
IPv6 Bootcamp
COSC301 Laboratory Manual

Reading guide
With the exception of Section 3, “Diagnostic and Query Tools”, you should be
able to read most of this lab prior to coming to perform the lab. This will help
you understand the material again (just like a text-book, the second reading is
usually much more informative than the first).

There are many things you just can’t ignore, such as death and taxes; and there are things
that you probably should ignore, such as requests from your users to install the latest greatest
version of Mahjong on their workstation; but there are also things that you could ignore for
now and learn later, which is what a lot of people have done with IPv6. This is a great and
terrible illustration of the chicken and egg problem: most people aren’t bothering too much
about IPv6 because not many are asking for it; and not many people are asking for it because
not many people are offering it. Meanwhile, four of the five regional Internet registries (RIR)
managed by the Internet Assigned Numbers Authority (IANA) have run out of IPv4 addresses.
The RIRs are responsible for distributing publically routable IPv4 address blocks to Internet
Service Providers (ISP). The Asia Pacific Network Information Center (APNIC), responsible
for New Zealand, Australia, China, India, among others, has around 3 million IPv4 address
remaining. These are distributed in blocks of 1024 addresses at a time. With approximately
300 new requests per year, this is expected to take a long time to run out completely. The
APNIC [https://www.apnic.net/manage-ip/ipv4-exhaustion/] has a report on the latest figures.

IPv6 is both simpler and more complex at the same time. Most of the complexity comes from
general inexperience and ongoing development or misconceptions in most of the industry,
but especially with regard to the various transition mechanisms to help IPv6 work in an
IPv4 world, and IPv4 work in the coming IPv6 world. Some management areas become
more complicated, such as DNS, while others ought to become simpler (such as address
management).

We don’t have a lot of time in this lab to explore a lot of IPv6, so we shall cover only the very
basics. We shall look at IPv6 enablement of various network services at the same time as we
cover IPv4. In this lab, we shall look mostly at the client and how to manage IPv6 on the client
side. Here is a brief overview of what we shall cover in this lab:

1. Observe how IPv6 works with router advertisements using Wireshark, which is a network
traffic analyser (“network sniffer”).

2. Practice the use of basic IPv6 diagnostic and query tools, namely ping6 and ip.

3. (Optional) Practice enabling and disabling IPv6 on Linux, and how to control
autoconfiguration etc.

1. Preparation
In the previous lab on basic network interface configuration, you should have restored to
the snapshot you took at the beginning of that lab. In this section, we want to ensure that
everything is still as we expect, and to add a new virtual appliance which we shall be using
just for today.

1

https://www.apnic.net/manage-ip/ipv4-exhaustion/
https://www.apnic.net/manage-ip/ipv4-exhaustion/

IPv6 Bootcamp

In this lab we shall only be needing Client1 and a new virtual appliance from the resources
folder. The new virtual appliance is called COSC301-v6bootcamp-radvd.ova, which we shall
call Radv. “Radv” is the virtual machine acting as our router advertiser. Radv is running the
router-advertisement daemon (radvd).

On Client1, ensure that only one network adaptor is present, and that it is connected to the
Internal Network “COSC301 Internal Network 1”. Start Client1, and ensure that ifconfig -
a shows only one network interface (excluding the loopback interface), and that it is called
“eth0”, and that it has no IPv4 address (no “inet” line, though it will have one “inet6” line).
Basically, you should see this:

$ /sbin/ifconfig -a
eth0 Link encap:Ethernet HWaddr 08:00:27:99:c2:7d
 inet6 addr: fe80::a00:27ff:fe99:c27d/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:4 errors:0 dropped:0 overruns:0 frame:0
 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1368 (1.3 KB) TX bytes:1836 (1.8 KB)

lo … Seen this before …

If you find an interface called “eth1” or “intnet*”, then you need to complete the Cleanup
section from the previous lab. Reboot Client1 if you needed to make any modifications.

Next we need to start importing Radv. In VirtualBox’s main window, import the Radv
appliance from the Appliances in the resources folder. If you cannot remember how, consult
the notes from the "Introduction" lab. The filename will be named similarly to COSC301-
v6bootcamp-radv-version.ova. Use the latest version available unless otherwise instructed.
Accept the default settings as presented in the import dialogs, except MAC Address Policy
where you should choose Include all network adapter MAC addresses.

The operation will take several minutes to complete. While you are waiting for the import
operation to finish, read through the optional section at the end of this lab, but don't actually
execute any commands at this stage (you can do that later if you have time).

2. Observing Router Advertisements
In this section, you will practice using a network analyser called Wireshark1 to take a
close look at what happens when an interface is configured using StateLess Address
AutoConfiguration (SLAAC) and to observe other fundamental IPv6 mechanisms.

By now Radv should have finished importing. Go into its Network settings and ensure that its
Adaptor 1 is connected to the Internal Network “COSC301 Internal Network 1”. Then Start it.

The purpose of this machine is send out IPv6 “router advertisements”, so host on the network
can learn about their local router(s) and determine a suitable set of addresses to use. Radv
will not be used as a router for this lab, we only need it to offer us router advertisements, so
we can study what they contain and how it influences Client1. You will not need to configure
anything inside this machine.

When you have imported and started the new machine, which is called “Radv”, it will boot
to a console-login window (“radv login:”). You can minimise the machine, you won’t need to
interact with it.
1Previously known as Ethereal.

2

IPv6 Bootcamp

Exercise
As an exercise on Client1, run ifconfig and ip addr show in a terminal window on
Client1. You should see that you now have another address in addition to the link-
local address (fe80::/64) you will typically always have. This address, which starts with
fd6b:, is a “Unique-Local Unicast Address”. If you see this address it means the router
advertisements from Radv worked with Client1.

Wireshark needs to run with sufficient privileges to capture traffic, which generally—though
not necessarily—implies root privilege. However, Wireshark is such a complicated program
(due to all the various protocols it tries to understand) that experience has shown it to
be something of a security risk, so ideally you would run it as a non-root user that has
the appropriate permissions to capture traffic; but currently Wireshark doesn’t support
separation of privileges when you are capturing and analysing (displaying) the packets at the
same time. So just run wireshark using a privilege elevator such as sudo.

Note
In the related video (under resources/IPv6), we show an alternative, more
secure way of doing the capture and analysis, using tcpdump for the capture,
and wireshark for the analysis.

wireshark

Tip
Wireshark will detect that it is running as root and pop up an alert box, which
you will need to dismiss before you can continue running the application. Note
that the alert box may be hidden behind the Wireshark window.

Start capturing on the first ethernet interface (it should be “eth0”). You should soon see
ICMPv6 Routing Advertisements. The radvd software running on the machine Radv has been
configured to send out routing advertisements rather more frequently than needed, to reduce
your waiting time. Stop the capture when you have at least 10 or so. Using the View menu,
un-check the Packet Bytes to give yourself more screen real-estate. Alternatively, you can just
make the VirtualBox window larger and (due to the fact that the VirtualBox Guest Additions
are installed inside the guest) it should change the screen resolution of the guest.

Exercise
As an exercise click on any one of the ICMPv6 Router advertisement packets. In the
Packet Details area of the Wireshark window, click on the disclose (+ or little triangle)
button recursively to open up the packet so you see that all of the fields and subfields
for the “Internet Protocol Version 6” and “Internet Control Message Protocol v6”. Take
a screenshot showing the entire contents, you will want to refer to it later.

3

IPv6 Bootcamp

Figure 1. Detail of IPv6 Router Advertisement in Wireshark

Wireshark showing the full details of a single IPv6 Router Advertisement.

Figure 1, “Detail of IPv6 Router Advertisement in Wireshark” shows the screenshot similar to
what you should see, showing the details of a single router advertisement. Right now we’re
going to discuss what is significant in this packet.

Here is a brief explanation of the most important parts of the router advertisement, from top
to bottom in the packet details view.

4

IPv6 Bootcamp

IPv6 Source
In the packet shown, this is the “link-local unicast” address of Radv. We can confirm
this by logging into Radv as mal and running ifconfig. (note that your Radv will have a
different MAC address from ours) and seeing that the IPv6 address has a MAC address
embedded inside of it2.

IPv6 Destination
ff02::1 is a well-known address commonly called the “all-hosts link-local multicast
address”. Every host on the local network (the “local link”, which is everything up to the
first router) will be listening for traffic sent to this address.

Internet Control Message Protocol v6 (ICMPv6) Type
ICMPv6 is a management protocol that is very important to the running of IPv6. As such,
there are many different types of messages it could transmit. To identify the type of
message being transmitted, the Type field is used. Here, type 134 identifies this message
as being a Router advertisement.

ICMPv6 Flags
The “Managed” address config flag specifies whether “Stateful configuration” is to
be used. Stateful configuration would typically be understood to mean DHCPv6 (we
learn about DHCP in a later lab, but we’ll ignore DHCPv6 in this paper). On most
networks, this flag would not be set, meaning that the host should use “StateLess Address
AutoConfiguration” (SLAAC).

The “Other” stateful config flag means that nodes on this link (local network) should use
Stateful configuration (DHCPv6) for things other than address assignment. Thus, if you
don’t use Stateful configuration for address assignment, you can still use it to advertise
other information (such as information about DNS services, but we learn about DNS
later in this course).

For example, in the capture we saw on our own network, we saw M=0 and O=0, meaning
“Not managed” and “Not other”. So we don’t use stateful configuration (such as DHCPv6)
to try and get an address (instead we just use SLAAC), and neither do we use stateful
configuration to find out other, non-address information about the network (eg. DNS
settings, which host to send log messages to, and a wide range of other possibilities,
some of which we mention further in the lab on DHCP).

These “M” and “O” bits (Managed and Other) are important for understanding how IPv6
address assignment works. The remaining flags are not important for what we are aiming
to understand today.

ICMPv6 Option (Prefix information)
There can be a number of optional components to a router advertisement. The most
common would be an option advertising what “prefix(es)” are used on this link. A prefix is
very much like a network address: in SLAAC, a set of addresses is formed by taking each
prefix and adding the interface’s EUI-64 host ID (typically formed by the MAC address).

Note that there can be multiple “Prefix information” options included in a router
advertisement. An interface can use multiple prefixes to generate multiple IPv6
addresses.

ICMPv6 Prefix length
Somewhat self-explanatory, it tells us that this particular prefix is a /64 (remember that
IPv6 addresses are 128-bit). With SLAAC, all advertised prefixes are /64, which makes
this particular entry rather less interesting. We’ll come back to it when we see the Prefix.

2This need not always be the case if you consider the “privacy” addresses.

5

IPv6 Bootcamp

ICMPv6 Flags
The only flag we wish to draw to your attention here is the Autonomous Configuration flag
(shown as “auto” in the screenshot). Recall that there can be multiple prefixes included in
a router advertisement: only the ones marked with this “auto” flag get SLAAC addresses.
This is on by default.

ICMPv6 Prefix
This is the key piece of data in this announcement. Coupled with the prefix length we
saw earlier, we see that this the prefix being advertised is fd6b:4104:35ce::/64. Viewed
uncompressed, so you can see exactly how long the prefix is in relation to the whole
address:

fd6b:4104:35ce:0000:0000:0000:0000:0000
 network bits ↤ ↦ host bits

ICMPv6 Source link-layer address option
This option simply communicates the router’s MAC address to the hosts on the link, so
they can pre-cache it in their “neighbour cache” (this is like ARP, although IPv6 doesn’t
use ARP but something similar which we don’t want to get into right now). Having it
included here means we don’t have to have an extra round-trip on the network to figure
out the link-layer (MAC) address of the router, which reduces delay.

So that’s a router advertisement, seen during steady-state whereby nothing particularly
interesting is happening such as a new host appearing on the link. Let’s now repeat the
capture and this time we shall see everything that happens when an interface comes up.

Exercise
As an exercise resize the Wireshark display so that the packet list area takes up most
of the room. Start a new live capture in Wireshark; you may discard your previous
capture. When it has started capturing, from a terminal window, as root, disable IPv6
with echo 1 > /proc/sys/net/ipv6/conf/all/disable_ipv6. Now remember what the
last packet was that is currently shown in Wireshark’s packet list area. When you're
ready, run change the 1 to a 0 in the previous command, you should see several packets
arrive in the window. Then stop the capture and save the captured packets. Figure 2,
“What Wireshark sees when an Interface “Comes Up”” is what we see on our own
capture, which may likely be a bit different from yours; in particular, the ordering of
some packets can vary.

Tip
You may find sudo echo 1 > /proc/sys/net/ipv6/conf/all/disable_ipv6 does
not work. For builtin commands like echo, cd, etc, to execute them as root,
you should either use sudo -s to login as root, or use sudo bash -c "echo
1 > /proc/sys/net/ipv6/conf/all/disable_ipv6" to launch bash to execute its
builtin commands.

6

IPv6 Bootcamp

Figure 2. What Wireshark sees when an Interface “Comes Up”

Wireshark showing the packets that are seen when an interface
comes up. The packet marked as *REF* is the first packet
to come into the system after we brought up the interface.

Rather than having you read about what each packet is doing, we’re going to show you with a
video, which will walk you through what is happening in this sequence of packets; or rather, a
similar sequence of packets. In this video, which lasts about half an hour, you will encounter
various parts of IPv6 that form part of its basic mechanisms. We require that you have some
understanding of what is going on, to an extent whereby you could look at such a listing, and
with a bit of work, explain basically what is happening. In the self-assessment, you will be
asked to summarise some of what you have seen.

The video can be found in the “resources” folder of your desktop, and is called IPv6 SLAAC
under Lab resources/IPv6. However, you should watch the video later.

Watch the video later
This is because you won’t need to be in the lab to complete the video-watching
task, but you will want to be in the lab for Section 3, “Diagnostic and Query
Tools”. Doing this will help you use your time more effectively.

3. Diagnostic and Query Tools
This section is very simple; it’s just learning to use some simple tools to see what we they
can tell us and to get ourselves familiarised with the environment. Without this familiarity,
we are blind and lame when we need to diagnose problems. We shall limit ourselves to a very
small selection of commands.

Basic ip usage
With IPv6, we generally have a new set of tools, or system specific additions to old tools, such
as ifconfig. On Linux, the new, preferred and much more capable tool that manages most of
the network stack is simply called ip.

The ip command has extensive help built in, so you generally don’t use the manual page for
getting documentation. The help system is modal; it depends on what mode you are using.
For example, try these commands on Client1 to see the different help you get.

$ ip help
Usage: ip [OPTIONS] OBJECT { COMMAND | help }
 ip [-force] [-batch filename

7

IPv6 Bootcamp

where OBJECT := { link | addr | addrlabel | route | rule | neigh | ntable |
 tunnel | maddr | mroute | monitor | xfrm }
 OPTIONS := { -V[ersion] | -s[tatistics] | -d[etails] | -r[esolve] |
 -f[amily] { inet | inet6 | ipx | dnet | link } |
 -o[neline] | -t[imestamp] }
$ ip addr help
Usage: ip addr {add|change|replace} IFADDR dev STRING [LIFETIME]
 [CONFFLAG-LIST]
 ip addr del IFADDR dev STRING
 ip addr {show|flush} [dev STRING] [scope SCOPE-ID]
 [to PREFIX] [FLAG-LIST] [label PATTERN]
IFADDR := PREFIX | ADDR peer PREFIX
 [broadcast ADDR] [anycast ADDR]
 [label STRING] [scope SCOPE-ID]
SCOPE-ID := [host | link | global | NUMBER]
FLAG-LIST := [FLAG-LIST] FLAG
FLAG := [permanent | dynamic | secondary | primary |
 tentative | deprecated | CONFFLAG-LIST]
CONFFLAG-LIST := [CONFFLAG-LIST] CONFFLAG
CONFFLAG := [home | nodad]
LIFETIME := [valid_lft LFT] [preferred_lft LFT]
LFT := forever | SECONDS

In order to understand what is being shown, you simply need to understand that [… | …]
denotes an optional choice, { … | … } denotes a mandatory choice, lowercase are keywords
(mandatory) and UPPERCASE are rules (“grammar productions” to use a Computer Science
term) that expand (:=) further. You can also see that you just need to add help to the end
of the command you are trying to complete; it’s pretty simple, though a little bewildering at
first. Most of the things you don’t need to worry about for simple uses; the ip command can
allow for quite advanced commands which makes the grammar more useful to have.

Let’s use ip to look at some useful information. For each example, add help to the end to see
what else you can do. Since we’re only interested in IPv6 at present, we’ll add the -6 option
so it limits its operation to IPv6. Also, we’re not going to show the output of the commands;
this makes you have to figure out what they do for yourself.

$ ip -6 addr
…
$ ip -6 link
…
$ ip -6 route
…

Okay, so that was pretty basic, we just looked at the Layer 3 network address configuration
(for IPv6) and the Layer 2 datalink (Ethernet, in this case) information.

We want to briefly look at the glue the binds the IPv6 layer (network layer) to the Ethernet
layer (datalink layer). One of the things that makes IPv6 different from IPv4 is that we no-
longer use ARP to determine the Ethernet MAC address that is bound to a particular IPv4
address. Instead, IPv6 has its own protocol for this called Neighbour Solicitation. Likewise,
the Neighbour Cache has replaced the ARP cache; that’s a little simplified, but it will do for
now.

$ ip -6 neigh help
…
$ ip -6 neigh
fe80:a00:27ff:fe69:9487 dev eth0 lladdr 08:00:27:69:94:87 router STALE

We use the above output to illustrate a few things (your output will look different). The basic
pattern is an IPv6 address is associated to a link-layer address (in this case, an Ethernet MAC
address) on a particular network device. This IPv6 address apparently belongs to a router

8

IPv6 Bootcamp

(but at the moment we don’t care about that). Each entry has a Neighbour Unreachability
Detection (NUD) state; “stale” means the entry is valid but not particularly trustworthy
because of its age. Let’s ping Radv and see what changes in our neighbour cache.

Pinging with IPv6
Log in as mal on Radv (the password is the same) and find out Radv’s enp0s3 IPv6 link-local
address. We suggest you write it down. Now ping Radv from Client1; don’t include the prefix
length (/64) in the link-local address of the command below:

$ ping6 -c2 radv-link-local-ipv6-address%interface-id-of-the-local-host
…

If you get “connect: Invalid Argument”, that indicates that you forgot to include the interface
id of the local machine such as eth0 or intnet1, or the interface id was wrong. If instead you
got “unknown host”, then it means you copied the address wrongly such that it is no longer
a valid IPv6 address.

Note
Notice that because we are pinging a link-local address (fe80::/64), which every
interface has and is therefore generally ambiguous, we need to use a special
syntax to identify the interface we want to use %eth0. A number can be used
for the interface ID on some systems instead, such as Windows.

What actually went on there? If you had been looking at what was happening on the network,
using Wireshark or similar, you should likely see something similar to this, although it can
differ depending on what each side already knows. So the packets used look like the following:

1. Client1 wants to send an IPv6 packet to Radv’s IPv6 link-local address (layer 3), which is
a local delivery. But it probably doesn’t yet know Radv’s link-layer address (layer 2), so it
needs to look it up by using a ICMPv6 Neighbour solicitation from Client1’s link-local
IPv6 address to the Solicited node multicast address for the address that shall be pinged.
It also carries with it a notification of Client1’s link-layer (Ethernet) address, preventing
Radv from having to look it up later and thus saving network traffic.

This is analogous to an ARP request in IPv4.

2. Radv responds with a ICMPv6 Neighbour advertisement. It comes from Radv’s link-
local IPv6 address to Client1’s link-local IPv6 address. It carries a notification of Radv’s
link-layer (Ethernet) address, which Client1 puts into its Neighbour Cache.

This is analogous to an ARP reply and the result being cached in the ARP cache.

3. Now Client1 knows everything it needs to in order to make the local delivery of this IPv6
packet, so it sends the ICMPv6 Echo request (“ping”), from Client1’s link-local IPv6
address to Radv’s link-local IPv6 address (which is the address we pinged).

4. Radv has already learned of Client1’s link-layer address, so it doesn’t need to perform
the Neighbour Solication process again, as it has it in its neighbour cache. So Radv can
now send the ICMPv6 Echo response packet immediately, which is its response to the
“ping” (Echo request) packet.

Notice that this is a local, or “on-link” delivery; it does not go through a router. We’ll ignore
the issue of routing until much later.

9

IPv6 Bootcamp

We’ve seen some multicast addresses being used; how do we find out which multicast
addresses the host is currently interested in? ip can help here also:

$ ip -6 maddr
…

That’s it, a few very simple commands to allow us to investigate the local link (layer 2) and
IPv6 in a single network.

There is much we haven’t covered in this lab, such as assigning static IPv6 addresses, which
is really easy, but we’ll cover that later.

4. Self-assessment
This lab has been very introductory, and we don’t want to labour you with a lot of assessment,
except to give you a little to help you check that you have understood some of the new
concepts you have seen today.

You should be able to answer the following questions after attending the IPv6 lecture and
watching the video as mentioned in Section 2, “Observing Router Advertisements”. You can
work on the questions in small groups (to help everyone understand).

1. Describe multicast, as opposed to unicast and broadcast. Also, give an example of an
IPv6 multicast address.

2. Give an example of a link-local IPv6 address. Briefly describe how it is generally formed
from the Ethernet MAC address.

3. Give an example of a “unique-local” IPv6 address.

4. Describe a Solicited Node [multicast] address. What is its purpose? Give an example.
How is it formed?

5. Multicast Listener Discovery version 2 (MLDv2) Snooping is a mandatory feature for
any switch that wants to support IPv63What is the motivation for MLDv2 snooping,
which in the IPv4 world we might compare with “IGMP Snooping”? We want to see
that you understand its purpose with respect to network switches (not routers). You
may like to include a diagram with a little table showing real IPv6 multicast addresses
(such as two solicited node addresses, and an all-routers address (ff02::2) and switch
port numbers.

6. Briefly describe the most important components of a router advertisement.

7. Briefly describe Duplicate Address Detection (DAD). Why is it needed and how is it
performed? What do you think the difference is between a “Tentative” address and a
“Preferred” address, with regard to DAD?

5. (Optional) Enabling and Disabling
IPv6
In Linux, the act of enabling IPv6 is generally very trivial, as it is most often enabled by default.
The tricky thing is disabling it if you don’t want it. Even trickier still is only enabling it on
3Or at least, mandatory in the sense that it should be a purchasing requirement.

10

IPv6 Bootcamp

certain interfaces. In this section, we look at how support gets added to an IPv6 interface, how
we can remove it if required, and how we can control some aspects of how IPv6 configures
itself.

In Linux, the kernel support for IPv6 might be contained in a kernel module called ipv6.ko
(the .ko extension meaning “kernel object”). Support for IPv6 is often made available as a
loadable module; although in the case of Ubuntu 9.10 and later, it is built into the kernel,
which complicates matters somewhat if you need to disable it.

One of the most common questions regarding IPv6 on Linux is how to turn it off, because
like anything, if you don’t need it you don’t really want to be running with it. Many sites are
not yet ready to support IPv6 and so it doesn’t make much sense to be using IPv6 because
if you try using something that is unsupported in a production environment you can expect
problems to occur. Running with IPv6 can cause transition mechanisms to be used which
invites problems relating to tunneling, performance and security.

Note
Not all of the techniques below are applicable on Client1, which is running
Ubuntu 22.04 LTS. Read all the sections, but only try the command shown in
the sections with [applicable]. Make sure you make a snapshot of your working
Client1 before trying the following techniques.

Removing IPv6 addresses when support is
built-in… [applicable]
For us, as we are using Ubuntu 22.04 LTS, we don’t have a kernel module we can unload
as the support is built into the kernel. We could perhaps recompile the kernel and omit IPv6
support, but that is a lot of work and it doesn’t help us if we just want to enable IPv6 on
specific interfaces, which would be a handy thing to do on a gateway. Compiling your own
kernel also creates a maintenance requirement that we could probably do without.

We can manage addresses on an interface using the ip tool. It can work with both IPv4 and
IPv6 and is a Linux-specific tool, unlike the likes of ifconfig, which you can find on most
Unix-like systems. Unlike IPv4 commands, which grew up with a shared heritage, IPv6 stacks
have been developed more independently and have much different management interfaces
on each platform.

Here is just one example of using the ip command to delete an address attached to an
interface. Thinking back to the types of addresses that were covered in the lecture, what sort
of IPv6 address is being deleted here?

$ ip -6 addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
 inet6 fe80::a00:27ff:fe97:164a/64 scope link
 valid_lft forever preferred_lft forever
ip -6 addr del fe80::a00:27ff:fe97:164a/64 dev eth0

If we wanted to bring it back, we could use ip -6 addr add address, as shown in the example
below.

11

IPv6 Bootcamp

Note
To add or delete an IPv6 address, make sure to include the prefix length (/64)
explicitly after the address; otherwise the prefix length is defaulted to /128

ip -6 addr add fe80::a00:27ff:fe97:164a/64 dev eth0

However, because the above command is generally used for configuring addresses manually,
we won’t use it here for our link-local address, which should be assigned automatically. We
can illustrate that by bringing the interface back up using ifconfig:

/sbin/ifconfig eth0 down
/sbin/ifconfig eth0 up

And now our IPv6 address is back, which can be shown by the following command.

$ ip -6 addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
 inet6 fe80::a00:27ff:fe97:164a/64 scope link
 valid_lft forever preferred_lft forever

If you don’t see this, repeat the above command.

Normally though, we would expect to bring an interface down or up using ifdown and ifup,
as that includes the configuration of IPv4 addresses and other associated tasks. We can’t do
this at the moment on Client1, because we haven’t configured /etc/network/interfaces,
so it would not work presently.

This won’t work on Client1 currently
ifdown eth0
There may be output from any “hooks” that get run
ifup eth0
There may be output from any “hooks” that get run

Passing arguments to the IPv6 subsystem…
[applicable]
As soon as the IPv6 support is loaded into the kernel (in the case of built-in support this would
be at boot-time) it will perform StateLess Address AutoConfiguration (SLAAC) in order to
generate most of its addresses, so if we want to prevent that from happening, or configure
how it is done, we need to pass it some arguments.

In the case of kernel modules, we can add arguments inside /etc/modules or similar, or by
hand when we use modprobe. We can find out what parameters are available to a module
using modinfo, but that assumes that we’re dealing with loadable modules. However, for
subsystems that are built into the kernel like IPv6, you need to add them to the kernel
command-line, which is set by the bootloader (typically, this is GRUB on modern systems). So
what parameters can we use, and how do we learn about them?

To find out what parameters are available, you could try looking in various manual pages
such as ipv6(7) (more relevant to network programming) and ip(8) (interface management).

12

IPv6 Bootcamp

But in this case, where we are wanting to know about kernel modules and such, the various
documentation [http://www.kernel.org/doc/Documentation/] contained in the Linux kernel
source is probably going to be more informative. In particular, the file Documentation/
networking/ip-sysctl.txt documents the sort of thing we’re after; here is the relevant
extract; you are not expected to understand it just yet:

/proc/sys/net/ipv6/* Variables:

IPv6 has no global variables such as tcp_*. tcp_* settings under ipv4/ also
apply to IPv6 [XXX?]. Hmm, how reliable is this documentation?

bindv6only - BOOLEAN
 Default value for IPV6_V6ONLY socket option,
 which restricts use of the IPv6 socket to IPv6 communication
 only.
 TRUE: disable IPv4-mapped address feature
 FALSE: enable IPv4-mapped address feature

 Default: FALSE (as specified in RFC2553bis)
…
conf/default/*:
 Change the interface-specific default settings.

conf/all/*:
 Change all the interface-specific settings.

conf/all/forwarding - BOOLEAN
 Enable global IPv6 forwarding between all interfaces.

 This would be important for creating a router, but we don’t care about that just yet.
…
conf/interface/*:
 Change special settings per interface (where interface is the name of your network interface).

accept_ra - BOOLEAN
 Accept Router Advertisements; autoconfigure using them.

 Functional default: enabled if local forwarding is disabled.
 disabled if local forwarding is enabled.

accept_ra_defrtr, accept_ra_pinfo
 We can fine-tune what we accept in a router advertisement.

…
autoconf - BOOLEAN
 Autoconfigure addresses using Prefix Information in Router
 Advertisements.

 Functional default: enabled if accept_ra_pinfo is enabled.
 disabled if accept_ra_pinfo is disabled.
…
forwarding - INTEGER
 Configure interface-specific Host/Router behaviour.

 Note: It is recommended to have the same setting on all
 interfaces; mixed router/host scenarios are rather uncommon.

 Possible values are:
 0 Forwarding disabled
 1 Forwarding enabled

 FALSE (0):

 By default, Host behaviour is assumed. This means:

13

http://www.kernel.org/doc/Documentation/
http://www.kernel.org/doc/Documentation/

IPv6 Bootcamp

 1. IsRouter flag is not set in Neighbour Advertisements.
 2. If accept_ra is TRUE (default), transmit Router
 Solicitations.
 3. If accept_ra is TRUE (default), accept Router
 Advertisements (and do autoconfiguration).
 4. If accept_redirects is TRUE (default), accept Redirects.

 TRUE (1):

 If local forwarding is enabled, Router behaviour is assumed.
 This means exactly the reverse from the above:

 1. IsRouter flag is set in Neighbour Advertisements.
 2. Router Solicitations are not sent unless accept_ra is 2.
 3. Router Advertisements are ignored unless accept_ra is 2.
 4. Redirects are ignored.

 Default: 0 (disabled) if global forwarding is disabled (default),
 otherwise 1 (enabled).

…
disable_ipv6 - BOOLEAN
 Disable IPv6 operation. If accept_dad is set to 2, this value
 will be dynamically set to TRUE if DAD fails for the link-local
 address.
 Default: FALSE (enable IPv6 operation)

 When this value is changed from 1 to 0 (IPv6 is being enabled),
 it will dynamically create a link-local address on the given
 interface and start Duplicate Address Detection, if necessary.

 When this value is changed from 0 to 1 (IPv6 is being disabled),
 it will dynamically delete all address on the given interface.
…

IPv6 Update by:
Pekka Savola <pekkas@netcore.fi>
YOSHIFUJI Hideaki / USAGI Project <yoshfuji@linux-ipv6.org>

Also, in the Documentation/kernel-parameters.txt file, you are told that you can pass in
arguments to built-in modules (in which case they are no-longer “modules” as such) using
modulename.parameter=value syntax. So, for example, to run with the disable_ipv6 option
turned on (and hence disabling IPv6 addresses from being assigned), we can add the following
argument to the command-line of the kernel:

ipv6.disable=1

But where do we put it? Assuming we are using the GRUB boot-loader, we need to edit the
GRUB configuration. In Ubuntu 22.04 LTS, this is done using the file /etc/default/grub
and those files in /etc/grub.d/. The two sources of files are combined into one using the
command update-grub, which should be run after modifying either of these sources; the
resultant file is stored in /boot/grub/grub.cfg, but you should not edit that as it will be
overwritten on subsequent calls to update-grub. Find the part of /etc/default/grub that
looks like the following:

GRUB_CMDLINE_LINUX=""

and change it to the following:

GRUB_CMDLINE_LINUX="ipv6.disable=1"

14

IPv6 Bootcamp

Run, with root privileges, the command update-grub; the final line of its output message
should say done. Now reboot the guest operating system; you can do this easily from the
command-line using sudo shutdown -r now, or from the GUI.

Exercise
As an exercise after you have restarted, make sure there is no IPv6 (inet6) address
listed in ifconfig. If it does not work, double-check if you disabled the network
manager.

Let’s think about what we have just done. Previously, we had an IPv6 enabled kernel with
IPv6 support enabled by default. Now, we have an IPv6 enabled kernel, but the interfaces
are IPv6 disabled by default.

Regardless of whether IPv6 is by default enabled or disabled, we can enable or disable IPv6
interfaces at runtime by modifying the disable_ipv6 parameter as follows:

$ sudo sh -c "echo 0 > /proc/sys/net/ipv6/conf/interface/disable_ipv6"

This is the general interface for tuning the networking stack behaviour. The contents of the /
proc filesystem are special, as they are an interface into the running kernel. We shall revisit
this concept later in the paper when we look at filesystems in more detail. We will use /proc
more frequently when we encounter firewalls, which are devices that control what traffic can
enter or leave an interface.

Now undo your changes, because we actually do want IPv6 for the remainder of this paper.
Verify that you get an IPv6 address when you boot the guest.

15

