
Post Installation
COSC301 Laboratory Manual

In the previous lab, we installed our server virtual machine, Server1, and applied a bunch
of updates. In this lab, we’re going to continue from there, and actually make it part of the
same network as our client, set up some IPv4 and IPv6 addressing and run a few tests. We
shall also spend some time looking at one way of creating network services, as well as one
common way to restrict access to network services.

Important
Except where explicitly noted (typically in command prompts, but also in the
text), all work is to be performed on the server you installed previously. You
will also need Client1, but nothing else.

Also starting from this lab, you will see the # prompt for commands, which
means the commands need root privilege. In such cases, you should use sudo to
execute the commands, instead of executing them as root user. This should be
always the practice unless specified otherwise explicitly as in some advanced
labs where you do need to login as root user to perform certain tasks.

1. Adding the “inside” Interface
Currently, the “outside” interface of Server1 is configured to attach to VirtualBox’s “NAT”,
allowing it to access the outer (campus) network without the server needing an address on
the outer network. But with this attachment comes a restriction; we can’t talk to other virtual
machines. We want our virtual machines to all be connected to each other in a dedicated LAN.

We could re-attach the “outside” interface of Server1 to the internal network, which would
allow us to connect with Client1, but that means we wouldn’t be able to connect to the outer
network if we needed packages. That’s really annoying.

To solve this problem, we shall add another adaptor to VirtualBox, and configure the new
interface as the “inside” interface. This will allow us to create a “dual-homed” configuration
whereby we can talk to both the outside world and the internal network.

Shutdown the server cleanly. It needs to show its status as “Powered off”. If it is showing as
“Saved” you will need to start it, then shut it down cleanly using shutdown -h now.

In the VirtualBox network setting for the server, leave Adaptor 1 as it is (it should be attached
to NAT), and go into Adaptor 2. Enable the interface and attach it to the Internal Network
“COSC301 Internal Network 1”.

Start the server. To prevent confusion, use the same method we used in earlier labs to add
then change the interface name from “enp0s8” to “inside” (hint: /etc/systemd/network/70-
intnet.link, and update-initramfs -u).

Change the network interface configuration inside the server by editing the file /etc/
network/interfaces.

auto lo
iface lo inet loopback

1

Post Installation

auto outside
iface outside inet dhcp

auto inside
iface inside inet static
 address 192.168.1.1
 netmask 255.255.255.0

Affect the changes by rebooting.

$ sudo shutdown -r now

Exercise
As an exercise check that everything is now as expected. Are the interfaces configured
as we would expect?

$ ifconfig inside
…IP address should be 192.168.1.1
$ ifconfig outside
…IP address should be 10.0.2.15

Okay, now check that the routing table is as we expect, with a default route going out the
“outside” interface:

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default _gateway 0.0.0.0 UG 0 0 0 outside
10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 outside
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 inside

To find out the IP address of _gateway:

$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 outside
10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 outside
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 inside

Finally, a “test by doing”: can we get to the package repository?

apt-get update
…
Fetched 565kB in 6s (87.56kB/s) Success!
Reading package lists... Done

Testing by doing
How might you test if a web server is working? You could look to see if it
running (pstree etc.), but that isn’t an exhaustive test. It is much better to
simply retrieve a page (possibly multiple pages), which tests the entire “stack”.
Testing by doing is a great way of testing for success conditions, but is not a
good way of diagnosing faults.

Okay, so now we know that Server1 can talk to the world. Let’s re-introduce Client1 into the
network so we can test that we can communicate with hosts in the internal network.

2

Post Installation

Important
Start Client1, run the command sudo apt install resolvconf in a terminal
window to install the resolvconf package. Then shutdown Client1

Before you start Client1 again, go into its settings and ensure that the network adaptor
Adaptor 1 is connected to the Internal Network “COSC301 Internal Network 1”. Then start
Client1.

If you recall, in the lab on basic interface management, we only gave Client1 a temporary
IP address, and did not make a permanent configuration. Let’s create one now. On Client1,
edit /etc/network/interfaces and add the following stanza for iface eth0 or replace the
stanza if there is one:

auto eth0
iface eth0 inet static
 address 192.168.1.11
 netmask 255.255.255.0

Affect the change using ifup:

client1# ifup eth0
 … should have no output if it works
client1$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.1.11 netmask 255.255.255.0 broadcast 192.168.1.255
 ether 08:00:27:f8:ef:dc txqueuelen 1000 (Ethernet)
 RX packets 151 bytes 10752 (10.7 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 14 bytes 1076 (1.0 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Exercise
As an exercise ensure you get the IPv4 address specified. Make sure that you have
successfully given Client1 its address.

We added Client1 to the network to ensure that Server1 could talk to other internal hosts, so
let’s test that now. Still on Client1, let’s check that we can ping Server1:

client1$ ping -c2 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=3.39 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.358 ms

--- 192.168.1.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.358/1.874/3.391/1.517 ms

That worked, which means traffic can flow in both directions. To be doubly sure1, let’s try
the same thing on Server1:

server1$ ping -c2 192.168.1.11
PING 192.168.1.11 (192.168.1.11) 56(84) bytes of data.
64 bytes from 192.168.1.11: icmp_seq=1 ttl=64 time=4.88 ms
64 bytes from 192.168.1.11: icmp_seq=2 ttl=64 time=0.385 ms

1At present, its not actually needed, but in general, because of devices such as firewalls and NAT, it pays to test
both directions if needed.

3

Post Installation

--- 192.168.1.11 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.385/2.636/4.887/2.251 ms

Hooray! So we know local deliveries are working on the internal network. Time to go onto
the next section.

2. Configuring Basic NAT
So local deliveries work, but soon we shall want to access the outer network from Client1, so
let’s test remote deliveries using the same “test by doing” as we did earlier on the server:

client1# apt-get update
…
W: Failed to fetch http://… … Temporary failure resolving …)
E: Some index files failed to download, …

What happened there? The message “Temporary failure resolving …" indicates that it failed
to convert an Internet name into an Internet address. This is a component called “DNS”,
which we shall see later.

Because we will be encountering DNS later on, we shall just skim over the necessary
configuration. First, let’s just ensure that Client1 is configured to access a DNS correctly.
Add in the file /etc/resolvconf/resolv.conf.d/head on Client1 the following lines:

nameserver 139.80.64.1
nameserver 139.80.64.3

Once you have these lines, run $ sudo resolvconf -u or $ sudo service resolvconf restart
to make the change effective.

These are the same DNS servers that your lab iMac is configured to access, and will be
different on different networks.

So how do we get to those 139.80.64.* addresses, which are not on the local network; do we
have a route which would allow Client1 to get there?

client1$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 Ignore
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

There is no route, such as a default route, to allow us to get out of the network. Open up /
etc/network/interfaces on Client1, and edit the “eth0” stanza to add a default route via
a gateway:

auto eth0
iface eth0 inet static
 address 192.168.1.11
 netmask 255.255.255.0
 gateway 192.168.1.1

Bring the interface down then up again:

client1# ifdown eth0
SIOCDELRT: No such process Trying to delete the gateway, which has not yet been added
client# ifup eth0

4

Post Installation

client$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 100 0 0 eth0 Success!
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

Okay, so now can we get out to the wider network?

client1# apt-get update
0% [Working] Long hang
^C

It took a long time because there is an error. Rather than show you how you could diagnose
it (we can save that for a later lab), we’ll simply tell you that it's a routing issue: packets
aren’t being forwarded by Server1, because it's not configured to do so. On Server1, enable
IP forwarding by setting the appropriate system control (“sysctl”), which configures kernel
behaviour. We can do this persistently by editing the file /etc/sysctl.conf on Server1:

…
net.ipv4.ip_forward = 1 Uncomment this line
…

server1# sysctl -p
net.ipv4.ip_forward = 1 Prints changes it applies

However, this is not the end of the problem. Although packets can now be forwarded from
Server1’s inside to outside, VirtualBox’s “NAT” attachment doesn’t have a “return route” (it
doesn’t know that in order to get packets to 192.168.1.0/24 it should go through 10.0.2.15
(Server1’s outside interface). Because we can’t add a return route (VirtualBox doesn’t expose
such functionality, we shall have to add another level of NAT — it's ugly, but it will work.

Confused? Don’t panic!
At this point, you don’t need to really understand what we’re doing right now,
it's just necessary stuff we need to do in order to get a network that we can
further play with. We’ll meet it again in more detail later, at which point you
should come to understand.

To enable NAT, write the following onto /etc/network/if-up.d/nat on Server1:

#!/bin/sh

if ["$MODE" = start -a "$LOGICAL" = outside]; then
 echo "Enabling NAT on 'outside' interface"

 iptables -t nat -F
 iptables -t nat -X
 iptables -F
 iptables -X

 iptables -t nat -A POSTROUTING -o outside -j SNAT --to-source 10.0.2.15
fi

Use chmod to make the script executable. This script should now run when we use ifup, after
the interface has been bought up. To test, first take the interface down, then bring it back up.

ifdown outside
…

5

Post Installation

ifup outside
… messages from DHCP client
Enabling NAT on outside success

Does it work yet? Now try again on Client1:

Client1# apt-get update
… should work to completion

Exercise
Hooray it works! As an exercise take a little break. In the next section, we’ll enable
IPv6 connectivity on the local link. Don’t worry, it’ll be pretty easy, we won’t even have
to do anything on Client1!

3. Configuring IPv6 Router
Advertisements and a Static Address
At this point, we have Client1 and Server1 reachable via IPv4, and Client1 can even connect
to addresses beyond Server1, also over IPv4. In this section, we’re going to show you how
to set up simple IPv6 connectivity, but only for the local link (because going beyond Server1
using IPv6 is not yet supported on our outer network).

Client devices generally require no configuration. They will by default act on router
advertisements. We don’t have a router on our internal network that sends out router
advertisements, so we shall add that feature to Server1 as well, as it is going to be a router
(albeit only for IPv4 at present).

When we’ve done that, we shall configure Server1’s inside interface with a static IPv6
address. This is important because servers generally need static addresses, and because
Server1 is acting as a router, it will not participate in the SLAAC (StateLess Address
AutoConfiguration) process, which was introduced in the lab of IPv6 Bootcamp.

Note
In the IPv6 Bootcamp lab, we used a virtual appliance called Radv to send out
router advertisements. That appliance is now made redundant by Server1 and
should not be enabled on your internal network.

The first thing we have to do is to make Server1 perform the functions of SLAAC, in order to
send out router advertisements from Server1 (which is our router). The software for doing this
on Linux systems is generally the radvd package, which we could install using the Debian/
Ubuntu package of the same name

apt-get install radvd
…
Setting up radvd …
 …
 …

At this stage, it won't be able to start because there is no configuration file. This is good
because no default configuration file means we are not going to risk polluting the network
with poor router advertisements. We just need to simply create the configuration file /etc/
radvd.conf as root:

6

Post Installation

interface inside
{
 AdvSendAdvert on;

 prefix fd6b:4104:35ce::/64
 {
 AdvOnLink on;
 AdvAutonomous on;
 };
};

interface outside
{
 AdvSendAdvert off;
};

Check radvd.conf(5) for more information about this file format. This is a fairly minimal
example, and makes use of radvd’s default values for most things, which are sensible defaults.

According to the README.Debian file (mentioned in the startup attempt of radvd), IPv6
forwarding needs to be enabled (even though at present we’re not going to be doing any
forwarding of IPv6). So uncomment or add the following line to /etc/sysctl.conf:

net.ipv6.conf.all.forwarding=1

Confirm the changes of sysctl, then start radvd:

sysctl -p
net.ipv6.conf.all.forwarding = 1 prints changes it makes
/etc/init.d/radvd start
Starting radvd: radvd.

Check that it’s up and running:

$ ps -eo pid,command | grep radvd
 2057 /usr/sbin/radvd …
 2058 /usr/sbin/radvd …
 2141 grep --color=auto radvd ignore this line

You may find that it's not running, in which case check the status of the service.

service radvd status
● radvd.service - LSB: Router Advertising Daemon
 Loaded: loaded (/etc/init.d/radvd; bad; vendor preset: enabled)
 Active: active (exited) since Fri 2018-04-13 02:14:38 UTC; 2min 41s ago
 Docs: man:systemd-sysv-generator(8)

Apr 13 02:14:38 ubuntu systemd[1]: Starting LSB: Router Advertising Daemon...
Apr 13 02:14:38 ubuntu radvd[5333]: Starting radvd:
Apr 13 02:14:38 ubuntu radvd[5333]: * /etc/radvd.conf does not exist or is empty.
Apr 13 02:14:38 ubuntu radvd[5333]: * See /usr/share/doc/radvd/README.Debian
Apr 13 02:14:38 ubuntu radvd[5333]: * radvd will *not* be started.
Apr 13 02:14:38 ubuntu systemd[1]: Started LSB: Router Advertising Daemon.

You'll see that the service is active (exited). This means that it tried to startup, but failed to so
and has stopped. It stopped because it couldn't find the /etc/radvd.conf file when it started.
You will need to restart the service (as opposed to just starting it). There are two ways to do
this, firstly, by stopping then starting it, or simply issueing restart. In addition, enable the
radvd service so that it can be automatically started after reboot.

service radvd restart

7

Post Installation

systemctl enable radvd

Double check the status as before.

service radvd status
● radvd.service - LSB: Router Advertising Daemon
 Loaded: loaded (/etc/init.d/radvd; bad; vendor preset: enabled)
 Active: active (running) since Fri 2018-04-13 02:23:26 UTC; 9s ago
 Docs: man:systemd-sysv-generator(8)
 Process: 5729 ExecStop=/etc/init.d/radvd stop (code=exited, status=0/SUCCESS)
 Process: 5737 ExecStart=/etc/init.d/radvd start (code=exited, status=0/SUCCESS)
 CGroup: /system.slice/radvd.service
 ├─5746 /usr/sbin/radvd -u radvd -p /var/run/radvd/radvd.pid
 └─5747 /usr/sbin/radvd -u radvd -p /var/run/radvd/radvd.pid

Apr 13 02:23:26 ubuntu systemd[1]: Starting LSB: Router Advertising Daemon...
Apr 13 02:23:26 ubuntu radvd[5745]: version 2.11 started
Apr 13 02:23:26 ubuntu radvd[5737]: Starting radvd: radvd.
Apr 13 02:23:26 ubuntu systemd[1]: Started LSB: Router Advertising Daemon.

That looks healthier, shall we have a look at what it’s doing on the network?

lsof -Pni
nothing related to radvd!

Apparently it doesn’t use IPv6 sockets at all: can't believe that, let’s have a closer look:

lsof | grep radvd
…lot’s of lines, including a couple like this one:
radvd … raw6 …

Ah, so radvd does its work by using “raw” IPv6 sockets. It does this so it can specify exactly
what to put in the header fields, even if the operating system doesn’t have library support
for newer IPv6 header options.

Anyway, let’s get back to our testing. Start up Client1 connected to the same internal network.
When its interface comes up, it should send out a Router Solicitation, which should cause
radvd to send out a Router Advertisement. Let’s see what addresses Client1 has generated
for itself:

Client1$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 08:00:27:99:c2:7d
 inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fd6b:4104:35ce:0:a00:27ff:fe99:c27d/64 Scope:Global
 inet6 addr: fe80::a00:27ff:fe99:c27d/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:624 errors:0 dropped:0 overruns:0 frame:0
 TX packets:250 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:820367 (820.3 KB) TX bytes:29767 (29.7 KB)

Exercise
As an exercise make sure the interface has a Unique-Local Address. Did you get a
default route? Use the following command to make sure Client1 has got an address
and a useful default route. Mind you that we haven’t had to do any configuration on
Client1 to get that.

Client1$ ip -6 route
fd6b::4104:35ce/64 dev eth0 …

8

Post Installation

fe80::/64 dev eth0 …
default via fe80::a00:27ff:fe69:e1ae dev eth0 … success

You might perhaps be thinking it odd that we did in fact get a default route. After all, you
would think that you should have to manually configure Client1 to get a default route, but
this is not the case. With IPv6, it makes it easier to have multiple routers that a host can use
for a default route, and they each advertise a “default router priority”, such as low, medium
or high, which allows for graceful failover.

So now that Client1 has a fd6b:… address (a “Unique-Local Address”, or ULA for short),
we should be able to make connections using it. The only other thing in our network in the
moment is Server1. Does it have a ULA?

$ ifconfig inside
inside Link encap:Ethernet HWaddr 08:00:27:50:e0:93
 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:fe50:e093/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:297 errors:0 dropped:0 overruns:0 frame:0
 TX packets:701 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:31067 (31.0 KB) TX bytes:828807 (828.8 KB)

No, it doesn’t have a ULA, only a LLA (Link-Local Address). Why is that? It is because Server1
is configured as a router, no longer a host. As such, it does not generate SLAAC addresses.
So we need to configure a static address, which is really very easy. On Server1, edit /etc/
network/interfaces, and make the alterations as indicated:

…
auto inside
iface inside inet static
 address 192.168.1.1
 netmask 255.255.255.0
iface inside inet6 static
 address fd6b:4104:35ce::1
 netmask 64

Affect the change using ifup:

ifdown inside
…
ifup inside
…
$ ifconfig inside
inside Link encap:Ethernet HWaddr 08:00:27:50:e0:93
 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fd6b:4104:35ce::1/64 Scope:Global Success
 inet6 addr: fe80::a00:27ff:fe50:e093/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:297 errors:0 dropped:0 overruns:0 frame:0
 TX packets:709 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:31067 (31.0 KB) TX bytes:829623 (829.6 KB)

Great, so now both Client1 and Server1 have a ULA. Let’s just check that we can communicate
using them with ping6; because this is a ULA, and not a LLA, we do not need to supply a
scope identifier (eg. %inside or %eth0, as we have done previously).

Client1$ ping6 -c1 fd6b:4104:35ce::1
PING fd6b:4104:35ce::1(fd6b:4104:35ce::1) 56 data bytes
64 bytes from fd6b:4104:35ce::1: icmp_seq=1 ttl=64 time=0.669 ms

9

Post Installation

--- fd6b:4104:35ce::1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.669/0.669/0.669/0.000 ms

Exercise
So now we have Client1 and our server with both IPv4 and IPv6 addresses. As an
exercise let’s just do some brief testing.

Client1$ ping6 -c1 fdb6:4104:35ce::1
… Destination unreachable: No route
Blast! Typing mistake.
Client1$ ping6 -c1 fd6b:4104:35ce::1
… 64 bytes from fd6b:4104:35ce::1 … success!
Client1$ ping -c1 192.168.1.1
64 bytes from 192.168.1.1 … success!

These IPv6 addresses are rather more cumbersome to type and recognise (but thankfully
after a while, the shorter static addresses, are reasonably easy) . Let’s make it easier on
ourselves: on both Client1 and Server1, add the following into /etc/hosts, remembering
to use the correct address for Client1, which will be different from that shown below:

fd6b:4104:35ce::1 ip6-server1
fd6b:4104:35ce::a00:27ff:fe99:c27d ip6-client1

What this does is to make a mapping between an address and a name. It is important to realise
that these changes are only visible to these two machines: if you were to have more machines
they would not see the change. We shall improve on this situation when we encounter DNS.

Client1$ ping6 ip6-server1
64 bytes from ip6-server1 … much easier!

Server1$ ping6 ip6-client1
64 bytes from ip6-client1 …

What we’ve done is to create a simple little shorthand. You may be wondering why we
bothered to put the (informal) prefix of “ip6-”. That is simply for ease of debugging, making
it easier to recognise/specify the use of IPv6 or IPv4. At this stage, you don’t need to do
anything similar for IPv4. This is just a little convenience for ourselves to make it easier to
deal with IPv6.

4. Pruning Services
Most operating systems seem to come loaded with services enabled out of the box; most of
which you don’t need and therefore ought not to be running. Ubuntu, on the other hand, has
a good policy of not shipping with any network services reachable from outside the machine
by default, though naturally if you ask for a particular network service to be installed, it will
be reachable.

In order to give us something interesting to look at in this section, you will first need to run
the following “mystery commands” on Server1, which will install and configure some services
for us to look at:

apt-get install openbsd-inetd netcat-openbsd openssh-server
sed -i -e 's/^#daytime/daytime/' /etc/inetd.conf
/etc/init.d/openbsd-inetd restart

10

Post Installation

What that does, in short, is to install some software, which includes an “Internet Super-
Server”2, which we shall be using shortly; alter its configuration file a little to enable a
particular service by uncommenting a line; and restart it, affecting the change. We also install
the OpenBSD version of the useful netcat utility (the “TCP Swiss Army Knife”), as it again
has much better IPv6 support than other versions of netcat3. Finally, we also installed the
OpenSSH SSH service. We can now run lsof and see what is listening on the network:

lsof -i
COMMAND PID USER FD TYPE … NODE NAME
dhclient 294 root 4u IPv4 … UDP *:68
sshd 902 root 3u IPv4 … TCP *:ssh (LISTEN)
sshd 902 root 4u IPv6 … TCP *:ssh (LISTEN)
inetd 1275 root 4u IPv6 … TCP *:daytime (LISTEN)

Note
If you don’t see any lines output, check that you have run lsof with root
privilege. Otherwise, it will only report on your own processes, of which you
will most likely have none that are using network sockets.

dhclient is the DHCP client for the NAT network attachment (we’ll learn more about DHCP
in a later lab). Likewise, we’ll look at that sshd entry a little later, but right now we want to
have a look at the daytime entry, and find out more about it.

You’ll notice that inetd is handling the connections for the daytime service. The configuration
file for inetd is /etc/inetd.conf. Before we disable anything in /etc/inetd.conf, we should
know that a service is represented as a pair of protocol/port, where protocol is either tcp
or udp, and port is the port number. This is a common way of specifying port numbers of
services in documentation. To find the protocol and port number of a service, you can use the
-Pni options to lsof. You can google protocol/port to find out information about the service.

It is useful also to look at what interfaces services are listening on, for that tells us much about
where a service is being offered. For the daytime entry above, a * indicates it is listening on
all IPv6 interfaces (furthermore, in a common dual-stack feature, because there is no IPv4
service on the same port number, IPv6 will also likely get IPv4 requests as well). If you see
a particular hostname (or IP address if you are using the -n option to lsof), then it is only
accepting connections on that interface. Commonly, services that need to be running, but
don’t need to be remotely accessible by default will listen on 127.0.0.1 or ::1. Such an address
is commonly shown as localhost, ip6-localhost or the canonical hostname of the machine,
depending on the contents of /etc/hosts, which differs on different distributions.

inetd is configured via the file /etc/inetd.conf. An entry in that file is disabled either by
commenting it out or removing it entirely. To make it easier for package installation scripts
to be run, various configuration files can be managed using system-provided scripts, such
as update-inetd4. This is easier than having to have each inetd-related package having to
edit the file itself, separating policy and implementation. In this lab, we disable the “daytime”
service manually by editing inetd.conf.

Once you have modified inetd.conf, you need to tell inetd that it has changed. This is
generally done by the services startup script, such as by using the command /etc/init.d/
openbsd-inetd reload.
2This particular version comes from OpenBSD, and supports IPv6 much better than the other available version:
Inetutils-inetd.
3As an example, the netcat6 package doesn’t allow you to specify an IPv6 address to connect to, only a hostname.
4This would replace the call to sed we used earlier, and would be expected to be more robust.

11

Post Installation

Note
In summary, to disable or enable a service from inetd, you generally want to
use a pattern of commands such as the following:

1. vim
Use vim or nano to edit inetd.conf and comment or uncomment the
corresponding line of the service (judging by protocol/port of the service).

2. pstree
Use this to verify that the right number of daemon processes is running. In
the case of inetd, there should only be one inetd process in a quiescent
system (meaning the system is not serving any requests.)

3. sudo /etc/init.d/openbsd-inetd stop
Use this to shut down the service.

4. sudo killall inetd
You can use this to kill off any remaining inetd processes so that processes
get a second chance to terminate gracefully. Give a little time for them to be
shut down first though.

5. pstree
Has it gone yet? If not, use sudo killall -KILL inetd to kill it forcefully.
Check that it has really died this time with another pstree.

6. sudo /etc/init.d/openbsd-inetd start
This will start the service again. Note that if you have commented out all
services in inetd.conf, inetd will fail to start, which is ok.

7. pstree and lsof -ni, to verify that the process is running, and listening as
expected.

8. Check your system logs, typically in /var/log/syslog. You can use the tail
command to view the end of this, but beware that viewing logs using tail
exposes a security weakness5

Following this general procedure throughout the rest of the course will greatly
help you in diagnosing problems, and save yourself a lot of time in the future.

Now that we’ve disabled the “daytime” service, let’s just ensure that it is no longer available.
Here, We’re using a particular invocation of lsof that just tells us about things on the
“daytime” port:

lsof -Pni:daytime

Because there is no output reported (and yes, we are running this with root privilege), we
can infer that nothing is listening on the “daytime” port.

5Discussed in Hacking Linux Exposed [http://www.hackinglinuxexposed.com/]. You should instead create an
alias in your ~/.bashrc, such as alias vlog='sudo less --follow-name +G +F'.

12

http://www.hackinglinuxexposed.com/
http://www.hackinglinuxexposed.com/

Post Installation

What about that SSH service?
Here is what is currently listening:

lsof -Pni
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
dhclient …
sshd 9723 root 3u IPv4 23591 0t0 TCP *:22 (LISTEN)
sshd 9723 root 4u IPv6 23593 0t0 TCP *:22 (LISTEN)

Let’s assume that we don’t need the SSH service; how best to disable it? Unlike the “daytime”
service, which was run by inetd, the SSH service is run by the sshd process. We have a
number of options available to disable the service, listed in no particular order of suitability:

1. Remove the links from under /etc/rc*.d/Snnname that cause the associated script in /
etc/init.d/name to be run.

This is generally the best way to disable a background service either permanently or have
it not running by default. You can stop a service with /etc/init.d/name stop. It can still be
run by hand by calling /etc/init.d/name start etc.

There is generally a tool to help you manage the contents of /etc/rc*.d/. On Debian-
based systems, you can use the update-rc.d script6.

2. Uninstall the package, retaining its configuration files. This can be done using apt-
get autoremove packagename. This is useful if you think you may want to keep the
configuration files and data files for a later time. It also means the program cannot be
(accidentally or otherwise) run. Note that we have used autoremove instead of remove,
which removes any other packages that were installed to satisfy a dependency that are
no-longer needed.

This is generally the best way to remove a service if it doesn’t need to be run anymore.
One particular risk is that the package could accidentally be installed at a later date if it
gets installed due to installation of other packages via package dependency.

3. Uninstall the package, purging its configuration files. This can be done using apt-
get autoremove --purge packagename. This is useful when you want to permanently
remove a package, or you don’t want stale (possibly broken) configuration files hanging
around, which might confuse issues later if you decide to re-install the service. Your
original configuration files should be in backup and ideally in version control before the
uninstallation.

In our case, we don’t want the SSH service installed at all, so we shall practice removing the
package (in a later lab, we shall install it when we need it).

To make things a little more real for a beginning administrator, let’s assume that we don’t
know what package contains this sshd process. Where is this sshd process anyway?

$ ps -eo command | grep sshd
/usr/sbin/sshd
…

Okay, so it seems that the sshd mentioned in the lsof output above is actually /usr/sbin/
sshd. What package contains that file?
6On Redhat systems, the equivalent is chkconfig.

13

Post Installation

$ dpkg -S /usr/sbin/sshd
openssh-server: /usr/sbin/sshd

Now we know the package name, we should be able to remove it:

apt-get autoremove openssh-server
…

Verifying that it is no-longer running:

lsof -Pni:22
No output, therefore nothing listening on port 22 (ssh)

5. The Internet Super Server
In this section we shall create a new inetd service, which illustrates how easily creating an
service can be when using an Internet Super Server. In the next section, we shall go on to
restrict access to it using TCP-Wrappers.

Procedure 1. Tiny File Server
1. As root (ie. using sudo), create the file /usr/local/sbin/tinyfs and mark it executable.

This file is a simple Perl script; the contents are listed below (To save the editing time,
you could skip the comments):

#!/usr/bin/perl -w
#
Naive file server. Gets a filename in the first line from stdin,
removes any CRLF line-ending, and sends out the file that has been
requested. Provides NO authentication, NO authorisation, NO extra
access control, and NO accounting; this should be run as the 'nobody'
user and guarded with at least TCP Wrappers. Best not to use this
in production, it is here to illustrate the basic principles of inetd.
#
Lines are terminated by CRLF, the internet standard line-ending.

use strict;

$/ = '\r\n'; # read records (lines) terminated by CRLF
my $filename = <>; # read a record (line) from stdin
chomp $filename; # remove line ending

Open the file, or die trying. Any error would be sent to stderr, which
is connected to the client also, so typically you don't want to send
anything to stderr!
#
Seeing as this would have to implement some sort of application-layer
network protocol, we should have some sort of result code. We'll just
either say "OK\r\n" or "ERROR: reason\r\n" on the first line of the
result.

if (open FILE, '<', $filename) {
 print "OK\r\n";
} else {
 print "ERROR: $!\r\n";
 exit
}

Note that in this case, the files are output verbatim, no line-ending
translation is performed (like FTP 'BINARY', not like FTP 'TEXT')

$/ = 4096; # read 4kB of data at a time

14

Post Installation

while(<FILE>) { # while we can read a record...
 print; # ...print it
}
close FILE;

This will offer a very naïve and rather insecure file transfer service. You will notice that it
reads from stdin, and writes to stdout. This is the basic principle of any server that uses
the Internet Super Server. The stdin, stdout and stderr(!) get connected to the TCP (or
UDP) socket, and so communicates with the remote peer.

Before we attempt to use it over the network, let’s just demonstrate how it works, showing
that it doesn’t have to know anything about networking.

$ echo '/etc/hostname\r\n' | tinyfs
OK our result code
server1 /etc/hostname is very short, only one line

2. Add the following entry to /etc/inetd.conf.

tinyfs stream tcp4 nowait nobody /usr/local/sbin/tinyfs tinyfs
tinyfs stream tcp6 nowait nobody /usr/local/sbin/tinyfs tinyfs

What does this mean? The tinyfs will be its service name: it will tell inetd which port to
listen on. The stream specifies that it is a stream protocol (and not a datagram protocol);
the tcp4 and tcp6 says we are using TCP (which is always a stream protocol) over IPv4 or
IPv6 respectively. nowait tells inetd it may process multiple connections at once, rather
than having to wait for one to finish before dealing with another. nobody is the user the
service should run as. If this were root, then sensitive files, such as /etc/shadow, which
are normally only readable by the root user, would be world readable, because tinyfs
does not perform any authentication or authorisation. Running as nobody should protect
against this, as the nobody user should have no privileges what-so-ever (meaning it should
only end up using the Others permission bits).

The final two parts is the location of the program to be run, and the arguments (the first
argument here, tinyfs) gives the 0th argument, called argv[0] in the C programming
language (which is the native system-level programming language on Unix-like systems),
which gives the name of the program.

3. Add the following to /etc/services on both server and client. It must be on at least the
server (as we refer to it in /etc/inet.conf); the client has it only for our convenience.
This will let each side refer to port 900 as tinyfs. Note that ports are given both UDP
and TCP allocations, even though they probably don’t use both.

tinyfs 900/tcp # Tiny File Service
tinyfs 900/udp # Tiny File Service

4. Reload inetd.

/etc/init.d/openbsd-inetd restart

5. Test that lsof -Pni shows the listening socket. Remember to use root privileges.

lsof -Pni
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
dhclient …
inetd 10422 root 4u IPv4 25808 0t0 TCP *:900 (LISTEN)
inetd 10422 root 5u IPv6 25811 0t0 TCP *:900 (LISTEN)

15

Post Installation

6. Now to test it. Aim to test all cases (e.g. local and global IPv4 and IPv6 addresses) in
the server.

Exercise
As an exercise try connecting using the nc “netcat” program, which is for IPv4 and
IPv6. Recall that we installed the OpenBSD version, which supports IPv6 quite nicely.
Make sure you can successfully retrieve /etc/hostname. Also you may try and fail to
access a file such as /etc/shadow.

Loopbacks
$ echo '/etc/hostname\r\n' | nc -q-1 127.0.0.1 tinyfs
…
$ echo '/etc/hostname\r\n' | nc -q-1 ip6-localhost tinyfs
…
$ echo '/etc/hostname\r\n' | nc -q-1 ::1 900
…

Our Unique-Local Addresses…
$ echo '/etc/hostname\r\n' | nc -q-1 ip6-server1 900
…

Don’t forget about your link-locals…
$ echo '/etc/hostname\r\n' | nc -q-1 fe80::a00:27ff:fee3:4d42%outside tinyfs
…

We’ve not shown all addresses that our server has. There will be at least two others
(remember, Server1 has at least two interfaces). It is instructive to point out that we
generally don’t need to support connections coming in via the Link-Local addresses. It
is important not to forget about all the various addresses that we have, in relation to
restricting access to a service.

6. Access Control using TCP Wrappers
As it currently stands, tinyfs is currently open to the world (which is to say, it has no access
control with regard to which machines can connect to the service). We shall now use TCP-
Wrappers to protect tinyfs, and then look at how TCP-Wrappers can be used to protect other
services that use libwrap, such as sshd.

tcpd is a program that is used as an access-control wrapper to protect services started from
inetd. It grants access based on on two files: /etc/hosts.allow and /etc/hosts.deny.

If you were to look at the manual page for tcpd, you might find the following description.

There are two possible modes of operation: execution of tcpd before a service
started by inetd, or linking a daemon with the libwrap shared library as
documented in the hosts_access(3) manual page. Operation when started by
inetd is as follows: whenever a request for service arrives, the inetd daemon
is tricked into running the tcpd program instead of the desired server. tcpd
logs the request and does some additional checks. When all is well, tcpd runs
the appropriate server program and goes away.

—tcpd(8)

TCP-Wrappers will test /etc/hosts.allow first, and if a match is found, it will allow the
connection. Otherwise, it will test /etc/hosts.deny, and if a match is found, it will drop the
connection. Otherwise, it will allow the connection, so if you want to use TCP-Wrappers, you
generally always want to ensure that a suitable deny-by-default rule is in place in hosts.deny.

16

Post Installation

Procedure 2. Using TCPd to Protect TinyFS

1. Start by putting the deny-by-default entry in /etc/hosts.deny:

…
ALL:ALL

2. Put in place a suitable rule, or set of rules, to allow the traffic you want. These rules go
into /etc/hosts.allow:

…
tinyfs: 127.0.0.1 [::1] 192.168.1.0/24 [fd6b:4104:35ce::]/64

The policy we have put in place here is that the server can access itself (via loopback),
and our regular client ranges can access tinyfs also. Note that we haven’t included the
Link-Local Addresses, as these should not generally be used for applications.

Note it is useful to pause here, and write down exactly what has effectively been denied
entry, based on your testing cases in the previous section.

3. At this stage, hosts.allow and hosts.deny will not be consulted, because inetd has
not yet been instructed to use tcpd. It is tcpd that checks these files, and if it allows
the connection, it will pass execution (via the exec system call) to tinyfs. To do this, we
change the lines regarding tinyfs in inetd.conf to the following:

tinyfs stream tcp4 nowait nobody /usr/sbin/tcpd /usr/local/sbin/tinyfs
tinyfs stream tcp6 nowait nobody /usr/sbin/tcpd /usr/local/sbin/tinyfs

4. Reload inetd to affect the changes you made in inetd.conf. Check the system logs to
ensure there were no problems, and that you can see the service with an appropriate
invocation of lsof.

5. Exercise
As an exercise use nc (or telnet, which is also useful for this sort of thing) as we have
done previously to connect to the service. Test all cases that should be allowed. Also
test other cases that should be denied (such as the Link-Local Addresses). You should
use nc on Client1 to try the case of ip6-server1. Check the system logs (in /var/
log/syslog) reporting the actions.

Services can also be protected using libwrap, but we’ll cover those issues when we come
across the particular services, such as SSH.

Tinyfs is not for production use
Do not deceive yourself into thinking that tinyfs is ready for production use.
There are many features that are still lacking, such as accounting, filtering (eg.
sharing only part of the filesystem), authentication (ie. who), access control (ie.
who can do what) and privacy (encrypting traffic).

7. Self-assessment
1. Ensure you have done the following successfully:

17

Post Installation

• the interfaces with appropriate interface names and IPv4 addresses;

• the right IPv4 routing table, including the default route;

• you can access the APT repository over the network;

• the IPv4 address you gave Client1 is correct;

• the apt-get update command working on Client1, which shows that the NAT we
briefly configured is working;

• the correct IPv6 interface details for Client1 after we set up router advertisements;

• the correct IPv6 routing table for Client1 after we set up router advertisements, which
should include a default route;

• the successful IPv6 ping using the Unique-Local Addresses of Server1 and Client1;

• successful testing access to tinyfs using nc, before protecting it with tcpd;

• the correct contents of the three files hosts.allow, hosts.deny and inetd.conf,
after implementing protection using tcpd;

• and finally, find the log entries showing that some connections have been accepted,
and others have been rejected.

18

