PARTS3 POP-2 REFERENCE MANUAL

R.M.BURSTALL AND R.J. POPPLESTONE

. INTRODUCTION
1.1 AIMS

The following are the main design objectives for the POP-2 language:
(a) The language should allow convenient manipulation of a variety of
data structures and give powerful facilities for defining new functions
over them.

(b) The language should be suitable for taking advantage of on-line
use at a console, that is, it should allow immediate execution of state- ‘
ments and should have a sufficiently simple syntax to avoid frequent i
typing errors. ‘
(¢) A compiler and operating system should be easy to write and should
not occupy much storage.

(d) The elementary features of the language should be easy to learn
and use.

{e) The language should be sufficiently self-consistent and economical
in structure to allow it to incorporate new facilities when extensions

are desired.

In attaining these objectives certain other desirable features of pro-
gramming languages had to be relegated to secondary importance:
(f) Fast arithmetical facilities on integer and real numbers.

(g) Fast subscripting of arrays.

(h) A wide variety of elegant syntactic forms.

Naturally whether (c), or (f), or (g) are attained is to a considerable
extent a matter of implementation.

1.2 MAIN FEATURES

The following main features are provided. Roughly analogous features
of some other programming languages are mentioned in brackets as

a guide:

(a) Variables (cf. ALGOL but no types at compile time)

(b) Constants (cf. ALGOL numeric and string constants, LISP atoms and
list constants)

(c) Expressions and statements (cf. ALGOL)

(d) Assignment (cf. ALGOL, also CPL left-hand functions)

(e) Conditionals, jumps, and labels (cf. ALGOL)

(f) Functions (cf. ALGOL procedures but no call by name, cf. CPL
and ISWIM for full manipulation of functions)

(g) Arrays (cf. ALGOL; also CPL for full manipulation of arrays)

(h) Records (cf. COBOL, PL/1, Wirth-Hoare ALGOL records, CPL
nodes)

(i) Words (cf. LISP atoms)

(j) Lists (cf. LISP, IPL-V)

(k) Macros

(1) Use of compiler during running (cf. LISP, TRAC)

(m) Linmediate execution (cf. JOSS, TRAC).

Notes:
LISP: See McCarthy (1960)
CPL: See Barron et al (1963) and Strachey (1967)

TRAC: See Mooers (1966)

1

78) ‘ Refervence Manual

ISWIM: See Landin (1966)
JOSS: See Marks (1967)
Wirth-Hoare ALGOL: See Wirth and Hoare (1966)

1.3 EXAMPLES

The following is an example of POP-2 program text. The sign => (not
to be confused with that used in section 1.5 'Notation for functions')
prints out some results on a newline prefixed with two asterisks. These
results are included in the text below, as they would appear if the pro-
gram were run on-line at a console.

comment arithmetic;
12, 0+2. 5%(1. 5+2. 5)=>
**22.0
vars a b sum;
2*2—>a; 3*a—>b; a*a+b*b—>sum; sum=>
**160
function sumsqg x y;
x*x+y¥y
end;,
sumsq(a, b)+1=>
**161
function fact n; vars p;
1—p;
loop: if n=0 then p else n*p—>p;n—I—>n; goto loop close
end;
fact(fact(3))=>
**720

comment arvays;

vars a i j;

10—>1;20—>§,

newarvay([s, 1,i,1,7 °,], sumsq)—>a;

a(Z, 3):>

**13

10—a(2, 3);a(2, 3)=>

**10

function arraysum al a2 m n;
newarray([*% 1,m,1,n%],lambda i j;al(i,j)+a2(i,j) end)

end;

avraysum(a, a,10,20)—>a;a(2, 3)=>

**20

comment lists;
vars u;
1—i;2—>j;
[% &,i47, "dog", "cat” °f J—>u; u=>
**11 3 dog cal]
cons (”Pig", u):>
®ipig 1 3 dog cal]
function append x y;
if null(y) then [x °,] else cons(hd(y), append(x, tl(y}))) close
end;
app,end(4, [of 1,i+1,3 %])=>
**1 23 4]

nce Manual

on => (not
ctions')
isks. These
if the pro-

2lose

Intvoduction (79

comment vecords;
vars consper desiper forename surname male pl p2;
vecovdfns('person”, [0 0 1])—>male—>surname—>forename
—>destper—sconsper;
consper ("jane", "jones ", false)—>pl ; conspev("sam", "smith", true)—>p2;
Ssurname(pl)=> :
**jones
datalist(pl)=>
**[jane jones 0]
function marry x y;
if male(x) and not(male(y)) then surname(x)—>suvname(y) close
end,
mavvy(p2, p1); datalist(pl)=>
**ljane smith 0]

1.4 NOTATION FOR SYNTACTIC DESCRIPTION

We use the BNF (Backus-Naur Form) notation as used in the ALGOL
report:

‘’= indicates a syntax definition;

() are used to enclose the name of a syntax class;

| denotes disjunction (union of syntax classes).

Concatenation denotes concatenation of any elements of two syntax
classes.

We also use a convenient extension of this notation due to R. A. Brooker:

* means that a class may occur » times, n>I;
? means that a class may occur » times,n=0 or I;
*? means that a class may occur # times, n=0.

For example, the definitions
(astring) ::= (a){astring) | {a)
(bstring) ::= (b) {astring)
(estring) ::= (c){astring) | (c)

may be replaced by
(bstring) : := (b) {a*)
(cstring) ::= (c) {a* ?)

The characters (,) and * are used in the POP-2 reference language
but no confusion should arise.

When we wish to give examples of a syntax class we use the symbol
‘e.g.::=', for example, ‘

(bstring) e.g.::= (b) {a) | {b) (@) (a) (a)

The character set of the POP-2 reference language is as follows.
(letter) ::=alblcldlelflglnliljlk|lImInlolplqlrislthlviw|x|y |z
(digity ::=0]112|3|4|516|7]819

(sign) = +|—|*|/1$1&|=1<I>|:1£]7

{separator) ::=, |;

(period) ::= .

(sub ten) : =,

(bracket) ::=(1)1[l]

(bracket decovator) ::=

{quote)::= n

(string quote) ::= ‘|

Letters may be written in lower case, upper case, or bold ‘type without
any change of meaning. It will be conventional however to use bold

80) ' Reference Manual

type letters for syrtax words, that is, those identifiers, such as function,
then, end, and cancel, which have a special meaning for the POP-2 com-
piler and which characterize certain syntactic forms.

Spaces, tabulate and new lines terminate identifiers, integers, reals, and
words but otherwise they are ignored except in string constants.

A distinction is made between the reference language used in this
document and a number of possible hardware larguages used by par-
ticular computer implementations of POP-2. Each character in the
reference language should be represented by a distinct character or
sequence of characters in the hardware language. A particular letter,
whether upper case, lower case, in bold type, or not, is regarded as the
same character in the reference language.

The word 'list' is sometimes used in a syntactic sense with its ordinary
English meaning, for example, in 'formal parameter list' or 'external
list'. At other times it is used in a technical sense to refer to a kind

of data structure (see section 8. 3 'Lists'). The distinction will be clear
from the context.

.1.5 NOTATION FOR FUNCTIONS

It is convenient to have a notation to specify the domain and range of
functions. We will consider functions having several arguments (or
possibly none) and producing several results (or possibly none), the
notion of functions with more than one result being an extension of
normal mathematical usage (see section 4. 2 'Application of functions’).
We introduce a special symbol '=>' which is not to be confused W1th
any identifier in the POP-2 language.

Suppose d,,dy,...,dpm and 7, 7,, ..., 7y are all sets of items. Then
di,ds,evey,du=>71,%5,...,7y is the set of all functions whose domain
is dq,dy, ..., dy and range 7y, %5, ..., ¥y, that is, with arguments which

are m-tuples in d,Xd,X. ., Xdy, and with results which are n-tuples in
¥ X¥5. .. X7y, We express the fact that a function f is a member of
this set of functions by

Jedy,do,. . dy, =>7,V5,..., 7,
Some examples will make this clear.
add € integer, integer => inlegevr

(The usual mathematical convention is add: INTEGERSXINTEGERS—>
INTEGERS.)

divrem € inleger, integer => integev, inleger

where divrem is 'divide with remainder’, for example, divvem(7, 3)=2,1
and divrem(14,4)=3,2

roundup € veal => integer

prime € inlegev => truihvalue

If the function has no results we use an empty pair of parentheses,
thus:
prinlout € integey => ()

The arguments or results may themselves be functions
differentiate € (real=>veal) => (real=>real)

Where we wish to discuss a number of functions all having the same
domain and range it is convenient to abbreviate thus:

folee hall e... = ...

nce Manual

as function,
OP-2 com-

5, reals, and
ants.

n this

1 by par-
r in the
acter or
lar letter,
ded as the

its ordinary
'external
to a kind
vill be clear

range of
ents (or
ne), the
sion of
functions').
sed with

ns. Then
yse domain
nents which
n-tuples in
nber of

EGERS—>

m(7,3)=2,1

theses,

he same

Introduction (81

for f e = ..
and g € =>,
and Zz € =>

Some functions do not have a fixed number of arguments and some do
not have a fixed number of results (see section 4. 2, ' Application of
functions'). In such cases we may write, for example,

f € integer => veal,integev,. .., inleger

for the domain or range, meaning that a real and a variable number of
integers are the results,

2, ITEMS

2,1 SIMPLE AND COMPOUND ITEMS

The objects on which one can operate and which one can obtain as
results are called ltems.* They are divided into two distinct classes:
Simple items and Compound items.

Two kinds of simple item are distinguished: integers and reals. The
following standard functions recognize them:

isinleger,isveal all € item => tvuthvalue

Truthvalues (true and false) are represented by integers, and bitstrings
(patterns of 0s and 1s susceptible to logical operations) are represented
by positive integers, and although special functions are provided for
operating on truthvalues and bitstrings, integers used in this way are

in no way distinguishable from other integers.

All other items are compound, so called because they have components
which can be selected and updated. They consist of records, strips,
and functions, and include the particular kinds of records known as
references, pairs, lists, and words, and the particular kinds of functions
known as closure functions and arrays.

Although it is a matter of implementation and hence outside the scope
of this manual, it may help the reader to think of a simple item

as being represented by a pattern of information which does not con-
tain the representation of any other item, and a compound item as be-
ing represented by an address pointing to an area of store which may
contain the representations of other items (their addresses). In these
terms compound items are equal just if they are represented by the
same address; otherwise their addresses point to distinet non-over-
lapping areas of store, although of course these areas of store may con-
tain copies of the same addresses or bitstrings. The formal properties
of simple and compound objects, especially their behaviour with res-
pect to equality, assignment, and updating, are motivated by this point
of view.

The following standard function recognizes compound items:
iscompnd € item => lruthvalue

The standard function = (an operation of precedence 7) is used to
represent equality of items. For integers and reals it has the usual

* Each new term is introduced in italic type with an initial capital
letter.

82) Reference Manual

meaning. Its meaning for compound items is given in section 7. 1
'Functions of data structures'.

= € ilem, item => truthvalue

2.2 INTEGERS

Integers are simple items. They may be positive, negative, or zero.
The size of the largest and smallest integers allowed depends on the
implementation.

The syntax of integers is:

(integer) ::= (octal integer) | (binary integer) | (decimal integer)
(octal integer) ::= 8 {octal digit*)

(binary integer) ::= 2:{binary digit*)

(decimal integev) ::= (digit*)

(octal digity ::= 01121341567

(binary digit)::= 0|1

Examnple:
(integer)e.g. ::= 8:777|2:101 |0|6559

This syntax does not allow negative integers. These are obtained using
the operation — (minus or negate) defined in section 4. 6 'Arithmetic
operations'. Thus one may write —1 but syntactically it is an ex-
pression (see section 5. 1 'Expressions').

For standard functions to manipulate integers, see section 4. 6
'Arithmetic operations’.

Positive integers may also be treated as Bitstrings (the length depend-
ing on the implementation) and the following functions are standard:
logand, logor, logshift all € integer, integer => integer

lognot € integer => integer

logand and logor are the usual bit by bit 'and' and 'inclusive or'; log-
shift causes the first integer to be shifted left by the number of places
given in the second, unless the second integer is negative when shifting
to the right takes place (all new bits to fill up the end are zero in each
case). The correspondence between binary and decimal is the natural
one, for example, 2:101=5. The binary equivalent of a negative integer is
not defined; implementations may or may not provide one.

2.3 REALS

Reals are simple items. They may be positive, negative, or zerc. The |
size of the largest and smallest reals allowed and the precision depends
on the implementation.

The syntax of reals is as follows:]

(veal)::= (decimal integer?). (decimal integey) (exponent 7 |
{exponent) 1= + (integer) |10 <integer) | 10linteger)

Example:
(reale.g. ::= . 5|1.99]1. 5106 ‘
For standard functions to manipulate reals (including an operation to
produce negative reals) see section 4. 6 'Arithmetic operations'.

2.4 TRUTH VALUES

The two items Tvue,which is the integer 1, and False,which is the
integer 0, are called Tvuthvalues.

rence Manual

on7.1

. O Zero.
nds on the

eger)

tained using
rithmetic
AN ex-

4. 6

gth depend-
tandard:

e or'; log-

r of places
hen shifting
ero in each
he natural
ve integer is

zerc. The
sion depends

eration to
ons'.

| is the

ltems (83

On entry to the POP-2 system the standard variable frue is set to 1
and the standard variable false is set to 0. The following standard
functions on truthvalues are provided:

booland, boolor all € truthvalue, truthvalue => tvuthvalue
not € truthvalue => truthvalue

These are the usual functions 'and’, 'inclusive or' and tmot' of propo-
sitional calculus.

2.5 UNDEFINED

The standard variable undef has the word “undef” as its value on entry
to the POP-2 system (see section 8.6 'Words'). The programmer may
use it as the result of a function which fails to produce its normal
result.

2.6 TERMINATOR

The standard variable fermin has a certain item as its value on entry
to the POP-2 system. This item is a special one which cannot be
created by the programmer and is treated specially by the printing
function pr. It may be used as the first argument of a variadic function
(see section 4. 2 'Application of functions') and is used to mark the end
of an input file (see section 9.1 'Input’) or an output file (see section
9.2 'Output') and as the last item produced by a repeater (see section
8. 3 'Lists").

3. VARIABLES

3.1 IDENTIFIERS

An item may be the Value of a Variable (a variable is not itself an
item). An identifier is associated with the variable and this identifier
is used to refer to it in a POP-2 program. A number of distinct
variables rnay have the same identifier, but only one of them is
Curvently associated with it at a particular time in the evaluation
process.

An identifier may be given special syntactic Properlies by being made
an Operation with a given precedence (see section 5.2 'Precedence')

or by being made into a Mac7o (see section 11. 2, 'Macros'). These
properties cannot be changed without cancelling the identifier (see
section 3. 3 'Cancellation') or entering or leaving a section (see section
3.4 'Sections").

The syntax of identifiers is:

(identifier) ::= (letter){alphanumeric * ?) | (sign™*)
(alphanumeric) ::= (lettev) | {digit)

Example: .
(identifiev) e.g. ::= x | v99 | alpha |u2a | +++ | /+| <> [*$g*

Syntax words such as then, end, —> and : have special meanings and
may not be used as identifiers. Only the first 8 characters are
significant.

84) Reference Manual

3.2 DECLARATION AND INITIALIZATION

A variable is either Global, Local, or Formal, A Declavation is used
to introduce an identifier and associate it with a global or local
variable. A Local Declaration, introducing a local variable, is a
declaration which occurs in a function body. A Global Declavation,
introducing a global variable, is one which does not.

An Initialization is used to introduce an identifier and associate it
with a formal variable and give the variable an initial value. It is

achieved by including the identifier in the formal parameter list of
a function (see section 4.1 'Definition of functions').

A declaration or initialization may also specify that the identifier is
an operation, that is, it is restricted to take functions as its values
and is given a property called a precedence, or it may specify that
it is a macro.

The syntax of declarations is:

(declaration) ::= vars {declavation list element * ?)
(declavation list element) ::= (identifier)|{property
specification)

(property specification) ::= {property) (identifier)
1 ({property) {identifier * ?))

(property) ::= macro | operation {integer)

Example:

{declaration) e.g. ::= vars x y | vars x y operation 7 ==
macro kelp

A declaration or initialization has a Scope, which is a piece of POP-2
text. An identifier may not be used to represent a variable outside the
scope of a declaration or initialization of the identifier.

The scope of a global declaration starts at the declaration and

continues either until the identifier is cancelled (see section 3.3
'Cancellation') or if it is introduced internally to a section of the
program (see section 3.4 'Sections') until the end of that section.

The scope of a local declaration starts at the declaration and
continues to the end of the innermost function body enclosing it.

The scope of an initialization is the body of the function in which it
occurs.

To sum up: a new identifier is introduced by introducing a fresh
sequence of characters, and a new variable is introduced by each
dynamic activation of a declaration or initialization.

A variable has an Extent which is a sequence of evaluations of
expressions and statements.

The extent of a global variable starts from its declaration and
continues indefinitely.

The extent of a local or formal variable starts on entry to the body

of the function in which it is declared or initialized and continues until
exit from the body. During this extent, the extent of any other variable
with the same identifier is temporarily interrupted. This is called a
Hole in lhe Exleni of the other variable. Its value is not altered but it.
cannot be accessed or changed by assignment. Thus there is only one
variable Currently Associated with a particular identifier during any

rence Manual

on is used
local

,is a
aration,

ciate it
2, It is
r list of

ntifier is
values
ify that

of POP-2
outside the

ind

n 3.3
f the
ction.

d
g it.
vhich it

resh
each

of
nd

1e body
inues until
T variable
called a
red but it.
5 only one
iring any

Varviables (85

evaluation. Other variables associated with the identifier are tempo-
rarily inaccessible.

More than one global declaration of the same identifier is permitted
provided they give the same properties.

A declaration of a local variable is not permitted if there is already
a declaration of a local, or initialization of a formal with the same

identifier for the same function body.

A Standard Variable is a global variable which already has a value on
entry to the POP-2 system. A Standard Function (or Routine) is one
which is the value of a standard variable, Standard variables are nor-
mally Prolecled,that is, no assignment may be made to thém, or to
components of their values (exceptions are indicated).

To enable one to discover the properties of an identifier there is a
standard function idenfprops which, given a word (see section 8.6
'Words'), gives the properties of the corresponding identifier, if any,
or, if the word is a syntax word, indicates this. The identifier must

be standard or have been declared (and available within the current
section, if any) and not cancelled, otherwise ideniprops produces undef
as a result. :

identprops € word=> item

The result is as follows:

syntax word — "syntax"

macro identifier — "macvo”

operation identifier — precedence (an integer)
other identifier — 0

none of these — undef

Examples:

identprops ("end")=>

*¥*syntax

function gefsets;
if not(identprops("nonmac seis")= "macro")
then compile (discfile([sets section]))
close
end;

3.3 CANCELLATION

A cancellation terminates the scope of any declaration of an identifier
and removes any properties associated with the identifier. The
cancellation must occur textually between the old declaration and any
new declaration. It may not occur in a function body.

The syntax of cancellations is:
{cancellation) ::=cancel{identifier * ?)

The identifier of a standard variable may be cancelled. Syntax words
may also be cancelled and used thereafter as ordinary identifiers.
They may appear in place of identifiers in the above syntactic definition
(for obvious reasons semicolon is excluded and so is nonmag).

3.4 SECTIONS

To enable parts of a program to be written in a self-contained manner
they can be made into Secfions. A section may itself contain other

86) Reference Manual

inner sections. With each section we may associate a section name
and some External Identifiers. External identifiers may be used
inside or outside the section. Any other identifiers declared inside

the section are called Internal Identifiers and they are distinguished
from the same identifiers used outside the section as if their names
had been systematically changed, as if, for example, an extra character
peculiar to the section had been added to the end of each such identifier.
Thus the scope of internal identifiers is confined to the section and
associating with them properties such as having a precedence or being
a macro or cancelling them does not affect any identifier with the
same name outside the section.

The external identifiers have not necessarily been declared on entry
to the section and their appearance in the external identifier list acts
as a declaration. They may be given a precedence. At the end of the
section they are available for use outside it. If they have already been
declared this new declaration must indicate the same properties as
the old one. Otherwise it is ignored.

Other identifiers which have been declared (and not cancelled) in the
text enclosing the section may be used inside it without redeclaration,
but if an identifier is used inside it without having been declared
previously a declaration is inserted automatically, external to all

sections.
Syntax
{external list) ::==> {declavation list element * ?)
(section name) ::= {identifier)
(section) ::= section {section name ?)

{external list); {program ?) endsection
Example

vars a b;2 — a; 3 —> b;

section example=> f;
vars b;4—> a;5 —> by

function f;a=> b => end

endsection;

a=>

**4

b=>

** 3

f();

**4

**5

The occurrence of the section name after section has the effect of
adding this identifier to the externals with the property of being a

macro (see section 11.2 'Macros') and as if it had previously been
declared as a macro, thus

macro (section name); macresults([nonmac (section name)
(identifiers of the extevnals) |) end

Thus when the section name is subsequently mentioned it is as if all
the externals had been mentioned. It may be used, for example, to
cancel the externals when the functions or other items produced by
the section are no longer required.

ence Manual

on name
used

d inside
inguished
ir names

a character

ch identifier.

tion and
ce or being
ith the

on entry

r list acts
nd of the
ready been
rties as

d) in the
claration,
ared

to all

ect of
ing a
y been

s if all
le, to
ced by

Variables (87

Example)
section arith => f operation 2 g;
function f x; x+1 end;
operation 2 g x; x—I1 end;
endsection;
f3)=>
**4
g3:>
*kD
cancel arith; (i.e.cancel nonmac arith f g;)

After the cancel statement the identifiers f and g and their associated
functions are no longer available, nor is the macro avith.

Note the loose but suggestive analogy between a section and a function
definition (see section 4.1 'Definition of functions').

4, FUNCTIONS
4.1 DEFINITION OF FUNCTIONS

A Function is a compound item. Definition and application of functions
are treated in this section and the next. Certain properties of a
function regarded as a data structure are treated in section 8.7
'Functions’.

A function consists of some Fovmal Pavameters which are identifiers
of formal variables, possibly some Ouiput Locals which are identifiers
of output local variables (see section 4.2 'Application of functions')

and a Body which is an imperative sequence (see section 5. 3 'Statements
and imperatives').

A function which produces no results (see section 4. 2 'Application of
functions') is sometimes called a Roufine.

Functions may be referred to in the program by using a function
constant, called a Lambda Expression, or they may be standard functions
provided by the POP-2 system, or they may be created by partial appli-
cation or by application of a standard function which produces a function
as a result,

The syntactic representation of a function constant is:

(formal parvameter list) ::={declavation list element * ?)

{output local list) ::==> {declavation list element * ?)

(function body) ::= (imperative sequence)

{lambda expression) ::=lambda (formal parameter list)
(output local list ?); {function body) end

Example

(lambda expression) e.g. ::=lambda x y; cons(x, cons(a,y)) end
| lambda x;nl(1); print(x) end
| lambda x => y;x *x — y end

We very often wish to declare a variable and then assign a function to
it. The syntactic form of this will be as follows:

vars (identifiev),;(lambda expression)—> (identifiev);
or vars macro (identifier);{lambda expression)—> nonmac (identifier);
or vars operation (intege) identifier); (lambda expression)—> nonop
(identifier),

88) Reference Manual

These are so common that a special syntactic form is introduced which
is equivalent to them:)

(function) ::=function | macro | operation (integer)
(function definition)::= (function) (identifier){formal pavameter
list) {output local list ?); {function body) end

If an identifier after function has been previously declared at this level
0o new declaration is implied and the function definition is equivalent
simply to an assignment of a lambda expression.)

Example
{function definition) €.8. ::'=function max x y;if x>y then x else y close
end
| operation 2 enter u v; conS(conspaz'r(u, v),
dict) —> dict end
| function ovder x y =>u v;
if x>y then x—>u; y—>v
else y—u; x—>v close
end

Functions may also be viewed as data structures (see section 8.7
'"Functions').

'There are standard functions

evase € ilem =>
tdenifn € () => ()

defined by

function evase x;end;
function identfn, end;

4.2 APPLICATION OF FUNCTIONS

The Stack is an ordered sequence of items, The last item to be added
to this sequence is said to be on Top of the Stack. Items can be added
to, or removed from, the top of the stack. On entry to the POP-2 system
the stack is empty. The standard function stacklength gives the number
of items on the stack at the time when it is applied.

stacklength € () =>integer

By an n-Tuple we mean an ordered sequence of n items (=0). An item
is identical with the 1-tuple whose sole member is that item. Ann-
tuple is said to be on top of the stack if it forms the last # items of the
stack. o

A function of n arguments (that is, with n formal parameters, excluding

frozen formals; see section 4.4 'Partial application'), may be Appiied

to an n-tuple of items on top of the stack, whose members are called

the Actual Pavameters of the function. Application of a function to its :
actual parameters produces an m~-tuple of items on top of the stack for i
some m, whose members are said to be the Resulls of the function, ‘

A function which does not take a fixed number of arguments is called
Variadic. A function which does not produce a fixed number of results i
is called Varivesult. ' |

The application of a function to its actual parameters consists of the
following sequence of events: ‘
|

i

fevence Manual

troduced which

eger)
mal parameter

ed at this level
is equivalent

x else y close

(conspair(u, v),

ction 8.7

n to be added
can be added
> POP-2 system
ves the number

(n=0). An item
tem. Ann-
n items of the

ters, excluding
\y be Applied
s are called
unction to its
f the stack for
e function.

nts is called
ber of results

nsists of the

Functions (89

Entry: a new variable corresponding to each formal parameter from
right to left is initialized to the corresponding actual parameter value
removing it from the stack, or if it is a frozen formal to the corres-
ponding frozen value. A new variable corresponding to each local
variable declaration in the function body but not in any interior function
body is then created. The value of this new variable is not defined.
The variables previously associated with the identifiers of formal or
local variables can no longer be referred to but their values are
undisturbed.

Running: the function body is evaluated with the variables created on
entry.

Exit: the values of any Oufput Local Variables are placed on the stack
and these together with any items which may already have been placed
on the stack during the running of the function form the results of the
function. The variables created on entry are terminated and the
variable associated with each identifier reverts to what it was on
entry. There is no change in the values of variables which were
previously associated with the formal or local variable identifiers
and have now been reinstated. The values of formal and frozen
variables are lost. The frozen formals will be reinitialized from the
frozen values on the next entry to the function, normally with the same
values as last time; the frozen values can be changed by using frozval
(see section 8.7 'Functions').

4.3 NONLOCAL VARIABLES

Variables which occur in a function body and are not locals of that
function body (that is, declared in the body) or formals (that is,
elements of the formal parameter list) or output locals are called
Nonlocal to the function, They may be globals or locals of some
outer function body which textually encloses it. Care must be taken
not to apply a function with nonlocals in a hole in the extent of some
of its nonlocals (see section 3.2 'Declaration and initialization') when
their values are temporarily inaccessible, or outside their extent.
Mention of the identifier of such a nonlocal would refer to a quite
different variable currently associated with that identifier. The
difficulty can arise particularly for functions passed as parameters
or produced as results.

To avoid such difficulties a frozen formal may be used instead of the
nonlocal, provided that it is not desired to assign a new value to the
nonlocal as a result of the call. The frozen formal can be initialized
by partial application (see section 4.4 'Partial application') to the
value that the nonlocal would have taken. (The frozen formals can be
used in this way to 'bind' the values of the nonlocal variables to the
function and make it usable in any context.)

Example

function val f; vars a; 0—>a; () end;
vars a b; 88—>a; 99—>b;
val(lambda;b end)=>

**99

val(lambda;a end)=>

**0

val(lambda a; a end (% a %4)=>
**88

90) Reference Manual

In general, to make lambda x...z; ... end safe if it usesa,...,c as
nonlocal variables, write instead lambda ...z @...c;...end(%a, ...,
c %

In cases where assignment to the nonlocal is desired a frozen formal
can be used and initialized to take a reference (see section 8.1
'‘References') as value. The component of this reference can then be
assigned to, and so long as the reference is made the value of some
other exterior variable the value is accessible outside the function
body.

Another way to avoid unwanted clashes of identifiers, which suffices

in many cases, is to write a function such as val above in a separate
section of the program (see section 3.4 'Sections') with a as an internal
identifier.

Example

section=>uval; function val f;vars a; 0—>a; () end;
endsection;

vars a; 8§8—>a;

val(lambda;a end)=>

**88

4.4 PARTIAL APPLICATION

In section 4.2 'Application of functions' we explained the method of
applying a function to its arguments. There is a process somewhat
analogous to application called Partial Application. By this means
some of the formal parameters of a function may be made into Frozen
Formals, producing a new function with fewer arguments. The frozen
formals are always initialized to a fixed value when the function is
applied and do not require any corresponding actual parameters (see,
however, section 8.7 'Functions' for means of altering this fixed value).
In other words, the actual parameters corresponding to the frozen
formals are supplied once and for all on partial application. The values
of the frozen formals are called the Frozen Values.

For example, by partially applying the two-argument function 'multiply’
to 2 we get a one-argument function to double a number, and by
partially applying it to 3 we get a function to triple a number. These
two functions can coexist, and in general one function can be used to
generate any number of others by partial application.

Note. The mechanism may be clearer if we mention a convenient
possible implementation. On the partial application of a function f to
some items a new function is created which, when it is applied, first
places these items on the stack and then calls the function f.

More formally we say that a function f with » formals may be
partially applied to an n-tuple of actual parameters with n<m. We
assume, for the moment, that f has no frozen formals. The partial
application produces a new function f/ with m—n ordinary formals
corresponding to the first m— formals of f, and n frozen formals
corresponding to the last » formals of f. The function f’ has frozen
values consisting of the n 'items supplied as actual parameters of the
partial application.

If f itself has some frozen formals already, say k of them, then f’ will
have n+k frozen formals and n+k corresponding items in its frozen
values.

— - I e = R _;::]-J-..

vence Manual

s eee,C QS
nd(%a,...,

yzen formal
n 8.1

san then be
e of some
 function

h suffices
. separate
as an internal

nethod of
omewhat

S means

into Frozen
The frozen
nction is
eters (see,

s fixed value).
> frozen

n. The values

lon 'multiply’
d by

er. These

e used to

venient
nction f to
lied, first

f.

vy be

<m. We
partial
ormals
ormals

s frozen
lers of the

then f’ will
s frozen

Functions (91

The standard function partapply takes a function as its first argument
and a list as its second argument, and partially applies the function to
the elements of the list.

partapply € function, list => function

Note that partial application constructs a new function with particular
frozen values, it does not alter the original function in any way. A
function which has been produced as the result of partial application
is called a Closuve Function. The frozen values of a closure function
can be selected or updated as can the constituent function from which
it was derived by partial application (see section 8.7 'Functions').

If a doublet (see section 4.5 'Doublets') is partially applied to one or
more items it produces a new doublet. The selector of the new doublet
is obtained by partially applying the selector of the original doublet

to the given items. The update routine of the new doublet is obtained
by partially applying the update routine of the original doublet to the
given items.

A special syntactic form is also available for partial applications. It
is similar to that for ordinary application (see section 5.1
'Expressions’').
(partial application bracket) .= (v, | o)
(partial application) ::=(non-opevation identifier)

(% {expression sequence) %)

| { lambda expression) (% {expression sequence) %)
The value of the variable currently associated with the identifier is
partially applied to the sequence of expressions in the expression
sequence. Thus, for example,

VArS ¢; cons([is a number|y) —> c;
c(l)=> ‘

**|1 is a number)

ci@)=>

**[2 is a number)

function f ¥ y 2; .. efc. end;
FCLy L, 21%)—>f1; f1(x1)=>

Thus the statement
fL2,3%)—>f1;

would have the same effect as
function f1 x; f(x,2,3) end

except that in the latter case fl would not be a closure and hence the
doublets frozval and Jnpart could not be used to select or update its
components (see section 8.7 'Functions').

The reader may note the analogy between frozen formals and initializ-
able own variables, to use ALGOL terminology. They are what is
called the environment of a closure in Landin (1964),

4.5 DOUBLETS

When dealing with data structures, functions called Selectors are
defined which may be applied to a structure to produce its components
(see section 7.1 'Functions of data structures'). To each selector
there corresponds an Update Routine which alters the value of the
component in the structure to a given new value.

92) Reference Manual

Any function may have an update routine associated with it. This
will normally only be done for selector functions. The function is
then called a Doublet. When a function is created using a lambda
expression its associated update routine is not defined. An update
routine may be associated with it by using the doublet updater (see
section 8.7 'Functions').

When a variable whose value is a doublet is used as the operator of
a compound expression the selector function of the doublet is applied.
But when such a variable is used as the operator of a destination
expression (that is, as part of a destination of an assignment; see
section 5.5 'Assignment') the update routine is applied.

It is convenient to extend our notation for functions (see section 1.5
'Notation for functions') using the new symbol '==>' to express
concisely the domain and range of the selector and update routines

of a doublet. Thus if f is a doublet we write

fedy, ..., dp==>7r

meaning that f has a selector s

S €dy,..s,dp =>7

and an update routine u«

U €V,dy,ene,dp=>()

Example

The standard function zd used in list processing (see section 8.3 'Lists")
is a doublet.

vars [;[1 2 3 4] — L hd(l)=>
**1

5—>hd(l); I=>

**[523 4]

hd(l)=>

**5

function second ; hd(tl(l}) end;
lambda x [; x—>hd(tl(l)) end—> updater(second);
second(l) =>

**2

6—>second(l); [=>

**[5 6 3 4]

4.6 ARITHMETIC OPERATIONS

We say that an item is a Number if it is either a real or an integer.
Arithmetic on numbers is performed by the standard functions,
which are operations, shown in the table.

Operation Precedence Explanation Result

< 7 less than truthvalue

> 7 greater than truthvalue

=< 7 less than or equal truthvalue

>= 7 greater than or equal truthvalue

+ 5 add real or integer
— 5 subtract real or integer
* 4 multiply real or integer
/ 4 divide real

// 4 divide with remainder integer, integer
T 3 to the power real

f——‘

fevence Manual

 it, This
unction is
0. lambda
An update
dater (see

operator of
let is applied.
stination
nent; see

section 1.5
XPress
e routines

tion 8.3 'Lists")

an integer.
ctions,

alue
alue
alue
1lue
r integer
r integer
r integer

r, integer

Functions (93

+,— and * produce an integer result if both arguments are integer,
otherwise a real result. // is divide with remainder and, given two
integers, it produces a remainder and a quotient. Xfa // b is (», ¢)
then ¢*b+r=q and |7 | <|b|and r*a>0. For example, 10 // 3—> g—> 7;
leaves ¢ equal to 3 and » equal to 1.

After a semicolon, comma, (, (%, [%, if, loopif, and, or, then, else or elseif,
— is interpreted as an operation of one argument which negates an
integer or a real, similarly + is there interpreted as an identity
operation having no effect on a real or integer.

There is a standard function which produces —1, 0, or +1 according
to the sign of a number

sign € integev ov veal =>integer

There are standard functions to convert a real to the nearest integer
less than or equal to it and to convert an integer to a real

intof € real =>integer
rvealof einteger =>real

The equality operation =, of precedence 7, has already been defined
in section 2.1 'Simple and compound items'. An integer is never equal
to a real.

5 EXPRESSIONS AND STATEMENTS

5.1 EXPRESSIONS

An Expression is either a simple expression, a compound expression, a
conditional expression, an imperative expression (see section 5. 3
'Statements and imperatives'), or a parenthesized expression sequence.

A Simple Expression is either an identifier or a Constant,a constant
being an integer, a real, or a structure constant. If the simple expres-
sion is an identifier then its value is the value of the variable currently
associated with that identifier. If it is a constant then its value is the
item denoted by the constant. A Structure Constant is either a lambda
expression, which is dealt with in section 4.1 'Definition of functions'
and in section 8.7 'Functions’, a word constant, a string constant, or a
list constant, all of which are dealt with in section 8 'Standard
structures’.

A Compound Expression has an Operator which is an expression and
some Opevands which are an expression sequence. The value of a
compound expression is found by evaluating the operands and evaluating
the operator, whose value should be a function (see section 4.5
'Doublets' for the case where the operator is a doublet). The sequence
in which these evaluations are carried out is not defined. The function
obtained from the operator is then applied to the n-tuple obtained by
evaluating the operands. The results of this application are the value
of the expression. Thus the value of the expression is an n-tuple, with
n=0 if the function is a routine.

Evaluation of a compound expression affects the stack as follows. The-
operand expressions, when evaluated, leave their results on the stack,
so does the operator expression. The top item of the stack is then
immediately removed and applied, taking as arguments the items

94) Reference Manual

remaining on top of the stack. If the number of arguments required is
greater than the number resulting from evaluation of the operands, one
or more items which were on top before the evaluation will be used as
well; if it is less, then some of these results will not be used and will
remain on the stack. The results of the application, if any, are left on
the stack.

Evaluation of conditional expressions is described in section 6.1
'Conditional expressions', and that of imperative expressions in section
5. 3 'Statements and imperatives'.

An expression sequence is evaluated by evaluating the expressions of
which it consists and placing the results on the stack. The order in
which the evaluations are made is not defined. The order in which the
results of evaluating the expressions are used to form the »n-tuple is the
order in which the expressions occur.

The syntax of expressions is given below. There are a number of
syntactic forms for compound expressions. A further explanation of the
syntax is given in section 5.2 "Precedence’.

(non-opervation identifier) ::= (identifiev) | nonop {operation)
(constant) ::= (integer) | {(veal) | (structuve constant)
(structure constant) ::= (lambda expression) | (quoted word)
| (string constant) | (list constant)
(simple expression) ::= (non-opevation identifier) | {constant)
{operation) ::= (identifier)
(parventhesis) ::= (|)
{compound expression) :.:= (non-operation identifier) (paventhesized
expression *) | (paventhesized expression)
(parenthesized expression *)
{expression ?) {operation) {expression ?)
|(closed expression ?) {dot operator *)
| {parenthesized expression) {dot operator *
I {structure expression)

(paventhesized expression) ::= ({expression sequence)) | {imperative
expression)

{closed expression) ::= (simple expression) | {list expression)
(conditional expression)

(dot operator) ::= . (non-operation identifier) | . {paventhesized

expression)

(structure expression) = (partial application) | {list expression)

(expression sequence) ::= (expression ?) , {expression Sequence)
|(expression ?)

(expression) ::= (simple expression) | (compound expression)

| {conditional expression) | {(paventhesized expression)

Examples

(simple expression) e.g. ::=x | nonop + | 3 | lambda x,x+1 end
| [35 9]

(operation) e.g. ::= + | **| adjoin

{compound expression) e.g. ::= flx+1,y) | (f facomp g) (2) | a*(b+c) |)
’X.hd ' -f l f(o/oxo/o) l'[o/ox,x+2°/o]
{expression) e.g. ::=a | g(h(x+1)) | if x=0 then y else z close
| (x+1—>x; y+I1—>y; x*y)
| (x, y+1,2—1)

evence Manual

S required is
operands, one
11 be used as
sed and will
,are left on

ion 6.1
ons in section

ressions of

> order in

in which the
 n-tuple is the

mber of
lanation of the
m)

.d)

ant)
ithesized
expression)
ression ?)
atorv *)
operator *)
[imperative
SSToM)

ized

eSSion)
uence)

on)
2 Xpression)

[end

a*(b+c) | f)
+29]
5€

Expressions and Statements (95

The various syntactic forms of compound expressions denote the
operator and operands in the following way:;

(a) (non-operation identifier) (parenthesized expression *)

If there is just one parenthesized expression its component expressions
form the operands and the non-operation identifier is the operator. In
general, the component expressions of the last parenthesized expression
form the operands and the non-operation identifier, followed by all the
parenthesized expressions except the last, treated as a single compound
expression, forms the operator. Thus, for example, f(g)(x) is equivalent
to (f{g))(x), meaning apply f to g and apply the result to x.

(b) (paventhesized expression) {paventhesized expression *)

Similar to (a) but using the first parenthesized expression in place of
the non-operation identifier.

(c) (expression ?) {opevation) (expression ?). This is equivalent to:
nonop {opevration) ({expression ?), {(expression ?)) which is a special
case of (@) above.

(d) {closed expression ?) (dot opevator *)

This could be rewritten

(closed expression ?) {dot operator *?) . {non-operation
identifer) | (closed expression ?) {dot opevator *?) , { paven-
thesized expression)

The non-operation identifier or parenthesized expression is the
operator and the remainder is the operands. Thus, for example, x. 1. g
is equivalent to g(f(x)).

(parenthesized expression) {dot operator *)is analogous, with a
parenthesized expression in place of the closed expression.

(e) (structure expression)

This is equivalent to (z) above with a special identifier for the operand.
The exact rules are given in section 4. 4 'Partial application’ and
section 8. 3 'Lists'.

5.2 PRECEDENCE

It a'compound expression or destination expression (see section 5.5
'Assignment’) is of the form

(expression ?) (operation) (expression 2

the operator is the operation. In this case ambiguity might arise in the
analysis of expressions such as

(expression) {operation) lexpression) {operation) {expression)

which could be analyzed with association to the left or to the right. This
ambiguity is resolved by the notion of pbrecedence. A Precedence is a
positive integer between 1 and 9 associated with an operation identifier.
It is set by a declaration and can only be changed by cancellation. The
operator of a sequence of expressions containing one or more operations
is the operation of highest precedence, or if there is more than one
operation of highest precedence the rightmost of these.

It must be made clear that the difference between an opération and any
other identifier is purely a syntactic one, except for the restriction
that its value must be a function.

96) Refevence Manual

It may be desired to use an operation in a context other than as the
operator of a compound expression. If so it must be prefixed with the
word nonop in which case it is treated syntactically like any other
identifier. The use of nonop overrules the precedence of the identifier.
This facility enables operations to appear as operands and enables
assignment to operations.

Example
> has precedence 7, + and — have precedence 5 and * has precedence 4.
5—x+2%y>1+2 is the same as ((5—x)+(2%y))>(1+2).

5.3 STATEMENTS AND IMPERATIVES

A statement is either an assignment, a goto statement, a comment, a
machine code instruction, or an expression sequence. It may be
labelled.

An imperative is either a declaration or a statement.
The syntax is:

(statement) ::= {assignment) | {goto statement) | {comment)
[{code instruction) | expvession sequence)
[{labelled statement)
(imperative) ::= (declavation) | {statement)
(imperative sequence) ::= (mperative); {mperalive sequence)
|(imperative ?)

Example ‘

(imperative sequence) e.g. ::= loop: x—I1—>x; f(x)—>v; if x>0
then goto loop close
| X+1—>Y;y; u—>y; —>2

The evaluation of an Imperative Sequence consists of evaluating the
statements in the sequence in which they occur, except when a goto
statement occurs and the sequence continues at the point indicated by
the goto statement.

An Imperative Expression may be formed from an imperative sequence.

The syntax is
(imperative expression) ::= ({(imperative sequence))

When a statement is evaluated items may be removed from the top of
the stack and any results produced are added to the top of the stack (see
section 4.2 'Application of functions'), The results of an imperative
sequence are the items left on the stack, if any, when the sequence has
been evaluated.

5.4 LABELS AND GOTO STATEMENTS

A Label may be attached to a statement. Evaluation of a Gofo Statement
using that label causes the sequence of evaluation to be changed so that
the labelled statement is evaluated next. A goto statement may not refer
to a label outside the function body in which it occurs. If a goto state-
ment occurs in an operand of a compound or destination expression it
may not refer to a label outside that operand. The syntax is:

{labelled statement) ::= (label) : (statement ?)
{goto statement) ::= goto (label) | return
[{expression ?) switch {label*?)

rence Manual

an as the

ked with the
1y other

he identifier.
| enables

precedence 4.

mment, a
ay be

1ating the
n a goto
ndicated by

tive sequence.

n the top of
the stack (see
mperative
equence has

oto Statement
anged so that
may not refer
, goto state-
xpression it
is:

Expressions and Statemenits (97

{label) ::= (identifier)

The statement return causes transfer of control to the exit of the
innermost current function body. There is a standard macro exit which
is synonymous with return close.

If the expression before switch (or the top of the stack) has value ¢,
this is equivalent to goto the 7th label after switch.

If an identifier is used for a label it may not appear as an identifier
associated with a variable in the text constituting that function body.

Goto statements and labelled statements may only occur inside a
function body.

Note that a label is not an item.

The fact that a goto statement may not cause a jump to a label outside
the function body in which it occurs may prove restrictive and so a
special standard function jumpout is provided (a device due to Landin,
1966).

jumpout € function, integer => function

If f is any function the statement
Jumpout(f, n)—>f1

occurring in the body of a function g produces a function fI such that if
1 is called any time before exit from the body of g it will behave
exactly as the function f, but on exit from fI an immediate exit from the
body of g will be precipitated. Furthermore the last » items on top of
the stack after execution of f will be left on the stack, but all other
items in excess of the number which were on the stack when jumpout
was originally applied will be removed. If n is undef then calling fI has
no effect on the stack. Output locals of g are not put on the stack. Thus

vars escape;
function fvy n;
if n. isperfectsquare then escape(n) else tvy(n+l) close
end;
function g %;
Jumpout(sqrt, 1)—>escape; tvy(k)
end;

gel)=>
**5

Thus the effect is analogous to saying return in the body of g, but this
can be done during execution of a subsidiary function and provision is
made to pass out results. Note that the return point depends on the
function body in which jumpout is applied. !

5.5 ASSIGNMENT

An Assignment consists of a Source, which is an expression or sequence
of expressions, and a Destination Sequence, which is a sequence of
elements, each of which is either an identifier or a Destiration
Expression. Tt is used to remove one or more items from the stack, and
to make them become the values of variables or to update a data
structure with them.

A destination expression has an operator which is an expression and
some operands, that is, a sequence of expressions (possibly an empty
sequence). A destination expression is not one of the kinds of expression

98) Reference Manual

defined in section 5.1 'Expressions', but it is very similar to a com-
pound expression. It is distinguished by appearing on the right-hand
side of an assignment and by having a special evaluation rule.

An assignment is evaluated as follows. First the source is evaluated
to yield an n~tuple of items which are placed on the stack. The last %
elements on the stack, which we will call the Source Items,are then
taken in sequence starting from the last and each source item is com-
bined with the corresponding destination element (taken in sequence
starting from the first) as follows:

1. If the destination element is a variable the top item of the stack
becomes the new value of that variable.

2. If the destination element is a destination expression the operator
and operands of this expression are evaluated. The value of the operator
must be a doublet (see section 4.5 'Doublets’) and its update routine is
applied. (Contrast the evaluation of a compound expression where the
select function is applied.)

Thus EG—>f(E, ..., Ep) has the same affect as apply(Ey, Eq, ..., Ep,
updater(f).

The syntax of destination expressions is given below. A further
explanation of this syntax is given in section 5.2 'Precedence’.

(destination expression) ::= (non-operation identifiev)

{parenthesized expression *)

[{ paventhesized expression)
(parenthesized expression *)

[{expression ?) {operation)
(expression ?)

{{closed expression ?){dot
operator *)

|{ parenthesized expression)
{dot operator *)

The syntax of assignments is:

{assignment) ::= {expression sequence) { destination *)
[function definition)

{destination) ::= —>(non-operation identifier) | —>{destination
expression)

Example

(assignment) e.g. :i= x+1—> | uro—>a(i, j) | %/ / y—>u—>v
| %, y—>x—>y
In the second example a(,j) is a destination expression and the whole

assignment is a euphemism for al@+v,i,j) where al is the update
routine of the doublet a. The last example exchanges the value of xand

y.
Function definitions are special syhtactic forms for assignments.

5.6 COMMENTS

A comment is a statement which is ignored by the compiler.
{comment) ::= comment {any sequence of character groups other than ;)

ence Manual

to a com-
ight-hand
le.

evaluated
The last 2
are then
2m is com-
sequence

the stack
e operator

[the operator
e routine is

where the
15 ** Ek?
ther

e,

*

*)

n

the whole
pdate

ne of xand
ents.

ther than ;)

Conditionals (99

6. CONDITIONALS

6.1 CONDITIONAL EXPRESSIONS

A conditional expression congists of a sequence of one or more pairs
of component expressions, each pair consisting of a Condition and a
Consequent. It may be an ordinary conditional expression or a loop
conditional expression.

The condition may be an expression, a conjunction or a disjunction (see
section 6. 2 'Conjunctions and disjunctions'). The consequent is an

expression or statement. The method of evaluation of a conditional is
as follows.

The first pair in the sequence is taken and its condition is evaluated; if
the value is not the truth value false then its consequent is evaluated,
otherwise the next pair in the sequence is taken, and so on, until either
a condition produces a value other than false or the sequence is
exhausted. In the case of an ordinary conditional expression, evaluation
of the conditional expression terminates as soon as a consequent has
been evaluated or the sequence has been exhausted. In the case of a
loop conditional expression evaluation of the conditional expression
restarts from the beginning as soon as a consequent has been evaluated,
but if the sequence is exhausted without a consequent being evaluated
the evaluation of the conditional expression terminates.

The syntax of conditional expressions provides a compact notation for
the sequence of conditions and consequents with an abbreviation for the
case where the final condition is frue. It is:

(consequent) ::= (imperative Sequence)
(ovdinary ov loop if) ::= if | loopif
(elseif clause) ::= elseif (condition) then {consequent)

(else clause) ::= else {consequent)

(conditional expression) ::=
(ovdinary or loop if) (condition) then {consequent)
(elseif clause * ?)
(else-clause ?) close

The conditional expression is ordinary if it starts with if and it isa
loop conditional if it starts with loopif.

The first condition and consequent occurs before and after then
respectively. The remaining pairs of the sequence, if any, appear as
elseif clauses and possibly as an else clause. The else clause has only
a consequent and the missing condition is assumed to give the value
true.

Example
{conditional expression) e.g. ::=
if x>0 and x<3 then y
elseif x>3 then z
else 0
close
| if x=0 then 1—>y close
| loopif #>0 then 7 (); n—I—>n close

One may use loopif to define macros (see section 11. 2 'Macros') to do
various kinds of iteration. There is a standard macro Jorall which

LIBRARY
MASSEY UNIVERSITY

/
100) Refevence Manual

allows the most common kind of iteration. If 7, M, K, and N are any
text items (see section 9.1 "Input'),

forall IMKN

expands to

M—EK—>I;loopif (I+K—>];[=<N) then
Example

Jovall j m 2 n;j=> close

has the same effect as
We—2—>§;100pif (j+2—>4; j=<n) then; j=> close;

6.2 CONJUNCTIONS AND DISJUNCTIONS

A Conjunction is composed of two component expressions each produc-
ing a single result. The method of evaluating a conjunction is to evaluate
the first component expression and if its value is the truth value Jalse
the value of the conjunction is truth value Jalse, otherwise the second
expression is evaluated and the conjunction has value false if the second
component expression has value false otherwise true,

A Disjunction is composed of two component expressions each producing
a single result. The method of evaluating a disjunction is to evaluate
the first component expression and if its value is not the truth value
Jalse the value of the disjunction has truth value true, otherwise the
second expression is evaluated and the disjunction has value Jalse if the
second component expression has value Jalse otherwise frue.

A number of conjunctions and disjunctions can be combined to form a
condition.

The syntax is
(condition) ::= (expression) and {condition) | (expression) or
{condition) | (expression) '

These three kinds of conditions are. respectively a conjunction, a dis-
junction and an expression.

Thus and and or associate to the right.

{condition) e.g. ::= x<10 and x>0 | x>10 or x<0 | null(x) | b
|b(x) and q(x) or r(x)

In the last example the following cases can occur (—' means that the
expression is not evaluated),

p(x) q(x) (%) value of condition
Jalse — — Jalse

true Jalse Jalse false

true false true true

true true — true

7. DATA STRUCTURES

7.1 FUNCTIONS OF DATA STRUCTURES

A Data Structure is a compound item which has other items as its
Components. For each class of data structures there is a family of
functions called the Characteristic Functions acting upon structures of

ence Manual

are any

1ch produc-
is to evaluate
ralue false

1€ second

if the second

ch producing
 evaluate

1th value
vise the
 false if the

3
N

to form a

on, a dis-

5 that the

as its
mily of
uctures of

Data Stvuctures (101

that class. These functions are a constructor, a destructor, selectors,
and update routines. A given compound item may represent a number of
different data structures by being used in association with more than one
family of functions and hence having different components. The number
of components may be zero.

Given values for its components it is possible to construct a data
structure using a Constructor function, say c.

¢ € component, . ,.,component => data stvucture

It is possible to select the value of a component of a data structure.
For each component there is a Selector function, say st.

si € data stvucture => component

It is possible to update a component of a data structure, that is, to give
it a new value. For each component there is an Update Routine, say ui:

ui € component, data stvuctuve => ()
When a data structure is updated the old version is overwritten.

It is convenient to define another function called a Destructor function,
say d, which is the inverse of the constructor, that is, given a data
structure it produces its components as results.

d € data stvucture => componeht, ... cOmponent

There is a relation called equality (see section 2.1 'Simple and com-
pound items') which may hold between two compound items. It is
denoted by the standard function = (an operation of precedence 7). This
function is also defined for simple items with the usual meaning.

= € item, item => truthvalue

Thus if the value of an expression 'E1'is equal to the value of an
expression 'E2' then the expression

EI=E2

has value frue.

Equality means that the two compound items contain the same address,
that is, they point to the same area of store. If the items are not equal
they point to entirely different areas of store. We say that a compound
item is Copied ai the Top Level if a new item is formed pointing to a
new area of store which contains items equal to those of the given
compound item. The new item and the previous one are not equal. They
are, however, Equivalent,

Equivalent compound items are defined as items which are either
equal or all of whose components are equivalent.

Updating an item alters a component item in the store area pointed to
by the item but does not cause copying.

We will now give a more formal explanation of equality, but the model
in terms of addresses and storage may be kept in mind.

Equality is an equivalence relation, that is, it is
(a) reflexive (x=x);

(b) symmetric (if x=y then y=x);and

(c) transitive (if x=y and y=z then x=z).

102) Reference Manual

It has the following other properties:

(d) The value of a formal parameter variable is equal to the
corresponding actual parameter.

(e) If an item is assigned to a variable then the value of the variable
is equal to that item.

(f) An item, other than a word or simple item, which is read in (see
section 9.1 'Input') is not equal to any other item.

(g) The rules for equality of words are given in section 8.6 "Words'.
(h) Two integers or two reals are equal according to the usual rules
of arithmetic. An integer is never equal to a real.

Items are equal only if their equality follows from the above properties.

We can now state some relationships between the various functions on

data structures. We will use @ and b for data structures, x4, . .., x;,

., ¥ for items occurring as components, s,,...,s;, ..., sp for
selectors, #,,...,4;,...,up for update routines, ¢ for a constructor,
and d for a destructor.

(a) s{(@,...,sp@) is the same n-tuple as d(a), that is, they have equal
elements.

(D) s;c(@yyeen,%fy ..., %p))=x; is true.

(c) c(sy(),...,sp(x)=x is always false, but the left-hand expression

is equivalent to x.
(d) After evaluating u;(v;, a),
sj(a)=x; is true.
(e) After evaluating u;(s;(a), @), a is unchanged.
(f) If a=b and then u;(x;, a) is evaluated, s;(b)=x; is true and a=b is
still true. :
(g) From (a) and (b) above d(c(xq, ..., x%)) is the same n-tuple as
X1, ..+, Xp, that is, they have equal elements.

If @ and b are data structures and a is not equal to » and updaﬁng a
component of a also updates some component of b, then ¢ and b are
said to Share.

When we wish to discuss a class of data structures which do not all
have the same number of components (such as strips, see section 7. 3
'Strips') it is convenient to define a Geneval Selector function and a
Geneval Update Routine.

The general selector function, say s, has as arguments, an integer, ¢, and
a data structure. It selects the ith component of the data structure.

s € integer, data stvuctuve => component

Thus if s; is the ith selector, s, a)=s;(@).
Similarly for the general update routine, say «,

u € component, integev, data strvucture => ()

Thus if u; is the ith update routine, u(x;, i, ¢) has the same effect as

u;j (x5, a).

The programmer is able to create new kinds of data structures called
records and strips (see section 7.2 'Records' and 7.3 'Strips'). He can
also create functions by methods already described. He may be able to
create other kinds of data structures using extra standard functions or
machine code, but this depends on the implementation. Certain classes
of records and strips are standard and these are described in section 8

vence Manual

the
the variable
ead in (see

.6 'Words'.
usual rules

ve properties.

functions on
)Cl, ey xi,

, Sp for
onstructor,

ey have equal

| expression

and a=b is

-tuple as

1pddting a
ind b are

do not all
section 7. 3
tion and a

integer, {, and
structure.

effect as

tures called

ips'). He can
1ay be able to
functions or
rtain classes
d in section 8

Data Stvuctures (103

'Standard structures'. Functions considered as data structures are
also described there.

There is a standard doublet dataword which, given a data structure,

produces or updates the item, normally a word, associated with the data
structure class to which it belongs. Tt is also defined for integers and

reals giving "integev" and "real” respectively. In the case of standard

data structures, integers, and reals the dataword may not be updated. !

datawovd € item ==> item

There is a standard function
samedata € item, item => lvuthvalue .

which gives {rue if, and only if, the items belong to the same data
structure class. It is also defined for integers and reals and distin-
guishes them from other classes.

There are a number of special expressions called 'structure
expressions' used to construct these standard structures (see section
5.1 'Expressions’).

Given a class or several classes of data structures with their
associated functions it is possible to define functions which characterize
a new family of structures. We will call these Derived Structures.
Suppose, for example, that we have a class of structures with two
selectors, say sl and s2, and components which are full items and
members of the same class of structures. We can then define a new
class of derived structures whose selectors are given by:

function s11 a,;s1(sl(a)) end; function s12 a; sl(s2(a)) end;
function s21 a;s2(si(a)) end; function s22 a; s2(s2(a)) end;

If ¢ is the constructor of the first class we define the new constructor:
function cc x1 x2 x3 x4; c(c(x1, x2), c(x3, %4)) end;

Note that if it is associated with two or more families of functions the
same compound item can represent two or more structures, one of each
class. However, for each class of compound items there is one
Primitive Data Stvucture Class and other data structures are defined
in terms of this primitive class. A primitive data structure does not
share with any other primitive data structure. Examples of standard
data structures which are not primitive are links and lists.

7.2 RECORDS

A Record is a compound item which is a member of a Record Class.
The Size of a set of items is an integer or the word "compnd”. If all the
items in the set are restricted to be non-negative integers less than

2", the size is the integer #, if they are restricted to be compound items
the size is the word "compnd", otherwise if the component is a Full ltem
(that is, the set is not restricted) the size is the integer 0. For each
component of a record there is a size associated with the set of
possible values of that component. The Specification of a Recovd is the
list of sizes associated with its components. A record class is a set

of records which all have the same specification, and this is said to be
the specification of the record class. Note that a record class is not

an item. An item is associated with each record class. This is
normally a word, although it may be any item.

104) Reference Manual

A family of functions is associated with each record class to form a
primitive class of data structures. This family comprises a set of
selectors (¢ vecord => component) and a set of corresponding update
routines (¢ component, vecovd => ()), a constructor (e component,...,
component => vecovd) and a destructor (e recovd => component,. ..,
component). Each selector function may be paired with the corres-
ponding update routine to form a doublet (¢ record = => component).
The standard function »ecordfns is used to create a new record class,
It requires as arguments the item (normally a word) to be associated
with the record class, and the specification of the record class. It
produces the constructor, the destructor, and the doublets for the
record class in the order in which they are given in the specification.
The number of its results depends on the length of the specification
list. Normally the programmer will immediately assign these resulting
functions to variables.

recovdfns € item, specification => constvuctor, destvuctor, doublet, . . .,
doublet

Examples
recovdfns("person®, [0 7 1])—>sexof—>ageof—>nameof—>desiper
—>consper;

There is a standard function which converts a record to a list of its
components:

datalist € vecovd => list

The standard doublet dataword when given a record produces or updates
the item associated with its record class (see section 7.1 'Functions of
data structures').

The function copy copies a record at the top level.
copy € record => vecord

The functions datalist, datawovd, and copy are defined over records of
any class, and whenever recordfns is used to create a new record class
these four functions are extended to deal with records of that class.

7.3 STRIPS

A Strip is a compound item which is 2 member of a Si»ip Class, All
components of a strip must have the same size (see section 7, 2
'Records' for definition of size) which is called the Component Size of
the strip. All strips in a strip class must have the same component
size but not necessarily the same number of components. An item
(normally a word) is associated with each strip class,

A family of functions is associated with each strip class to form a
primitive class of data structures. This family includes a general
selector function (e integer, strip=>component) and a general update
routine (¢ component, integer, strip=>()). The selector function is
paired with the update routine to form a doublet. The components are
numbered from 1 upwards. It also includes for each strip class an
initiator function (¢ integer=>sirip). This constructs a strip with the
given number of components but the values of these components are not
defined. The initiator may be used with the update function to define a
constructor function for strips of the strip class.

The standard function stripfns is used to create a new strip class, It
takes as arguments the item to be associated with the strip class and

rence Manual

to form a

| a set of
ling update
ponent, ...,
onent, ...,
2 corres-
ymponent),
scord class,
associated
lass. It

for the
ecification.
cification
1ese resulting

, doublet, ...,

estper

list of its

>es or updates
"Functions of

' records of
record class
hat class.

Class. All
n 7. 2

ment Size of
omponent
An item

) form a
general

ral update
1ction is
ponents are
class an

ip with the
nents are not
1 to define a

p class, It
p class and

T

Data Stvuctuves (105

the component size of the strip class, It produces as results the
initiator function and the doublet for the strip class:

stvipfus € item, size => initiator, doublet

There is a standard function which converts a strip to a list of its
components. This is datalist (see section 7.2 'Records’). There is a
doublet which, given a strip, produces or updates the item associated
with its strip class. This is dataword (see section 7.1 'Functions of
data structures').

There is a function datalength which, given a strip, produces the number
of components it has.

datalength € stvip => integer

The function copy copies a strip at the top level (see section 7. 2
'Records’).

The functions dafalist, datawovd, and copy act for strips just as for
records,

7.4 GARBAGE COLLECTION

Storage for the construction of data structures is made available by a
storage control system. This system must be able to make use of
areas of store which have been used but are no longer required. This
is achieved by a process known as Garbage Collection which is under-
taken whenever the system runs short of store. This first of all
discovers what items can still be referred to by the programmer, for
example, because they are the value of a variable whose extent has not
finished (see section 3.2 'Declaration and initialization'). Any items
which can no longer be referred to are destroyed, that is, their storage
area is returned to the system for use in constructing other items.
Since he cannot refer to them, the programmer is not aware of this
destruction.

If variables refer to compound items which are no longer in use, the
garbage collector cannot recover the associated storage. The variable
should be reset, for example, to zero. In the case of identifiers the
identifier can be cancelled (see section 3. 3 'Cancellation').

8. STANDARD STRUCTURES

8.1 REFERENCES

There is a standard record class called References. These have one
component which is a full item. The item associated with the class as
its datawovd is "ref". Thus before entry to the POP-2 system this class
is created using rvecovdfns, and the resulting functions are assigned to
variables to give the following standard functions:

constructor: comnsvef € item => veference
destructor: destref € refervence => item
doublet: cont € refevence ==> item

A reference may be used, for example, as an actual parameter of a
function to enable the function to cause side effects by updating the
reference. :

106) Refevence Manual

8.2 PAIRS

There is a standard record class called Puaivs. Records of this class
have two components which are both full items. The item associated
with the class is "pair". Thus before entry to the POP-2 system this
class is created using vecovdfns,and the resulting functions are
assigned to variables to give the following standard functions:

constructor: conspaiv € item, item => pair
destructor: destpaiv € paiv => ilem, item
doublets: front, back all € pair ==> item

An Atom is an item which is not a pair. Atoms are recognized by the
standard function afom.

atom € item => truthvalue

8.3 LISTS

There is a standard derived structure called a Link which is used to
construct another derived structure called a List. Lists in POP-2
include structures analogous to LISP Lists, but also structures which
compute the elements dynamically (cf. P.J. Landin's 'streams’),

Links are not primitive data structures. They are represented by pairs,
but although, like pairs,they have two components the doublets to select
and update these components are more complex than those for pairs,
indeed they are defined below in terms of the doublets for pairs.
Similarly lists, which may have any number of components, are defined
in terms of links. Lists do not have their own doublets to select and
update components, but they do have constructors, namely the list
constants and list expressions defined below.

The word "ul" is used to represent the Null List and the standard
variable nil takes this value on entry to the POP-2 system. The null
list is also represented by a pair whose front is false and whose back
is a function and by a pair whose front is false and whose back is a
function of no arguments which produces the terminator when it is
applied.

The standard function null recognizes the null list

null € list => truthvalue

A list is either the null list or it is a link,

A link is either:

(a) a pair whose front component is any item and whose back component
is a listjor

(b) a pair whose front component is not false and whose back compo-
nent is a function with no arguments and one result.

Case (a) gives rise to the familiar notion of a list (cf, LISP lists). In
case (b) the function is one which whenrepeatedly applied produces a
succession of items, not necessarily all the same, that is, normally the
function will side-effect itself. The last item produced should be the
terminator. Such a function is called a Repeater. For example, this
enables us to convert an input file to a list. Lists with this sort of link
are dynamic and some or all of their elements are computed rather
than stored statically.

fevence Manual

3 of this class
m associated
2 system this
ions are
>tions:

sgnized by the

ich is used to
s in POP-2
uctures which
reams').

esented by pairs,
oublets to select
ose for pairs,

for pairs.

nts, are defined
to select and

1y the list

he standard
tem., The null
ind whose back
se back is a

r when it is

5e back component

se back compo-

ISP lists). In
ed produces a
is,normally the
-should be the
example, this
this sort of link
aputed rather

Standavd Stvuctuves (107

The characteristic functions of a link are:

constructor: cons € item, link => link
destructor: dest € link => item, list
doublets: hd € link ==> item (called the 'head')

tl € link ==> item (called the 'tail")

These functions are very similar to those for pairs, but in the case of

a link of the second kind special precautions are taken to make sure
that on applying the selector ¢! the front component is not lost but
preserved in a pair. Thus, if x has a list as its value and #l(x) is
evaluated, there is a side effect on x, but matters are so arranged that
this side effect is not detectable using the list-processing functions.
The function cons is the same as conspaiv and produces a link of the
first kind. The following standard function produces a link of the second
kind or the null list given a function of no arguments:

futolist € (() => item) => list
function fuiolist f; conspaiv (tvue,) end

The other characteristic functions are defined as follows:
First an auxiliary function (nof standard) to convert the first link of a
dynamic list to static form.

function solidified I; vars f x;
if [=nil then #nil exit;
if front(l)=false and isfunc(back(l)) then nil exit;
if not(isfunc(back(l))) then ! exit;
if not(front(l)=false) and isfunc(back(l)) then
back(l)—>f;f()—>x;
if x=termin then false—>froni(l); nil exit;
if not(x=termin) then x—>front(l); conspaiv(tvue, f)—>back(l)
exit
close
end;
function %d I ; front(solidified(1)) end;
lambda i [; i—>fronl(solidified(l)) end—>updatev(hd);
function ¢! I, back(solidified(1)) end;
lambda i [;i—>back(solidified(1)) end—>updatev(tl);
function dest I; hd(l), ti(1) end;
function null [, solidified(1)=nil end;

The functions futolist, hd, tl, dest and null may be implemented different-
ly from the above definitions as long as the difference cannot be detec-
ted by using any of these functions and definition (b) above holds.

The function which recognizes links is

islink € item => tvuthvalue

A list may have no components (if it is the null list) or one or more
(if it is a link),

If it is a link its first component is the head component of the link and
its remaining components are the components of the list which is the

tail component of the link, Thus the characteristic functions for lists
can be defined in terms of those for links.

The function
islist € item => truthvalue
recognizes lists (including the null list).

108) Reference Manual

There are two special syntactic forms for constructing lists, These
are list constants and list expressions. List constants may have lists,
integers, reals, words, or strings (see section 8,4 'Full strips and
character strips') as components. The list is constructed at compile
time,

<list constant>::= [<list constant element *?>]
<list constant element>::= <list constant >| <character group>

The character group should not be [or].

Example
(list constantde.g. := [1 2 DOG CAT] | [[1 2] [4 5] 6]

List expressions are evaluated by evaluating a number of expressions
at run time and constructing a list.

<list expression>::= [¥< expression sequence>%]

Thus

[% %/ is equivalent to %7, as is [/

and [%{expression)%] is equivalent to cons({expression), nil)

and [%{expression), {expression sequence)%] is equivalent to cons
({expression), [%{expression sequence) %))

Example
(list expression)e.g.::= [Wx+1, [hx+2,x+3%], t1(y) %]

Note that negative numbers are not allowed in list constants, To get a
list with negative numbers a list expression must be used.

For convenience the following functions are standard:

:: (a synonym, for cons but an operation of precedence 2)

<> € list, list=>list (concatenates the lists, copying the first one, an
operation of precedence 2)

eg.[12]<>[34]is[12 34]

maplist € list, (item => item) => list (applies to each element of a given
list a given function constructing a new list of the results.)
e.g. maplist({1 4 9 16],sqvt) is [1.0 2.0 3.0 4.0]

8.4 FULL STRIPS AND CHARACTER STRIPS
Two strip classes are standard.

The first is Full Strips with full items as components and associated
word “strip". The characteristic functions are:

initiator: init € integer => full stvip

doublet: subscy ¢ integer, stvip == item

The second is Chavacier Stvips (also called 'Stvings') for characters,
see section 8. 6 "Words') with component size 6 and associated word
nestrip”. The characteristic functions are:

initiator: initc € integer => charactev strip

doublet: subscrc € integer, stvip ==> integev of size 6

The components of a character strip may be any integers of size not
more than 6, they need not necessarily be used to represent characters.

There is a structure constant to construct character strip constants at

compile time,

(string constant) = '(stving constant element *?)

(string constant element) ::= (string consiant) | {any character except
a string quote)

evence Manual

sts., These
ay have lists,
Lrips and

1 at compile

‘oup >

- expressions

nil)
nt to cons

nts. To get a
1

st one, an

nent of a given

.)
> S

| associated

r characters,
iated word

of size not
nt characters.

» constants at

ictey except

Standard Structuves (109

Example
(string constant)e.g.::= /... vubbish. please type Isovryw

Spaces and newlines are significant in string constants.

The function p7 will output the characters of é string enclosing them in
quotes, and-the function prsiving will output them without any quotes
(see section 9, 2 "Output”).

. 8.5 ARRAYS

Arrays give a convenient method of accessing and updating structures
indexed by integers. An array has components, which are items of a
given size. Each component is associated with a sequence of integers
called Subscvipts. The number of subscripts is known as the number of
Dimensions of the array. An array is a particular kind of doublet:

arvay € subscvipt, ..., subscvipt ==> component

This is in contrast to strips which have a general selector and a general
update routine associated with a whole class of strips and take the
actual strip referred to as a parameter, Arrays can be formed from
strips (or from other data structures) by using partial application. The
programmer is free to do this in any way he chooses but standard
functions for creating arrays are provided. For example, to create a
one-dimensional array a with components indexed from 1 to » we could
write :

subscv(% init(n) -%)—>a;

There is a standard function to create a many-dimensional array of
items of any size. Updating a component of this array does not affect
any other component. This function is;

rewanyavvay € boundslist, (subscript, . . ., subscvipt => component),
strip initiator, stvip doublet => array

The array produced will normally be immediately assigned to a
variable,

The boundslist is a list of integers, these integers being alternately the
lower and upper bounds for each subscript. The second parameter is a
function used to initialize the components of the array. It must produce
the appropriate component for each combination of subscripts, The
strip doublet and strip initiator are the characteristic functions of a
strip class whose components are of the same size as that required for
the array components, ‘

There is also a standard function to create arrays of full items:

newarvay € boundslist, (subscvipt, . .., subscript=> component)
=>arrvay '

This is equivalent to
newanyarvay(%inil, subscvy,)
The standard function
boundslist € array => boundslist

produces a copy of the boundslist for any array produced by
newanyarvay or newarvay; for any other function which is a closure it
produces the first frozen value.

110) Reference Manual

8.6 WORDS

There is a standard record class called Words. It has 8 components of
size 6 called Chavacters, and a component called the Meaning, which
may be used to associate any information desired with the word (cf. the
use of fuprops for functions). The item associated with the record class
is "word". The standard functions characterizing words are:

constructor: consword € chavactev, ..., chavactev,integer => word
destructor: destword € wovd => chavacter, ..., chavacler,integer
selectors: charwovd € wovd, integer => chavacter

meaning € wovd ==> item

Each character of the POP-2 character set corresponds to a unique
integer. The correspondence rule is given in Appendix 1, Note that the
constructor and destructor functions above are variadic and variresult
respectively and work on a variable number of characters followed by
that number as an integer. If there are less than 8 characters supplied
to the constructor the remaining character components are not defined
and they are not produced by the destructor or selector. The characters
are numbered from one up from the left. The constructor does not take
a meaning component as argument. The meaning of a word is undef
unless the word has been updated to have a particular meaning. It is
not possible to alter individual characters of a word once it has been
created, The standard function iswovd recognizes words

isword € item => truthvalue.

When datalist (see-section 7,2 'Records') is applied to a word it
produces a list of its characters.

Words may occur in the program as quoted words, that is, word
constants, with the following syntax:

(unquoted word) ::= (letter) {alphanumeric *?) | (sign %
| {decorated bracket)
| (separator) | {period) | {quote)
{decovated bracket) ::= (|) | (% | %)

717 10%1 %]
(quoted word) ::= "{ unquoted word)"
Example
(quoted wordye.g.::= "big' | "+ |)|

Words may also occur as components of constant lists (see section 8.3
'"Lists'). Only the first 8 characters are significant.

Words may also be read as data (see section 9,1 'Input'). Words which
occur as constants or are read as data are Standardized, that is,if a
word with the same characters already exists no new word is construct-
ed and the compound item produced is the previously-existing word, but
if no such word exists a new word is constructed with undef as its
meaning. Words constructed using consword are also standardized.
Thus two words are equal if and only if they have the same characters.
In this they are unlike normal records.

8,7 FUNCTIONS

Functions are compound items and form a class of data structures.

The item associated with the class is "function”. There is no constructor
or destructor for functions. They can be constructed by the methods
described in section 4.1 'Definition of functions'. There is a family of
characteristic functions associated with the class of functions to form a
class of data structures,

vence Manual

somponents of
ning, which

» word (cf, the
e record class
\re:

er => word
ev, integey

0 a unique
Note that the
nd variresult
 followed by
ters supplied
e not defined
['he characters
does not take
d is undef
ming., It is

it has been

rord it

word

e section 8. 3

Words which
hat is, if a

1 is construct-
ting word, but
of as its
dardized.

2 characters.

ructures.

' no constructor
e methods

5 a family of
ons to form a

Standard Stvuctuves (111

Functions have an accessible component which may be used to associate
extra information with the function, It is accessed by the standard
doublet

Jnprops € function ==> item

Functions have an update routine (see section 4,5 'Doublets'). For a
function constructed by using lambda or function this has initially no
defined value. This component may be selected or updated by using a
standard doublet:

updater € function ==> vouline

It is intended that the updater of a function should normally be a
routine for updating a component of a data structure, but any function is
permissible as the updater, The updater of a function has its own
Juprops, frozval, fupayrt, and updater components,

Closure functions, that is, those constructed by partial application, have
a doublet to select or update the values of their frozen formals,

Jrozval € integev, closure function ==> item

The integer determines which of the frozen formal values is affected,
counting from left to right from 1 wpwards (if a closure function is
obtained by successive partial applications only the formals frozen by
the last one are counted). dafalist produces a list of the frozen formals.
There is also a doublet to select the function from which the closure
function was constructed or replace it with another function,

Jupart € closuve function ==> function

The standard function = follows the usual rules for compound items
when applied to functions, that is, equality is preserved over assignment,
updating, and actual parameter/formal parameter correspondence, but
each construction of a function produies a different one,

The following standard function recognizes functions:

isfunc € item => truthvalue

9. INPUT AND OUTPUT

9.1 INPUT

Information which is input to the POP-2 system is organized into Files,
each of which comes from a Device.

Before a file can be accessed it must be Opened. From then on it can be
read one character at a time. Eventually it must be Closed.

The naming of files and devices depends on the operating system of the
implementation, The names of files are lists and the names of devices
may be any item. A device name may refer to more than one device,

There is a standard variresult function popmess used for communicating
with the operating system, sending a message in the form of a list,

popmess € list => itewm, . .., item

This is used for various input and output purposes.

To open a file from a given device, popmess is used to produce a
repeater function to read characters from it, that is, a function
€ ()=>character, Such a function is called a character repeater (see

112) Refevence Manual

section 8. 3 'Lists'), The list supplied to popmess has a head which is
an input device name and a tail which is a file name.

To close a file before reaching the end of it, popmess is used again, The
list supplied to it has a head which is the word "close” and a tail which
is a list of one element: the character reading function obtained when
the file was opened. No result is produced by popmess in this case,

The sequence of characters making up a POP-2 text may be split up
into Character Groups, each of which represents a Text Item. A text
item is either an integer, a real, a word, or a string. It is represented
by a character group, thus:

(character group) ::= (integer) | {veal) | {unquoted wovd)

| (string constant)
Character groups are followed by spaces or newlines where necessary
to separate them from the following character group, That is, a
character group should be terminated thus if the first character of the
following character group could otherwise be construed as belonging to
it, for example, 1 2 is different from 12 but 1 x is not different from 1x,
which must in any case be construed as two character groups 1 and «,

There is a standard function to convert a function which produces a
character whenever it is applied (character repeater) into a correspond
ing one which produces a text item whenever it is applied (item
repeater).

inchavitem € (() => chavacter) => (() => lext itém)

The item repeater produced by incharitem uses the character repeater,
To produce a text item it needs to obtain either one or two characters
ahead of those comprising the text item, storing them in a buffer. It
always looks one character ahead except when the text item is the
integer 2 or 8 and the next character is a colon or the text item is an
integer and the next character is a period, when it looks two ahead.

The program is input on a standard file called the Standard Input File
from a standard device called the Standard Input Device, There is a
standard function to read characters from the standard input file:

chavin € () => character

If the halt code occurs on the input device, charin produces the termin-
ator, which is considered here as if it were an extra character. All
input character repeaters produced by popmess do the same. Item
repeaters produced by incharitem convert the terminator into itself,

The program is compiled from the text item list which is the value of
the standard variable proglist. Initially this has as value the list of text
items from the standard input file. It is not protected and may be
assigned to by the programmer who wishes to compile from a different
source,

For convenience there is a standard function itemvead producing the
next item of the list which is the value of proglist. If, however, this list
contains macro identifiers not preceded by nonmac these are applied by
itemvead as they are encountered and itemread is again applied to the
resulting proglist (see section 11,2 'Macros').

itemvead € () => text item

There is also a standard function to compile from any character
repeater

compile € character vepeater => ()

‘evence Manual

head which is

used again. The
nd a tail which
btained when

1 this case.

' be split up
tem. A text
5 represented

ere necessary
at is, a
aracter of the
s belonging to
erent from 1x,
oups 1 and x.

produces a
0 a correspond-
| (item

acter repeater,
0 characters
a buffer. It

em is the

xt item is an
two ahead.

vd Input File
There is a
nput file:

es. the termin-
acter. All
mme, Item

* into itself,

3 the value of
the list of text
1 may be

om a different

oducing the

vever, this list
are applied by
applied to the

aracter

Input and Output (113

9,2 OUTPUT

Information which is output from the POP-2 system is organized into
files, each of which is sent to a device (see section 9,1 'Input').

A routine with one parameter is called a Consumer, for example, if
¢ € chavactev => ()
we call ¢ a character consumer,

To open an output device the standard function popmess (see section
9.1 'Input') is used to produce a character consumer to output
characters to it, The list supplied to popmess has a head which is an
output device name and a tail which is a file name. The device is closed
by outputting the halt code or the terminator.

Compiler messages and results of computation are normally output

on a standard file called the Standard Outpui File to a standard device
called the Standavd Output Device. There is a standard routine to
output characters to the standard output file:

chavout € character => ()

There is a standard variable cucharout which contains the routine to
output characters to the Curvent Output File. This contains initially
the routine for the standard output file but it is not protected and a
different consumer may be assigned to it if a different output file is to
be made current, '

There are standard routines to output spaces or newlines to the current
output file:

sp € integer => ()
nl € integer => ()

There is a standard item consumer function which outputs any item to
this file in some suitable format,

pv € item => ()

Numbers are printed with a minus sign if they are negative and a space
before them if they are positive. Lists are printed with brackets, words
without quotes, strings with quotes. For other records and strips the
dataword is printed but not the components.

The standard function print is defined by
function print x; pr(x); x end;

Applying p7 to the terminator terminates the output file, by outputting
the halt code.

There is a standard function
prreal € real, integer, integey => ()

which prints a real number with the given numbers of places before
and after the decimal point, If both integers are zero the number is
printed in exponential form.

There is a standard function
prstring € item => ()
which prints a string without enclosing it in string quotes.

There is a syntax word => which uses p# and causes the items on the
stack starting at the bottom to be printed on a newline preceded by
two asterisks. These items are removed from the stack. In a function

114) Reference Manual

body only the top item of the stack is affected. This usage is not to be
confused with the separator used in function definitions and sections,
nor with the => used in this manual to show the type of functions. A
semicolon is implied before and after so that immediate evaluation
can occur (see section 11.1 'mmediate evaluation'),

The standard function
genout € (text item => ()), (chavacter => ()) => (text item => ())

converts a given text item consumer to a similar one which outputs
to a given character consumer; It is defined thus:

function genout ¢ c;
lambda x ¢ cucharout, i(x);
end (%4 ¢,c %)

end;

For example, if disccharout is a character consumer, we may write

genoul(prreal, disccharout)—>prveal2; prreal2(3. 5, 2, 2);
prreal2(6.7, 2, 2);

10. MACHINE CODE

It is possible to insert sections of machine code in an imperative
sequence. The rules depend on the implementation. A code instruction
is represented by the identifier § followed by any sequence of character
groups which do not include’; "’

{code instvuction) ::= $(any sequence of chavactev grvoups othev than;)

1. MODES OF EVALUATION

11.1 IMMEDIATE EVALUATION

A POP-2 program consists of a sequence of imperatives and cancella-
tions:

(program element) ::= (imperative) | {cancellation) | (section)
(program) ::= (program element);{program) | { progvam
element);

The program elements are evaluated in sequence in the same way as an
imperative sequence. Each program element is evaluated as soon as
the terminal semicolon has been read by the compiler. The body of any
function in the program element will be compiled and kept so that it
may be evaluated when that function is applied. Note that labels, goto
statements, and conditionals are not program elements and may occur
only in function bodies.

If the compiler detects an error or an error occurs during evaluation
the standard function

evrfun ¢ item, integer=>()

is called with an item and an integer indicating the kind of error as
arguments. The standard variable errfun is not protected and may be
assigned to. It prints a message and applies sefpop (see section 11. 3
'Evaluation of program text').

If the error is merely use of an undeclared identifier however, errfun
is not called, the identifier is automatically declared as a global (outside

ference Manual

e is not to be
and sections,
unctions. A
evaluation

m =>())
ich outputs

may write

\perative
)de instruction
ce of character

S other than,)

and cancella-

ection)
n

same way as an
d as soon as
‘he body of any
ot so that it

. labels, goto
nd may occur

ng evaluation
f error as

d and may be
section 11.3

vever, erviun
, global (outside

Modes of Evaluation (115

all current sections), a warning message is output, and compilation
proceeds.

11.2 MACROS

A Macvo is an identifier whose value is a routine which is applied at
compile time.

The definition of a macro routine is similar to that of any other routine
except that macro is used instead of function and no formal parameters
are allowed. A macro is applied whenever it is mentioned except in a
list constant, in a quoted word, after macro in a function definition or
declaration list element, or when it is preceded by the syntax word non-
mac in which cases it is treated like an ordinary identifier or word.
Thus whenever the syntax allows (identifier) it is understood to allow
nonmac identifier. If nonmac is used before an identifier which is not a
macro it is simply ignored. In a comment macros are ignored.

Although a macro has no parameters the function ifemvread (see section
9.1 'Input’) may be used to read the text items following the macro
identifier. There is a standard routine which, when applied in a macro
body to a list of text items, concatenates these items to the right of the
macro identifier in the program sequence of text items.

macresulis e text item list => ()

If it is applied more than once it concatenates to the right of the
previously-inserted items. On exit from the macro the inserted text
items are evaluated as program. An identifier used as a macro can be
cancelled, for example, by writing

cancel nonmac 7,

Note that itemvead applies macros (see section 9.1 'Input’), but the
functions produced by incharitem do not.

Examples

macro— —>; vars x v, . ilemvead—>x; . ilemread—>y;
macvesults({% "—>", v, "—>", x %])

end;

7//2——>r q;

This is the same as 7//2—>¢—>7; .

macro kelp; macvesults([” go and ask vay " =>]) end;

help

** /g0 and ask vay\

function f; macresulis([7 go and ask dave > =>]) end;
J—>nonmac help;

help

** 7 g0 and ask dave®

[help end nonmac] =

**[help end nonmac]

The correspondence between a list of text items and POP-2 program is
as follows. Syntax words, identifiers, and unquoted words are
represented by corresponding words in the list. A quoted word is
represented by a word with the word quote (consisting of the character
quote) before and after it in the list. Integers and reals are repre-
sented by integers and reals. String constants are represented by
strings.

116) Reference Manual

11.3 EVALUATION OF PROGRAM TEXT

A standard function popval is provided which will evaluate a list of text
items treating it as a POP-2 imperative sequence. The sequence is
evaluated immediately. It may contain function definitions and assign-
ments to current variables. Any declarations in it which are not in a
function body are global. The list must terminate with the word goon.
For the correspondence between a list of text items and POP-2 program,
see section 11.2 'Macros'. .

The result of the application of popwval is the result of evaluating the
imperative sequence.

popuval e text item list => item, ... ,item

Note that popual is used to evaluate an imperative sequence at run time
and the list of text items may have been produced as the result of
computation. It may temporarily affect the standard variable proglist
(see 9.1 'Input).

Example
1—>a; popval([vars x; a+2—>x; x*x goon/)=>
*¥*g 7

The standard routine sefpop may be applied in the imperative sequence.
This restores the system to execute mode. The stack is cleared. The
variable currently associated with any identifier is not altered, except
that cucharout and proglist are restored to their standard values. After
setpop has been applied the rest of the imperative sequence is ignored
and all function bodies currently being evaluated are abandoned. The
system then prints “setpop” and evaluates the next program element,
setpop may also be applied in a function body.

setpop € () => ()

If the operating system of the implementation permits it, a program
may be interrupted by a signal from the console. This has the effect of
requiring a text to be input from the standard device, ending with the
word goon. The effect is as if the statement popual(]...]) ;had been
inserted before the next backward goto statement or function entry,
where '...' represents the text input, except that cucharout and evriun
are reset to the standard values during the interrupt and reinstated at
the end of the interrupt unless their values have been changed, and that
the pre-existing stack is not available to the user during the interrupt.

ence Manual Appendix 1 (117

APPENDIX 1:
STANDARD POP-2 CHARACTER SET
L list of text

. Decimal Octal Character Decimal Octal Character
uence is
nd assign- 0 00 0 32 40
e not in a 1 01 1 33 41 A
vord goon. 2 02 2 34 42 B
P-2 program, 3 03 3 35 43 C
. 4 04 4 36 44 D
. 5 05 5 37 45 B
ating the 6 06 6 38 46 F
7 07 7 39 47 G
8 10 8 40 50 H
. 9 11 9 41 51 I
BT tme 10 12 : 42 52 J
sult o
2 s T £ 8 ok
13 15 = 45 55 M
14 16 > 46 56 N
15 17 10 47 57 (0]
16 - 20 space 48 60 P
| 17 21 newline 49 61 Q
e sequence. 18 99 o 50 62 R
ared. The 19 23 HALT CODE 51 63 s
red, except 20 24 3 52 64 T
alues. After 21 25 % 53 65 U
15 lenored 22 26 & 54 66 v
1 ele:ment 23 27 / 55 67 w
. 24 30 (56 70 X
25 31) 57 71 Y
26 32 * 58 72 Z
rogram - 27 33 + 59 73 [
he effect of gg ::3‘51 ? g(l) Zg is
with the 30 36 : 62 76 7
A0 been 31 37 / 63 i shift
n entry,
and ervfun
instated at NOTES
?‘iﬁigfmﬁlﬁt The halt code (decimal 19) is used by the system for file termination.

The shift character (decimal 63) may be used by the user as a special
purpose marker, as no out-shift facilities are envisaged. If printed,
this character will be output as a space.

The character set is based on the ISO standard one.

APPENDIX 22 OPTIONAL FUNCTIONS

The table below gives identifiers and definitions for a number of
functions which are not standard but optional. That is, implementations
are not bound to include them but may do so, either as part of the
system or in the program library. They are described here so that if
they are provided by an implementation they may have the same
identifier and definition as in other POP-2 implementations.

Two further suggestions are made for diagnostic purposes, again
optional and not mandatory: (1) that the values of variables on declara-
tion (not defined in the manual) should be a pair whose front is the

118) Reference Manual

word corresponding to the identifier of the variable and whose back is
undef, (2) that the fuprops of a function introduced by a function
definition should be a similar pair but with the back equal to nil,

Example
function so7t I; ... end;
Jnprops(sovt)=>
**[sovt]
apply This applies a function. It is defined by
function apply f;f() end;
lambda f; —> f() end —> updater(apply)
JSfrncomp This gives the composition of two functions. It is defined
by
function frncomp f g;lambda f g;.f.g end (% f, g %) end
It is an operation of precedence 2. Thus x.(f fucomp g)
isx.f.g
valof A function which, given a word, produces the value of the
word when it is used as an identifier or changes this
value. It is defined by using popuval.
valof € word ==> item
e.g.
5—>x; "x"—>a; valof{a)=>
**5
3—>valofla); x=>
**3
cos A function which, given a number, produces the cosine of
that number (in radians).
cos € numbev => veal
sin A function which, given a number, produces the sine of

that number (in radians).
sin € number => rveal
tun A function which, given a number, produces the tangent of
that number (in radians).
tan € number => real

arvctan A function which, given a number, produces the inverse
tangent of that number (in radians).
avctan € number => real

log A function which, given a number, produces the natural
logarithm of that number.
log € number => veal

exp A function which, given a number, produces the
exponential function of that number. (exp(x)=e¥).
exp € numbey => real
sqri A function which, given a number, produces the square
root of that number,
sqvt € numbey =>7real

applist A function which, given a list and a function, applies the
function to each membrr of the list. applist(l, f) applies
the function f to each member of the list I,
applist € list, function => ()

e.g.
applist([1 2 3], p7);
123
appdata A function which, given a record or strip, applies a given

function to each component of it, that is, appdata(x, f)

cvence Manual

hose back is
ction
| to nil.

3. It is defined

/& %) end
(f fncomp g)

e value of the
inges this

the cosine of
the sine of
the tangent of
the inverse
the natural
the

=e%),

the square

, applies the
(1, /) applies

plies a given
data(x, f)

Appendix 2 (119

has the same effect as applist(datalist(x),f) but may be
more efficient

appdata € recorvd or strip, (item => ()) => ()
rev A function to reverse a list {at the top level). The
original list is copied.
vev € list => list

e.g.
rev([l 2 3])=>
***[3 21]
rev([1[1 2 3]])=>
_ **[[1 2 3]1]
copylist A function to copy a list (copy just copies the first pair)
e.g.
copylist(f1 2 3])=>
**1 2 3] ‘
length A function which, given a list, produces the number of

items in that list (at the top level).
length € list => integer
e.g.
length(f{1 2 3])=>
#*3

length([1{1 2 3]])=>
¥k
/= Not equal. An operation of precedence 7.

/= € item, ilem=>stvuth value
operation 7 / = x y; noi(x=y) end

- equal A function to test the equality of two lists to all depths,

by testing the equality of corresponding members of the
two lists.

equal € list, list => truth value
e.g.

equal(fifa]], 1::[[a]])=>

F* ¥ 1,

equal([1 2],[2 1])=>
** 0

library A function which, given a list (the name of a file in the
library), produces a character repeater to access that
file.
lLibvary € list => character vepeater
e.g.
libvary([sets])—>a; compile(a);
compiles the library file [sets].
prbin A function which, given an item, prints it as a binary
number of a given number of bits.
prbin ¢ item, integer => ()
proct A function which, given an item, prints it as an octal
number of a given number of octal digits.
proct ¢ item, integer => ()
carryon A function which can be used to continue compilation of
a file after an error.
carvyon(a) causes the file whose character repeater is
@ to be searched for the word end and then compiled.
carvyon € chavacter repeater => ()
listvead A function of no arguments which reads the next list
from proglist.
listvead € () => list

120) Refevence Manual

numberread A function of no arguments which reads the next number
(signed integer or signed real) from proglist,
numbervead € () => number

corveused A variable whose value is the number of words of core
currently in use by the program.

poptime A variable whose value is the amount of processor time
which has been used by the program.

APPENDIX 3 CHANGES

TO THE REFERENCE MANUA L

WHICH AFFECT THE LANGUAGE
MADE SINCE THE PREVIOUS EDITION

2.2,2.3 All standard functions with identifiers starting int or veal,
except intof and realof are abolished. The ordinary arith-
metical operations, + etc., should be used instead of intadd,
vealadd, and so on. intsign and vealsign are both replaced by
the single function sign,

2.6 The value of the variable fermin is no longer "terwmin” but a
special word which may not be read or printed.

3.2 (a) Restriction of identifiers to functions is abolished except for
operations. The word function is no longer to be used in
declarations. The word macro may be,)

(b) unique and nonunique abolished, all identifiers are now non-
unique (but see 3. 4 below for alternative facility).

(c) A standard function identprops is introduced to give the
properties of identifiers.

3.4 Sections (inserted to give new facility which will enable
identifier clashes to be avoided).

4.1 (a) The syntax mistakenly insisted on => after formal parameters
even if there was no output local list. This is corrected. The
output local list was mistakenly allowed only in lambda
expressions and not in function definitions. This is corrected.

(b) The word routine is abolished. function may be used instead.
(c) operation (integer) may be used instead of function in function

definitions.

4.2 A standard function stacklength € () => inleger is introduced
to give the number of items on the stack.

4.6 The results of // are now produced in the opposite order.
Thus m//n—sqg—>v,

5.1 Expressions with a compound operator are now allowed, for
example diff(sin)(0.5) and x. (f(g)).

5.4 A standard function jumpout is introduced to allow one to jump

out of a function body, interrupting its execution (since this
function is irregular in its behaviour some existing systems
may not implement it immediately). switch is provided,

5.5 Destination expressions with a compound operator are now
allowed.
5.6 A comment is a statement and is made of text items, not of

any characters,
6.1 (a) In a conditional the consequent was evaluated if the condition
was true, now it is evaluated unless the condition is false.
(b) if may be replaced by loopif which causes a jump back as soon
as a consequent has been evaluated.
(c) A standard macro forall is introduced to facilitate writing
some simple loops.

ofevence Manual

he next number
olist.

words of core

processor time

int or real,
nary arith-
ad of intadd,
th replaced by

termin" but a

hed except for
e used in

Are now non-

).
give the

11 enable

nal parameters
orrected. The
lambda

s is corrected.
used instead.
lion in function

is introduced
site order.
‘allowed, for
low one to jump
| (since this
ting systems
rovided,

tor are now
tems, not of
the condition
n is false.

p back as soon

ite writing

F———_——’—’f B

Appendix 3 (121

7.1 (a)
(v)

7.2 (a)
(b)

8.4
8.5

8.6 (a)

(b)

9.2 (a)

"(b)
(c)

10.

11.1
11. 2(a)

(b)

11.3

The number of components of a record or strip may be zero.
A standard function samedata is introduced to test whether two
items are of the same data class.

The size of a component of a record or strip may be "compnd",
restricting it to compound items.

dataword is a doublet and its value may be any item, instead of
just a word. It is defined for functions, integers, and reals, as
well as for records and strips.

‘enddata has been discarded.

recovdfns now has only two arguments, not three.

A standard function

datalength € rvecovd => integer

is introduced to give the number of items in a strip.

The components of a strip are numbered from 1 upwards

(this was previously not specified).

stvipfns now has only two argumerits, not three.

delitem has been discarded.

The standard function des? now has no side-effect on a dynamic
list and its definition has been altered to simply produce the
head and the tail.

The functions solidified and null have been redefined to deal
correctly with dynamic null lists.

maplist has been added as a standard function, for example,
maplist(f1 49 16],sqrt) =[1.0 2.0 3.0 4.0]

Standard link and list recognition functions, islink and islist,
are introduced. ’

A standard function pystving is introduced which prints strings
without any quotes.

A standard function boundslist is introduced to give the
boundslist of an array.

The destructor for a word was said to produce an item. This
was a mistake. It produces only some characters and an
integer. :

Instead of doublets for a word there is a single selector
function charword (no updater)

charword € wovd, integer=>chavacter

It is specified that the item repeater produced by incharitem
has a buffer of either one or two characters.

A funetion prreal is defined to print reals.

A function genout is defined to make it easier to output to
different devices.

The action to be taken on encountering an error is now
specified. The standard function used is

ervfun € integer,item => ()

Programs may now include sections (new facility described in
3. 4 above).

It is made clear that being a macro is a property of an
identifier rather than of the associated routine,

A macro identifier may be prefixed by the new syntax word
nonmac which prevents it being activated as a macro on that
occasion. This allows, for example, assignment of a routine

to a macro identifier. Otherwise macros are expanded
wherever they are encountered, except inside quotes or square
brackets.

A facility for interrupting a program from the console is
described. The effect is as if popval([. ..]) had been inserted
in the program at that point, where "..." is the text typed in.

