item from the stack.
Thus if we type

ervase(2 +2) =>

the expression in the parentheses will be evaluated but no result will
be printed. A more useful example of evase is

evase (23//6) =>

‘h‘s p === e pre

of Programming

quence of four

assigning it to
 its original
nt

quence of ex-
art —> variable
ded by an

rite

1sing them later
7.

nts tells the

is by typing

ars the stack.

> top of the
5 the function
sine, and places

If we write

function sin.
AN €rTOr mes-
rflowed.

the stack when
function, any
fransaction.

\n alternative

ameter and
om the stack.

no result will

The Stack (11

which produces the result
kk 5

because the quotient, put on top of the stack by the integer division, is
removed by the function erase.

EXERCISES

1. Assuming the functions add and mulf replace the top two mem-
bers of the stack with the sum and product respectively, what is left
on the stack after executing the following?

2,3,4;add(); mult();

2. What is the effect of the following statements?
(a) x,y—>x—>9;
) —>x—>9;%x,9;

3. Write a sequence of statements which exchange the first (top) and
third items on the stack.

5, FUNCTIONDECLARATIONS

Any POP-2 system will have a number of built-in standard functions
such as square root. Facilities are provided to extend this basic set
by defining new functions in terms of existing ones.

The function definition:
function sumsq x y;
xT2 + 912

end

defines a new function called sumsq whose value is the sum of the
squares of two numbers. x and y are called formal parameters. When
the function is called, for example, by writing sumsq(3, 4), these formal
parameters will be assigned the values of the corresponding actual
pavameters, or arguments, that is, 3 and 4, before the expression in
the body of the function definition is evaluated. Thus evaluating the
expression sumsq(3,4) causes the body of sumsg, that is,x72 -+ yT2

to be evaluated with x initialized (given an initial value) to 3,and y
initialized to 4. The value 25.0 is left on the stack as a result.

Note that a function definition does not cause any calculation to be
done; it simply creates a new function and assigns it as the value of

a variable, in this case the variable sumsq. If the variable has not
been previously declared, the function definition acts as a declaration
of it. We must distinguish the act of defining a function from that of
calling it, that is, applying it to some parameters, when the function is
actually used to perform a calculation. :

It is useful to know something about what takes place when a function
is called. When the expression

sumsq(3,4)

is evaluated, the values of the actual parameters 3 and 4 are placed
on the stack. The piece of program associated with sumsq is then
entered. o

Because sumsq has two arguments, it takes two items"off the stack
and assigns them to y and x. (Note thaty will be on top of the stack
and will be the first to be removed.) The expression

xT2 + y12

12) Part 2: A Primer of Programming

is then evaluated using these values of x and y and the result is left
on the stack. The variables x and y belong to the function sumsq and
have no connection with variables having the same mame that might

exist outside the function definition.

As a matter of fact we could achieve the same result as above without
using this parameter mechanism defining sumsgq in the following way:

function sumsg;

ia;r;'x _y); o (take two numbers off the stack and assign them
b

X124 312 toy and to x)

end

This produces the same effect because the parameter mechanism is
defined to work in this way. The parameter mechanism is simply a
shorthand notation for the above.

Notice that the body of a function definition, that is, the text occurring
after the names of the function and its parameters, may be simply an
expression, or it may be a sequence of statements. In either case it
may include some declarations. It may also include the print arrow
=>, 50 that calling the function may cause some values to be printed.
If used inside a function, the print arrow => prints and removes

only the top item on the stack.

If we have defined a function f and want to change it we simply redefine
it.. For example:

function f x;x + 1 end;
function fx;x + 2 end;
f3) =>

**5

LOCAL VARIABLES

Consider the following piece of program:
vars a; 2—> a;
function f x;vars a;
xT3 —> a;
a+ta
end;

f@),a =>

The value printed for f(3) is clearly 54. 0, that is, 33 + 33, but what
has happened to a? Is it now 27.0, the value it assumed in the calcu-
lation of f(3), or is it still 2, as it was originally? In fact the value
printed will be 2, showing that the evaluation of f(3) has not affected
the value of a.

This is because one identifiev can name more than one variable, and
each variable may have a different value. When we write an identifier
the context determines which variable is named by that identifier.
When we pass through the declaration of an identifier a new variable
is associated with that identifier. Thus vars a in the first line of the
example above creates a new variable called a, and the vars a in the
second line also creates a new variable called a whenever the function
f is applied to some argument, for example, in the evaluation of f(3).
When f (3) has been evaluated this new variable is no longer required,
thus a variable declared in the body of a function ceases to exist when
that body has been evaluated. Such a variable is called a local variable.
When an identifier occurs in a statement it always denotes the variable
which has most recently been associated with that identifier, excluding

v of Programming

 result is left
ion sumsq and
ne that might

s above without
e following way:

assign them

mechanism is
n is simply a

' text occurring
y be simply an
either case it
e print arrow
 to be printed.
removes

2 simply redefine

33, but what
in the calcu-
ct the value
5 not affected

variable, and
te an identifier
- identifier.

., new variable
rst line of the
vars a in the
ver the function
1ation of f(3).
nger required,
s to exist when
a local variable.
tes the variable
ifier, excluding

Function Declarations (13

any variables which have ceased to exist. For this purpose mentioning
an identifier as a formal parameter, for instance, x in the example
above, also acts as a declaration, and the variable it creates ceases

to exist when the function body has been evaluated.

This convention enables us to use new identifiers freely to name formal

parameters and local variables in a function body, knowing that what is
done inside the function body cannot affect any variables outside which
happen to have the same name.

Variables which are declared outside any function body (not formal
parameters or local variables) are called global variables.

Just as the parameter list provides a convenient facility for declaring
variables which are given values from the stack, so it is possible to
declare local variables whose values are automatically placed on the
stack when execution of the function is finished. Such a variable is
called an output local. The function sumsq could be defined using an
output local in the following way:

function sumsq x y => z;

xT2 +972 —> 2z

end

In this case, z is a local variable whose value is placed on the stack
at the end of executing the function sumsq. Although the sign => is
used to separate the parameters from the output locals, used in this
context it has nothing to do with printing values. It is particularly
convenient for functions which produce more than one result, for
example,

function bothroots x => posroot negvoot;
sqrt(x) —> posroot; —posroot —> negroot

end;

bothvoots(2) =>

**%1.414,—1.414

If the results were merely left on the stack, instead of using output
locals, the function would still work, but anyone reading its definition
would have to look quite carefully to notice that it produces two results
and to tell which comes first. Thus using outputlocals helps to make
the program more readable, it is a matter of taste not necessity.

If we have already declared a variable as a local variable of a given
function we may not declare it again as a local to the same function,
unless the new declaration is inside some interior function,
Thus
function f x;vars a; vars a; ... end;
is illegal, but
function f x;vars a;
function g y; varsa;... end

end;

is all right.

If similar declarations occur twice globally, that is, outside any
function body, the second one is simply ignored.

EXERCISES

1. Declare a function 7oots which takes three parameters a,b,and c,
and produces, as results, the roots of the quadratic equation

ax?2+bx+c=0

14) Part 2: A Primer of Programming

using the expressions
—b+V(B2—4ac)
2a

If your first definition of 700ts does the same calculation twice, such
as V(b2 — 4ac), rewrite it avoiding this duplication.

2. What is printed by the following program ?

varsa b ¢;1 —> a;2 —> b;3 —> c¢; ‘

function f a => c;vars b;
a*a—>bb+b—>c

end;

fla+b +c)+fla+b +c)=>

3. Assume that the function applylion takes two arguments, the first
an integer » and the other a function of one argument, and applies the
function to all integers from 1 toxn. For example,

function prsqvt n; sqvt(n) =>end,;
applylton(4, prsqrt);

**1.000

**1.414

**1,732

**2.000

How would you use this function to tabulate the value of the expression
(1 + x + %x2 + Y%x3) in the range 0 to 3.0 at intervals of 0.1? (The
function itself is to be defined as an exercise in section 7.)

6. CONDITIONALS

It often occurs within a function definition that the particular result
depends upon whether some condition is true or not. A conditional
enables one of two possible courses of action to take place according
to a condition.

Consider the function definition
function muax x y;

if x > y then x else y close
end

The value of the expression max(@,b) is @ or b, whichever is greater.
The operation > is an operation which produces a t7uth value. The
two possible truth values are false and {7ue. They are represented
by the numbers 0 and 1 respectively, but for convenience the standard
variables false and {rue always have these values.

Other operations which produce truth values are
>= greater than or equal

=< less than or equal

> greater than

< less than

= equal to.

All relation operations have a precedence of 7. Thus comparison
between arithmetic expressions will always take place after all
arithmetic operations have been carried out. For example:

10 > 3 =>

**1

50 =< 20 =>

**0

true =>
k% 1

R

of Programming

on twice, such

nents, the first
nd applies the

the expression
of 0.1? (The
7.)

cular result
conditional
1ce according

er is greater.
value. The
represented
e the standard

mparison
fter all
ole:

Conditionals (15

A conditional is always terminated with the syntax word close. Any
imperative sequence (including conditionals) can appear between the
then and the else and between the else and the close.

Quite complicated conditions can be tested using the syntax words
and and or to join a series of conditions. For example,

if x > 3 and y =< 2then x + y else x — y close

will leave x + y on the stack if x is greater than 3 and y is less than
or equal to 2. Otherwise the value of x — 3 is left on the stack.

Note that and and or are not operations. They are syntax words
associated with conditionals which simplify testing complicated
conditions. They may only appear after if or elseif (see below) and
before then. The conditionals joined by these syntax words are
evaluated from left to right according to the following table (if there
is no else then 'else statement' means the statement after close).

basic word ' value of what is
following cond condition evaluated next

and false else statement
and true next condition
or false next condition
or true then statement
then false else statement
then true then statement

The reason why and and or are not operations like * and +, and may
not be used freely to form expressions, is that in the expression x >3
or y710 > 2, for example, if x is greater than 3 there is no point in
calculating ¥710 and comparing it with 2. Analogous functions are
provided which do evaluate both arguments and may be used to form
parenthesized expressions (see section 24 'Some useful standard
functions'). The function not reverses a truth value so that we may
write

if not(p) or not(x = 3) then ... close;

A conditional can be used to select one of two possible imperative
sequences or one of two possible expressions. In the first case, the
conditional behaves like a statement and is usually called a conditional
statement. In the second case it behaves like an expression, and is
usually called a conditional expression.

Consider the following conditional expression:
if x = 1 then 2 else

if x = 2 then 4 else

if x = 3 then 3 else —I close close close

Its value is 2, 4, 3, or —1 depending on the value of x. This structure
occurs so often in programming that it is convenient to avoid having

to write many closes at the end. This is achieved using the syntax
word elseif, which behaves exactly like else followed by if except that
no corresponding close is required. Using elseif, the above conditional
expression may be rewritten:

if x =1 then2
elseif x =2 then 4
elseif x = 3 then 3
else —1 close

which only has one if requiring a corresponding close.

16) Part 2: A Primer of Progvamming

Sometimes there is no action to be taken if the condition is false. In
this case the else part may be omitted, for example,

if x > 0 then x => close;

EXERCISES

1. Rewrite the function rvoots defined in the exercise in section 5 to
(a) produce the complex roots ifb2 —4ac < 0
(b) work correctly if a = 0.

9. Write a function to test whether a given number is less than 100
and divisible by 3,4, or 5.

3. Tax is not levied on the first £150 of 2 man's income. It is levied
at 10% on the next £250,at 25% on the next £200 and at 33% on the
remainder. Write a function fax such that tax (i) is the tax levied on
an income of £7.

4. Write a function which takes three parameters and puts them in
ascending order of magnitude, for example,

f(1,—2’4) =>
*x _2 1,4

1. LABELSANDGOTOSTATEMENTS

In an imperative sequence, the statements are normally executed in
the order in which they are written. The goto statement and its
associated label enable statements to be executed in some other
specified order. The destination of a goto statement is labelled with
an identifier. The identifier (called a label) precedes the statement
and is separated from it by a colon. After execution of a goto state-
ment, the next statement to be executed is the one whose label is the
destination of the goto statement.

Consider the following function definition:
function fab fun x step hi;

again: if x =< hi then Sfun(x) =>

x + step —> x;goto again close

end

This defines a function fab which tabulates the values of a function
fun over a range from x to 4i in steps of step. Executing the statement

tab(sqrt, 1,1,3)

causes the following results to be printed:
**71.0

**1.414

**1.732

Remember that if it is used ina function body => prints only the top
item of the stack.

Goto statements and labels can only be used in a function definition,
because labels are only appropriate if the labelled instruction is
stored. Statements executed directly from the keyboard are not stored
and cannot be labelled. Moreover a goto statement can only refer to.a
label in the same function definition as the goto statement itself.
Clearly, to avoid ambiguity, no two statements may have the same
label in a given function definition.

The goto statement which skips to the end of a function definition

T

- of Programming

on is false. In

in section 5 to

less than 100

me, It is levied
33% on the
 tax levied on

puts them in

[ENTS

-executed in
F and its

me other

labelled with
e statement
a goto state-
2 label is the

'a function
g the statement

only the top

n definition,
1ction is

are not stored
nly refer to.a
it itself.

the same

efinition

Labels and Goto Statements (17

occurs so frequently that a special form is provided which requires
no label. The statement

return

terminates execution of the function in which it occurs and returns
to the program calling the function exactly as if the last statement
had been executed. The function fab could have been defined usmg
return as follows:

function fab fun x step hi;

again: if x > hi then return close;
Jun(x) =>x + step —> x; goto again
end;

We could have put a label, say finish, before end and put goto finish
instead of return. It is just that return is a little neater.

Another syntax word exit is provided. The word exit is identical to
the pair of syntax words return followed by close. This pair occurs
together quite frequently, and can always be replaced by the single
word exit.

As well as illustrating the goto statement, the definition of the function
tab above has some other features worth commenting on. The formal
parameter fun is used to denote a function. The particular function is
specified when the function fab is called. This ability to use a variable
whose value is a function is an important property of POP-2. It means
that it is easy to define functions which operate on functions and, as
we shall see later, produce functions as results.

A further point to note about the definition of tab is the use of a formal
parameter x as a variable whose value is changed during execution of
fab. As x is a local variable which has merely been given the value of
the actual parameter (via the stack), changing x cannot change any
variables in the calling program. This means that if we defined a
function increment as

function incvement x;x + 1 —> x end
and called it by executing the statement
incvement(y)

this would have no effect on y because the parameter glven to

. increment is simply the current value of y. The effect is simply to

declare a local variable x, give it the value of ¥,add 1 to it, and then
lose the value on exit from the function. To increment y we may
define

function incrvement;y + 1 — y end
and call it by increment().

Many loops, that is, sequences of instructions which may be executed
repeatedly, start off with a conditional. For example, in computing #
factorial

I: ifi=<n theni*p —> p;i+l—>i;goto I
close;

'To save making up a label and putting a statement to go back to it, we

may replace if by loopif.

loopif i=<n then i*p—>p;i+1—>i
close;

18) Part 2: A Primer of Programming

In general we can always replace if by loopif, even when elseif and
else are being used. As soon as a condition succeeds we jump back
to if (we think of else as being preceded by the condition true). Thus
we have the equivalence

loopif ... then ... loop: if ... then...;goto loop
elseif ... then... elseif ... then ...;goto loop

else ... else .. .; goto loop
close close

Here loop is any label which does not occur in any part of the same
function definition. Of course this goes on for ever unless the dots

contain some other goto, but so long as we leave out the else there

is a way of stopping, since all the conditions may fail.

Counting on integers or real numbers is S0 common that a further
abbreviation (in fact a standard 'macro', see section 22) is introduced

to cope with the most common cases. Suppose / stands for any identifier
and M, K, and N° denote any identifiers or unsigned numbers. Then we
may write

Jovall IMKN

to stand for

M—-K—>];

loopif (I+K—>I;I=<N) then

Thus forall I M K N means for all values of J from M up to N increasing
in steps of K. The factorial loop above can be written simply as

Jorvall i 11 n;
*Xp—>p
close; .
If K is a real number we should take care over rounding errors,

Jorall x 0.00.11.01;
is safer than
Jovall x 0.0 0.1 1. 00; .

since 0.0 plus ten times 0.1 might come to, say, 1.0003 to within the
computer's accuracy, and then the x = 1.0 value would not be done.

Remember that forall involves conditionals and goto so it can only be
used inside a function body.

Straightforward loops can be done with Sforall. A more powerful and
elaborate looping facility, the FOR facility, is provided in the Program
Library (see Part 4).

We have not used loopif or forall in the answers to exercises of the
Program Library since they were added during the revision of POP-2
and were not defined when this work was being done.

EXERCISES

1. The function /2b used as an example in this section tabulates a
function of one parameter over a specified range. Define a function
tab2 which tabulates a function of two parameters over specified
ranges of the two parameters. Use (ab2 to print the products of all
pairs of integers between 1 and 10. (For a way to get a proper tabular
layout of the results see section 8 'Printing results'.)

2. The sequence

x0=1‘ n
Xp+1 = 1/2(xk + };>

f Programming

elseif and
jump back
true). Thus

p
p
p

f the same
s the dots
]1se there

a further

s introduced

r any identifier
rs. Then we

o N increasing
1ply as

IrTors.

within the
' be done.

can only be

verful and
he Program

ses of the
n of POP-2

ulates a

, function
cified

ts of all
per tabular

Labels and Goto Statements (19

gets closer and closer to the square root of N as k increases. Write
a function fevms such that tevms(n, epsilon) is the value of 2 needed
to compute the square root of » to within plus or minus epsilon. For
example, if n=9 then x g=1,x1=5,%,=3.6,x3=3.05 and terms(9,0.1) = 3.

3. Define the function applylion described in example 3 of section 5
'Function declarations’. -

8. PRINTING RESULTS

So far we have used => to print results. This prints one or more
results off the stack on a new line preceded by **.

Often we would like a different layout, and the following standard
functions are provided (others are given in section 20).

pr(x) — this causes the value of x to be printed. Negative numbers
are printed with a minus sign, positive ones preceded by a space.
prreal(v, m,n) — prints a real with m digits before the point and »
digits after it.

nl(k) — this prints & new lines

sp(k) — this prints % spaces.

For example, to print the multiplication table:
function multadb; vars i j p; 1 —> i
loopi: if i > 12 then exit;
1—>7j;nl(1);
loopj:if j > 12 then { + 1 —> i; goto loopi close;
i*j—>p;
sp(if p < 10 then 2 elseif p < 100 then I else O close);
pr(®);
j + 1—>j;goto loopj
end;

multab():
1 4 5 6 7 & 9 10 11 12

2 3
2 4 6 8§ 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
etc.

Section 18 'Input and output facilities' gives further information about
reading data and printing results, using the console or other input/
output devices. Thus when we say above that something is printed we
include the case where it is output to some other device, such as a
disc file.

9. WORDS

So far, we have seen how a POP-2 variable can have a numerical value
or a function value. Another important type of values is the word. A
word, like an identifier, is made up of letters, digits, or signs. Only the
first 8 characters are significant. Examples of words are

x a5 pdp7 + (
++ 7 happy bivthday

The exact rules for constructing words are given in section 8.6 of
the Reference Manual.

20) Part 2: A Primey of Programming

In order to assign a word to a variable, it is necessary to indicate
that the word itself is meant, not the value of the variable designated
by the word. For example, the assignment

cost —> x

assigns the value of the variable cost to the variable x. In order to
assign the word cost it must be enclosed in quotes "and". In this
case, the assignment would be

"cost" —> x

after which the value of x would be the word "cost" and the effect of
printing x by typing

X =>
would be to print
**cost

If the variable ¢ has value 100 then
p'}’("COSt"),'p'}’("="),'p'}’(c);

prints

cost= 100

We may test words for equality, for example,"cat" ="cat" has value
true.

EXERCISES

1. What is printed by the following programs ?
(a) function out n w;
nl(2); prin); sp(1); prw); br(", ");pr("please™)
end;
out(20, "pounds");
out(40,"dollars");
(b) function truthval p;
if p then "true" else "false" close
end;
truthval(50>40) =>

2. The standard function destword takes as its parameter any word

and leaves on the stack integer representations of the characters and
the number of characters in the word, for example, destword("CAT")
leaves ic, iy, ig, 3 on the stack where i, iy, and iy are the integers
corresponding to ¢, a, and £, Define a function order which takes two
words and produces "before", "same", or "after", depending on whether
the first letter of the first word is before, the same as, or after the
first letter of the second word. Assume that the integer representations
of the letters are in consecutive ascending order.

10. LISTS AND LIST PROCESSING

A list is simply an ordered sequence of items. A list of words or
positive integers or positive reals can most easily be constructed by
enclosing the words, integers, or reals in square brackets. For example,
the assignment

[cat dog hovse] — x

RS ition o

of Progrvamming

to indicate
le designated

In order to
", In this

the effect of

t" has value

ter any word
aracters and
ovd("CAT")
integers

h takes two
ing on whether
r after the
representations

[N G

words or
nstructed by
s. For example,

Lists and List Processing (21

makes x a list of three words. The value of x is the whole list and if x
is printed by executing

X =>

the result

** [cat dog horse]

is printed.

Another example of a list formed in this way would be
[1 cat 2 dogs 3.1416 hovses ***]

Note that although cal is used as a word, not a variable, there is no
need to enclose it in quotes since the brackets serve the same purpose
as quotes.

There is a standard operation, written <>, which joins two lists to-
gether. Thus the expression

x <> [donkey cow]

produces a list like x but with 2 new items on the end. If this is now
printed, the result would be

** [cat dog hovse donkey cow|
The value of the variable x is not changed.

An item on a list may itself be a list. The list

[[cat dog][horse donkey]]

is a list of two items. The first item of the list is the list [cal dog].
The second item is the list [kovse donkey].

There are two standard functions for accessing the items of a list. The
tunction #d has as value the first item, or head, of the given list. Thus
if x is the list [@ b ¢ d] the value of the expression

hd(x)

is the word "¢". The function ¢! has as value the tail of the given list.
The tail of a list is the list with the head removed. The value of the
expression

tl(x)

is the list [b ¢ d]. Thus the functions kd and ¢! can be used together to
access any item on a list. The first item of the list x is hd(x), the
second item is hd(¢l(x)), the third item is Zd(tl(¢l(x))), and so on.

The tail of a list of one item is the word "#z!", which represents the
empty list. The standard variable nil has the word "nil" as its value.
Any attempt to use the functions kd and ¢l on anything other than a list
will result in an error. Thus an attempt to extract the third item from
a list of two items by writing

[a 8] —> x;
rd(tl (1 (x))) =>

results in an attempt to evaluate the expression
hd(nil)
which produces an error message because the word nil is not a list.

There is a standard function null whose value is frue for an empty list
and fazlse otherwise. It is very frequently used to test for the end of a

22) Part 2: A Primev of Programming

list. Consider, for example, a possible definition of a function lengithl,
the length of a list.

function lengthl x; vars n;

0 —>n;

11: if null(x) then n exit;

n + 1—> n;tl{x) —> x;goto 11
end;

One way of constructing a list is to use square brackets. A more

~ fundamental function is cons (short for construct) also written as ::,
" an operation of precedence 2. The expression cons(a,b),or a :: b,con-

structs a list whose head is a and whose tail is b. Thus
"eat" i nil —> x;

makes x a list of one item—the word cat. A list of several items could
be constructed using cons as follows:

ma" g2 ("B" i ("e" i mil)) —>x

which creates exactly the same list as

[ab c]—x

The latter is a shorthand notation for the first.

The funetion cons (i.e., ::) puts an item in front of a list. Let us define
a function to put an item at the end of a list. This is

function append x xl;x1 <> (x::nil) end;

Here x is an item and x1 a list (we will make a habit of using' identifiers
such as x1 and v/ for lists),x::nél is the list whose only element is x,
and the operation <> joins the list x/ to the list x::nil, Thus

append(4,[12 3]) =>
**[1234]

The reader may find the distinction between :: and <> and between x
and x::il a little puzzling. He may find the following picture helpful.
Items are coloured beads and a list is a string with beads on it. The
empty list #il is a string with no beads on it. If x is a bead and x!/ is

a string of beads then x::x! puts an extra bead on the front of the string.
If I is a string of beads and y! is another string then xl <> yl ties

the end of the first string to the beginning of the second. Thus if x

is a bead x! <> ¥ would be nonsense, since you cannot tie a bead onto
the end of a piece of string, but xI <> (x::mil) is all right,

As a matter of fact this explanation is not strictly accurate. What
happens if we do the following?

[2 3 4] —> «x;
Iix —> y;
X =>

The answer should be [2 3 4] since it would be inconvenient if the
second statement upset the result of doing the first. To ensure this
1::x does not put the bead 1 onto the string called x but rather ties a
fresh piece of string with the bead 1 on it in front of the string x,
placing the beginning of this fresh piece in y. Similarly <> uses fresh
string to copy its first argument so that the operation does not affect
the value of other variables. The details will be described fully

later on.

- Progvamming

tion lengthl,

A more
itten as ::,
or a :: b, con-

1l items could

Let us define

ing identifiers
ement is x,
us

between x

ure helpful.
on it. The

d and x! is

L of the string.
>yl ties

Thus if x

. bead onto

te. What

nt if the
nsure this
ther ties a
tring x,

> uses fresh
s not affect
d fully

N

Lists and List Processing (23

The following function tests whether an item occurs in a list.
function member x xl;
loop: if null(xl) then false

elseif 2d(xl) = x then true

else tl(xl) — x1; goto loop

close il
end; |
member(l,[21 5]) => il
**1
member ("Joe", [Fred Alf Bevt]).-=>
**0

The following pair of functions manipulate 'association lists', for
example,
[dog chien cat chal pig cochon)
function assoc x xyl => y,;vars x1;
loop: if null(xyl)then undef —> y
else hd(xyl) —> x1;tl{xyl) — xy1;
if xI = x then kd(xyl) —> y
else tl(xyl) — xyl; goto loop
close
close

end;
Note: wundef is a standard variable with value "undef" meaning undefined.

function makeassoc x y xyl => xyl1;
xiWexyl) — xyll
end,

Now we can use these in the following way
[dog chien cat chal pig cochon] —> dict;
assoc ("cat",dict) =>
** chat
makeassoc ("hen", "poule", dict) —> dict;
assoc ("hen", dict) =>
** poule

Suppose that we wish to obtain a new list, each member of which is
derived from the corresponding member of some given list by applying
a function to it. We could define a function maplist such that, for
example, maplist ([1 2 3 4], sqrt) is [1.001.41 1.73 2. 00]

function maplist xl f => yl;nil —> yl;
loop: if not(mull(xl)) then append(f(hd(xl)), y1) —> yi;
tl(xl) — xl; goto loop
close

end;

In fact maplist is a standard function.

EXERCISES

1. Given a function p which produces a truth value as its result,
write a function exists such that exists(xl, p) is true just if p produces
true for some element of xI. -

2. Write a function delete such that delete(x, xI) is a list similar to
x1 but with any items equal to x on it deleted.

3. An association list p7ice associates a price in pence with each of
a number of articles. Write a function which will take a list of articles
purchased and work out the total price (use assoc).

24) Payt 2: A Pyimer of Pvogramming

4. You are given a list, each of whose elements is an association list
describing a known criminal thus

[[rame jones haiv sandy eyes brown height 65]
[rame cvippen haiv none eyes green height 61]....]

Write a function which takes a specification of a wanted man, for
example,
[hair grey eyes brown height 60],

and produces a list of the names of known criminals who might
correspond to the description.

5. An association list is given which associates with each town a

list of other towns which can be reached from it by a direct flight.
Write a function to produce a list of all the towns which can be reached
from a given one with not more than 1 change. Now write one for not
more than » changes. (Hinf. A function to remove repeated elements
from a ??t would be useful, for example, prune (123253]) =
[1235].

11, LAMBDA EXPRESSIONS

It was mentioned in the section on functions that variables can have
functions as values, as well as the more obvious types of values such
as numbers or truth values. A function definition is therefore a kind
of assignment in which a function value is assigned to a variable. It

is possible in POP~2 to write function constants just like we can write
numerical constants (for example, 0, 3.15) or truth values ({vue, false).
A function constant is called a lambda expression and is simply a way
of defining a function and leaving the definition on the stack. The func-
tion sumsq defined earlier in the conventional way could have been
defined as follows:

vars sumsg;
lambda x y; 472 + T2 end — sumsg;

Thus the basic word lambda is very similar to the basic word function
except that no function name is included. A lambda expression is an
'anonymous' function.

Lambda expressions are useful in a variety of circumstances. A
frequently-occurring situation is illustrated by the following. We wish
to use the fab function defined above to tabulate the values of x7T3
between 1 and 10 in steps of 0. 5.

We cannot write
tab(x73,1,0.5,10);

because tab assumes the value of the first parameter is a function,
whereas the result of evaluating the expression x73 is a number.
Executing the above statement would therefore cause an error message.

We could, however, write

function cube x; xT3 end;
tab(cube, 1, 0. 5,10);

and this would work correctly but it is simpler to write
tab(lambda x; x73 end, 1, 0. 5, 10);

and the effect is identical except that no cube function remains after
execution of the statement.

of Programming

association list

]

1 man, for

10 might

each town a
irect flight.

1 can be reached
ite one for not
ated elements
253])) =

les can have

of values such
srefore a kind

y variable, It
ke we can write
es (true, false).
s simply a way
tack. The func-
d have been

¢ word function
ression is an

tances. A
owing. We wish
ues of xT3

s a function,
a number,
n error message.

AL

remains after

Lambda Expressions (25

EXERCISES

1. How would you use fub to tabulate the values of the expression
x2 — 2% — 1 for integers from 0 to 100.

9. What is the value of x after execution of the following ?
vars x k g,
lambda x;x * x end — &;
lambda f; fi2) end —> g;
g(k) —> %;

12, RECURSION

A function may call itself during its execution. The POP-2 system
automatically provides a distinct set of local variables when this
happens.

Consider two possible ways of defining a function for computing the
factorial of a number; first, an itevative definition using a goto state-
ment

function fact n => p;

1—p;

loop: ifn > 1 thenp *n — p;n—1 —>n

goto loop close

end

second, a vecursive definition in which the function itself is called
from within

function fact n;

ifn > 1 thenn * fact(n — 1) else 1 close

end

An obvious difference between these two definitions is that the second,
recursive definition is much simpler to write. However, a more
important difference is that execution of the recursively-defined func-
tion involves much more storage space. In fact, the whole arithmetic
expression

is set up before it is evaluated, whereas in the first case, the result
is accumulated factor by factor.

Where a choice exists between an iterative and a recursive definition,
the former is usually préf\erable on grounds of efficiency. Often,
however, the recursive definition will be briefer and more perspicuous,
particularly in handling complex data structures.

As an example of the use of recursive functions in list processing let
us define a function to produce the list of all items on a given list
which are greater than 100, We use x for an item and «I (i.e., x-list)
for a list.

function g7100 xI;vars x;
if null (x1) then nil
else hd (x1) — x;
if x > 100 then x :: g7100(¢l(x1))
else g7100(¢1(x1))

close
close
end;
gr100([90 101 85 106 107]) =>
** [101 106 107]

26) Part 2: A Primer of Programming

More generally if p is any property, that is, a function producing a
truth value

function sublist x1 p;vars x;
if null(xl) then #nil
else hd(xl) — x;
if p(x) then x::sublist(¢l(xl), p)
else sublist(tl(xl), p)
close
close
end;

function big x;x > 100

sublist([90 101 &5 106 107], big) =>
**[101 106 107

Since we often want both the head and tail of a list the function dest
is provided. It produces both the head and the tail. Thus we may write

function sublist xI p,;vars x;
if null(xl) then nil
else dest(xl) —> xl — x;
if p(x) then x::sublist(xl, p)
else sublist(xl, p)
close
close
end; .
Another example is a function to test whether an item occurs in a list.

function member x1 xl;vars x;
if null(xl) then false
else dest(xl) —> xl — x;
if x = x1 or member(x1, xl) then true else false close
close
end,

EXERCISES

1. Write a recursive definition of the function %cf to determine the
highest common factor of two integers. Also write an iterative defini-
tion of the same function. Which function is more efficient

(a) in terms of storage requirement

(b) in terms of running time?

2. Define the function maplist recursively (it was defined with a loop
in the section on lists). You had better give it another name such as
maplist2 since maplist is standard.

3. What is the output of the following program ?
function itlist xl y g;

if null(xl) then y

else g(hd(xl), itlist(tl(x1),y, g))

close
end;
function add x y; x+y end;
ittist({1 2 3 4], 0, add) =>
itlist([1 2 3 4], nil, append) =>

4. Write recursive functions for exercises 1 and 2 of section 10
(p.23).

of Programmi Defining New Opevations (27
Y Trogramming

roducing a 13. DEFINING NEW OPERATIONS

Having defined a function such as sumsqg with the function definition

function sumsqg x y;
xT2 +y72
end

we can evaluate expressions involving the function such as
3 + sumsq(sumsq(4,5*2),3) =>

It is often convenient, however, to use an operation rather than an
ordinary identifier to denote a function. This is standard practice in
the case of arithmetic operations where it is much simpler to write

a+b+c+d

than to write

nction dest

. we may write add(add(add(a, b), ¢), d)
where add is a function for adding a pair of integers. The only
difference between an ordinary identifier denoting a function and an
operation is that the latter has a precedence which can affect the
order of evaluation of the expression, and hence it may be written
between its agreements without any parentheses.

We can declare new operations called, say, ++ with precedence 5 and
** with precedence 3 by executing the declaration

vars operation 5 ++ operation 3 **;

and write 6 ++ 8 ** 10, meaning 6 ++ (8 ** 10). It is usual, though
not necessary, to use identifiers made up of signs rather than letters
and digits when naming operations. This convention helps the (human)
reader parse an expression. '

curs in a list.

e close
Having declared an operation, an assignment is used to assign a
function value to it. It is not possible to write

sumsq —> ++

termine the because we do not wish to perform the operation ++, only assign a
b . value to it. To make an operation behave like an ordinary identifier,
rative defini- X .

0t we place the word nonop before it. Thus the assignment

sumsq —> nonop ++

makes ++ into an operation for adding the square .of the two expressions
ed with a loop surrounding it. Alternatively we could simply write operation 5 ++
me such as instead of function sumsq in the function definition.

Another use for nonop is when we wish to pass a function denoted by
an operation variable to another function as a parameter. For example,

if — — denotes a function of one argument, we could write
tab (nonop — —, 1, 1, 100)
but not

tab(— —, 1, 1, 100)

The latter would apply — — once before applying tab instead of applying
it 100 times inside ‘ab;

By associating a precedence with an identifier we can dispense with
ction 10 some parentheses in expressions containing that identifier. Another
way of avoiding parentheses is to use the dot notation. Instead of
writing f(x) we write x .f, instead of sin(cos(x)) + cos(sin{x)) we write
X.€0S. sin + x. sin. cos. This is allowed when the argument of the

28) Part 2: A Primey of Progvamming

function is denoted by an identifier or a constant, or is itself a dot
expression.

EXERCISE

POP-2 does not have a standard not! equals operation whose value is
true if the arguments are not equal and false otherwise. Define a
suitable operation written /=with the same precedence as the =
operation, i.e. 7.

14. MORE ABOUT LISTS

LISTS WHOSE ELEMENTS ARE LISTS
Lists may have other lists as their elements, for example,
[[123]2[1[2 3] 4]

This has 3 elements, the first a list, the second a number, and the
third a list of 3 elements, one of them itself a list. The following
function will count how many numbers there are in such a list of
lists, 8 in the one above.

function lengthll I;
if null(l) then 0
elseif islist(kd(l)) then lengthll(hd(l)) + lengthll(tl(l))
else 1 + lengthll(¢l(l))
end;

Note that the function islist recognizes lists.

Consider the following function to read a list from the keyboard. The
standard function ifemvead reads one word or positive number from
the keyboard, and append (y,x) appends the item y to the end of the
listx.

function listread;
vars x y;
itemvead() —> x;
if x = "[" then nil —>y;
loop: listread() —> x;
if x = "]" theny
else append(x,y) —> ¥
goto loop
close
else x
close
end;

Note that a recursive definition is necessary here in order to allow
lists to contain lists to any complexity.

Thus. listvead() —> x;

[1 [2 3]]
has the same effect as
[1[23]]—x;

DECORATED LIST BRACKETS

The list brackets described above provide a convenient notation for
writing list structures consisting entirely of words or positive numbers.

MR i

f Progyamming

self a dot

ose value is
Define a
1S the =

e,

, and the
ollowing
a list of

syboard. The
umber from
end of the

ler to allow

1otation for
)sitive numbers.

Move About Lists (29

Alternative decovated bvackets [% and %) are provided for use when
the individual elements of the list structure are obtained by evaluating
expressions. Within decorated brackets, the expressions are separated
from each other by commas. For example, the list

[O/ox;3 + 4, nxno/o]

is a list of three items: the value of the variable x, 7, and the word "x".
Decorated brackets can be used to create list structures of any com-
plexity. They must be used to create lists with negative numbers
since negative numbers are expressions. For example,
[%—3.5,7.0,—2.6 %)

has a value the list of three numbers —3.5, 7.0, and —2. 6.

UPDATING LISTS

Given a listx, say [a b c), it is possible in POP-2 to use an assignment
to change part of the list. By executing the assignment

ngn _> hd(x)

the list x becomes [d b c].
The function ¢! can also appear on the right-hand side of an assignment.
The statement

t(tl(x)) —> tl(x)

results in the middle item of the list being deleted and x becomes [d c].
Also, if ¥ is [a b c], the statement

d —> hd(l(x))
gives x the value [a d c].

Functions like #d and # which can be used on either side of an assign-
ment are called doublets. They actually consist of two functions, one

of which is chosen for use depending upon which side of the assignment
the function is called. There is a difference between the two functions
of a doublet because on the left-hand side of an assignment the function
must produce a value, but on the right-hand side a value must be used
to change some structure. These two component functions of a doublet
are called the 'selector' and the 'updater' respectively. Thus the
function sg7t is not a doublet because there is no reasonable interpre-
tation of the assignment

3 —> sqri(2);

The POP-2 user may define doublets. Consider, for example, a function
element to get the nth element from a listx. The definition of element
is

function element n x;

if » = 1 then kd(x) else
elementn—1, tl(x)) close
end;

Thus if y is the list [a b c] then element (2,y)is b. Because element
has not been defined as a doublet, we cannot write

"z" —> element (2,9);

even though there is a very reasonable interpretation of such an
assignment. That is, to replace the second element of the list y with
the word z. In order to make element into a doublet with this meaning

30) Part 2: A Primer of Programming

when used on the right-hand side of an assignment, an auxiliary function,
say changeelement must be defined. A suitable function is

function changeelement a n x;

if n = 1 thena —> Zd(x) else
changeelement(a, n—1, tl(x)) close
end;

Notice that changeelement has an extra formal parameter a before the
other two formal parameters n and x which were used in the definition
of element. The extra formal parameter represents the value to be
assigned. Having defined changeelement, it can itself be used to update
a list., The statement

changeelement ("z", 2, x)

replaces the second item of the listx with the word z; the effect
required of element on the right-hand side of an assignment. To
make element into a doublet, the assignment

changeelement —> updater (element)

is executed using a standard function updater. This assignment puts
the function changeelement in the place that element goes to when
called on the right-hand side of an assighment. Now we can execute
the statement

"z > element (2, x)

0Oddly enough, the standard function updaier is itself a doublet. It acts
on functions and can be used to get at their update part. Thus updater
(element) = changeelement would now be true.

An important point to note about doublets, is that the updater function
of a doublet is called only if the function is the main function on the
right-hand side of an assignment. Thus in the assignment

hd(tl(x)). —> hd(el(y))

which replaces the second item of list y with the second item of list
x, only the function zd on the right-hand side uses its updater function
rather than its selector. The function ¢/ on the right-hand side is used
in its normal sense.

STATIC AND DYNAMIC LISTS

No mention has so far been made of the structure of lists as they
appear in the memory of the machine. Lists have two representations,
static and dynamic. The functions which operate on lists described so
far work equally well with either static or dynamic lists, or even
combinations of the two types.

The list brackets (both plain and decorated) and the cons operator : :
all generate static lists.

An element of a static list is called a paiv. A pair contains two values.
One is the head and the other the tail. The pair is normally represented
in the computer by two adjacent memory cells and to designate a
specific pair it suffices to pass the 'address' or serial number in
memory of the first of these cells. Thus if we write 4::nil—> x two
adjacent memory cells are reserved and 4 and #il/ are placed in them.
The address of the first of these cells is placed on the stack and then
removed and placed as the value of x.

We may represent the situation thus, using an arrow to show that x
contains the address of a pair.

[

)

LN

f Pvogvamming

xiliary function,
S

r a before the
the definition
value to be

1sed to update

» effect
ent. To

mment puts
s to when
an execute

1blet. It acts
Thus updater

ter function
tion on the
t

tem of list
ater function
1 side is used

as they
resentations,
described so
or even

operator ::

ns two values.
1y represented
ignate a

imber in

l—» x two
1ced in them.
ack and then

ow that x

Move About Lists (31

We see that an assignment which updates a component of a list which
is the value of one variable can alter the value of another variable.

Consider now the following piece of program

X =>

**[1 2 3]
y=>
**[12 3]
4 —> hd(y);
X =>

'What will be printed, [1 2 3] or [4 2 3]? This depends on whether x

and y share the same list [1 2 3], or have as their values distinct lists
which happen to have the same elements, or indeed some intermediate
situation such as sharing only the last two elements. We could find out
by looking back over the preceding program, or more directly we can
print x=y. This will be true just if x and y share the same list, not

2B

32) Part 2: A Primer of Programming

just copies with the same elements. Similarly #(x) = tI(y) tests
whether they share their last two elements.

How can we test the weaker proposition that the lists x and y have the
same elements?

function equallist x y;
if x =y or null(x) and null(y) then frue
elseif null{x) or null(y) then false
elseif zd(x) = hd(y) and equallist(tl(x), tl(y)) then frue
else false
close
end;

Thus [1 2 3] = [1 2 3] is false but equallist (1 2 3],[1 2 3)) is true.

Equallist as defined assumes that the elements of the given lists are
to be tested for strict equality, not merely list equality, and equallist
([1[2 311, [1[2 3]]) is false. To make equallist test for element-wise
equality throughout put if atom(x) or atom(y) then x =y exit; before if
and to replace hd(x)=hd(y) by equallist(hd(x), hd(y)).

We will see later that the pair used to build static lists is just a special
standard kind of rvecovd.

If the elements of a list are arbitrary and have no relation to each
other, the static representation is very suitable. If, however, each
element of a list is related to its predecessor by a well-defined rule, -
the list can be represented by this rule rather than by the actual
elements. Thus the rule 'add 1' could be used to represent the infinite
list 0,1, 2..... A dynamic list is a list represented by a rule in the
form of a POP-2 function. The function must be a function of zero
parameters and must always yield exactly one result. The function
must be so written that each successive call generates the successive
elements of the list. There is a built-in function called fntolist which
converts such a function into a dynamic list.

Consider how the dynamic list, 0, 1, 2, and so on, might be constructed.
The following will achieve it.

vars n;—I1 —> n;
function suc;n + 1 —>n;n end;
furtolist(suc) —>y;

The above POP-2 text produces the dynamic list ¥, which behaves just
like any static list except that very little storage space is required.
For example, the function element defined above to extract the nth
item from a list will work just as well with a dynamic list as with a
static list. Thus

element(y, 20) => -
produces the output

* %K 19

because the twentieth item on the list y is the integer 19.

An important use of dynamic lists is to represent a stream of items
read from an input device. For example, the function itemread described
earlier, which reads one item from the keyboard, can be turned into

a dynamic list,

futolist(itemread) —> x

— - S - S

of Programming

[(v) tests

and y have the

A frue

3)) is true.

iven lists are
and equallist
ement-wise

exit; before if

is just a special

ion to each
ever, each
-defined rule, .
he actual

sent the infinite
a rule in the
ion of zero

[he function

the successive
fntolist which

e constructed.

h behaves just
is required.
act the nth

ist as with a

).

am of items
emyead described
turned into

Move About Lists (33

enabling any program that processes a list of items to work on items
typed directly on the keyboard.

Dynamic lists provide a variant of the facility called a stveam devised
by Landin (1965).

EXERCISES

1. The function makeassoc was previously defined as
function makeassoc x y xyl => xyl1

x::(y:ixyl) — xyll
end;

Rewrite it so that if x is already on the list xy! it changes the
associated value to y producing the altered list as a result.

2. What is the output of the following program?
[12]—>x;

x —> x. b1

x. hd,x . tl.hd,x L.t hd,x L. L.t . Rd =>

3. Define a function edi¢ which has as parameters three lists. The
function should look for the second list within the first list and replace
it with the third list. For example,

[jim is a son of a bitch and so is bob]—> x1;
edit (xl, [son of a bitch],[* * * x]) —> x1;

xl =>

** [jim is a * * * * gnd so is bob]

4, Write a function to produce as a dynamic list the prime numbers
from 1 to n. :

15. RECORDS

The pair described in the previous section is a special case of a
record. A pair consists of two components called the front and the
back. When a pair is used as an element in a static list, the functions
hd and tl refer to the front and back of the pair respectively. A pair

is created by the function conspair, which finds an area of memory and
places two values in the front and back of the new pair. The function
cons used in list processing is the same as conspaiv. Conspaiv is
called the constructor for pair records. Just as a constructor takes
the components of a record and produces a record containing the com-
ponents, there is a complementary function, called a destructor, which
takes a record and yields the components of the record as results. In
the case of a pair, the destructor function is desipair, which takes a
pair and produces the front and back components of the pair as results.
Note, however, that in spite of its name, a destructor does not actually
destroy the record; it merely extracts its components.

The pair can be used by the POP-2 programmer in many ways. It is
not restricted to its use in list processing. A pair could be used to
represent a complex number and functions and operators defined for
handling pairs representing complex numbers. Thus 1::2 represents
the number I +2¢. The following might serve as a basis for complex
number manipulation.

operation 6 +++ x y;
conspaiv(front(x) + front(y), back(x) + back(y))

34) Part 2: A Primer of Programming

operation 6 — — —x y;
conspaiv (front(x) — front(y), back (x) — back([y))
end;

operation 5 *** x y;
conspaiv(front (x) * front(y) — back(x) * back(y)
front(x) * back{y) + back(x) * front(y))

end;

operation 5 /// x y;

vars z; sqrt(front(y)T2 + back@)12) —> z,

conspair{|{front(x) * front(y) + back(x) * back(y))/z,
(back(x) * front(y) — front(x) * back(y))/z)

~1):2 —> u;

1:22 4+ 3:3) ¥ u — v;
v. front, v, back =>

** 4,11

The record therefore enables a collection of quantities to be known by
one name. This is useful not only for complex numbers but for a wide
variety of situations, such as constructing list processing functions for
lists with both forward and backward pointers or storing several
items of information about an individual employee. The pair record
cannot be used of course if more than two items of information are
associated with the particular object.

POP-2 provides facilities for defining new records and functions for
dealing with them. If the pair was not already defined it could be de-
fined using the recovdfns function

recovdfns ("pair",[0 0]) —> back —> front —> destpair —> conspaiv;

The standard function recordfns takes two parameters: the name to be
associated with the type of record being defined, and a list of integers.
The number of integers in the list indicates the number of components
the records are to have—in this case two. In this list, the integer zero
indicates space for storing a POP-2 value just like any variable. Any
value other than zero indicates the number of bits required to store
the particular component. This enables more than one component to be
stored in a single machine word. Instead of an integer we may have
"COMPND", meaning the component must be a compound item, i.e., not
a real or integer.

It is important to note that vecovdfns does not produce records; it pro-
duces functions for handling a new class of records. In the case of the
pair, recovdfns places on the stack the constructor function conspaivr,
the destructor function destpaiv, the doublets for accessing the two
components front and back (called select/update doublets because they
allow us either to select out part of a record or to update that part of
the record, giving it a new value). In order to use these functions they
must be taken off the stack and assigned to variables. Note that with
functions producing more than one result, the order of assignment is
the reverse of the order in which results are placed on the stack.

Consider the problem of handling information about a collection of
persons. Each person can be represented by a record with three com-
ponents indicating the person's name, age, and sex. The name can be
represented by a word, the age by an integer less than 128, and the sex
by the integers 0 or 1. We can therefore set up functions for handling
such records as follows:

vecordfns ("pevson", [0 7 1]) —> male
—> age —> name —> destpev —> consper;

F Progvamming

) be known by

out for a wide

r functions for
several

bair record

mation are

unctions for
could be de-

> conspaiy;

he name to be
5t of integers.
f components
 integer zero
ariable. Any
ed to store
>mponent to be
e may have
item, i.e., not

ecords; it pro-
he case of the
ion conspair,
ng the two

5 because they
e that part of
functions they
ote that with
ysignment is
he - stack.

llection of

ith three com-
name can be
28, and the sex
s for handling

Recovds (35

This defines and names five new functions, and the following shows how
they might be used. First consper can be used to construct a few
records

conspev("smith", 31,1) —> pl;
conspey ("jones", 21, 0) —> p2;
conspev("robinson", 93, 1) —> p3;

p1,p2, and p3 are now records of type person, and can be interrogated
or updated by the doublets name, age, and sex.

name p2) =>

**jones

function bivihday p,
age (p) + 1 —>age (p)

end,

bivthday 3);
age (p3) =>
**94

function mavvy boy givl;
if male (boy) and not(male (givl)) then
name (boy) —> name (girl) else py("shame") close

end,

marry pl, p3);
shame

marry 1, p2);
name (p2) =>
**smith '

Sometimes we wish to test a record to see to which class it belongs.
The standard function dataword produces the word associated with the
class.

Thus

dataword(pl) =>
**pevson

The record facility of POP-2 permits the user to define new compound
objects out of existing objects, thus extending the language to handle
quantities associated with a class of problems. The objects could be
represented instead by list structures, but the appropriate record
structures usually take less storage space and the use of specially-
named functions (select-update doublets) to access the components
makes programming easier and clearer.

EXERCISES

1. A point can be represented by two real numbers. A triangle can
be represented by three points. Define classes of records to represent
points and triangles. Define a function equilateral which tests if a
given triangle has sides of equal length.

2. A flight has a number, a starting place, a finishing place, a starting
time, and a finishing time. Given a list of flights, write a function to
get to a given place by a given time starting from a given place ata
given time.

