
Remote Terminal Services
COSC301 Laboratory Manual

Note
Note that you should do this lab on your Client1 and Server1. Both of them
should be up running, assuming Server1 can well function as NAT for Client1
already.

You are going to test ssh using a new server machine called
vertex.otago.ac.nz. If your Server1 does not work properly as NAT, your
Client1 should use an extra adapter as NAT to access vertex.otago.ac.nz.
The username and password on vertex.otago.ac.nz are the same as your
university account.

The Secure SHell (SSH) is a very powerful tool for administering both servers and clients.
The server side is generally found on Unix like machines or other devices with a dominant
Command-Line Experience (eg. enterprise-grade routers), though there are clients for most
operating systems in use today.

The most basic use of SSH is as a secure replacement for telnet. As SSH is such a useful
and powerful tool for admins and users alike, half of today’s lab will be on using ssh, and
will be done on your Client1. The other half will be done on your Server1, and will be about
administering SSH. A significant part of the lab manual is for your reference (labelled as
optional), should you want to use this outside of the lab.

Client1$ ssh username@vertex.otago.ac.nz
The authenticity of host 'vertex.otago.ac.nz (139.80.32.49)' can't be established.
ECDSA key fingerprint is SHA256:z9M2TMCOyl0hCrcsvMcxLevUs7xEs0Pw/bsA7Fg94GU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'vertex.otago.ac.nz,139.80.32.49' (ECDSA) to the list of known hosts.
Password: This is not echoed.
The following text is the message of the day /etc/motd
Last login: Thu Feb 21 15:55:02 2019 from somemachine.otago.ac.nz
This system is managed by CFEngine 3
And now we get our interactive shell.
theauthor@vertex:~ logout
Connection to vertex.otago.ac.nz closed.
Returned to where we started.
Client1$

1. Logging in Without a Password
In the lecture on SSH you learned about public-key authentication so let’s try that now. Do
this on your local machine.

Note
Note that if you’ve done this before, you would know your old keys will be
overwritten, so you may want to move them out of the way for the duration
of this lab. You can use this command to move the ~/.ssh directory to
~/.ssh.off. Make sure to move the old keys back if you want to remove the
effect of this lab.

1

Remote Terminal Services

Client1$ mv ~/.ssh{,.off}

1. Create yourself a keypair. We’ll create a RSA key with 2048 bits. Be sure to use a strong
passphrase. Press Enter to accept the default location when asked where to put the key.
Passphrases, unlike passwords, can contain spaces, hence their name. A good passphrase
will have plenty of letters, mixed case, numbers, and symbols.

Client1$ ssh-keygen -b 2048 -t rsa
Generating public/private rsa key pair.
Just press enter for this next one to accept the default.
Enter file in which to save the key (/Users/theauthor/.ssh/id_rsa):
Use a strong passphrase! These won’t be echoed.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/theauthor/.ssh/id_rsa.
Your public key has been saved in /Users/theauthor/.ssh/id_rsa.pub.
The key fingerprint is: Yours will be different…
1a:91:52:bf:41:78:7b:bc:19:a7:c1:ea:1a:cd:1f:2d Comment
The key's randomart image is:
+---[RSA 2048]----+
|o.o o.o . o. |
| = o = . o |
|. X + B o |
| = * O * |
|. . o O S |
|.. . + o o |
|=.. . . o . |
|E+ . . . |
|O=. . |
+----[SHA256]-----+

If you mistype the passphrase, you may need to do it all over again, and again, until you get
it right. It’s not uncommon for us to have to have three goes before we get it right. Some
passphrase is very long; longer even than the length of the passphrase entry dialog box.

If you find that it is taking a long time to create the key, the operating system entropy
pool (which feeds the random-number generator) may have run dry. You can “stir in” some
randomness by doing something like moving the mouse a lot, or causing a lot of system
activity. The kernel uses the timings of such things as a source for entropy.

Important
Remember the private key ~/.ssh/id_rsa must be kept secret, so it should be
encrypted with a suitable passphrase.

2. Now we are ready to install the public key of the key-pair that we generated on Client1 into
your account on Vertex. Still on Client1, output the public key, and copy it to the clipboard:

Client1$ cat ~/.ssh/id_rsa.pub
ssh-rsa AAAAB3Nza… copy this long line to the clipboard

Now SSH into Vertex, and edit the file ~/.ssh/authorized_keys, adding the public key
to this file, which adds your public key to the list of keys allowed to access your account.
Note that you will likely need to create the directory, and beware that the filename uses
American English.

vertex$ mkdir -m 0700 ~/.ssh

2

Remote Terminal Services

Don’t break the lines!
The lines in this file are very long, and would wrap onto multiple lines in your
terminal. Ensure that your editor does not insert newlines to break the lines,
otherwise the entire file will be unusable.

This is particularly important for users of the nano editor. If you really want to
use nano, use nano -w, which turns off wrapping.

$ vim ~/.ssh/authorized_keys American English!
Paste in the public key into a single line.
ssh-rsa AAAAB4Nza…

3. Now log out of your SSH session from Vertex. You can login again without using a password.

Client1$ ssh username@vertex.otago.ac.nz

1.1. [Optional] Using the Mac OS X Keychain for
SSH keys
When Apple released Mac OS X 10.5 “Leopard” they integrated the SSH agent with the local
Keychain subsystem, which is the part of the system responsible for remembering passwords
since then.

The system Keychain is generally (rarely is it otherwise) encrypted with the users login
password, and here we shall take pains to try and get to you understand something. Which
is likely to be stronger: a typical users login password or a typical users SSH passphrase?
Actually, this is something of a moot point due to the typical qualifier: a typical user will likely
have as poor of a password and passphrase as they can.

A security-conscious user on the other hand will have a fairly good password and hopefully
an even better passphrase. When a key is added to the users Keychain, it is first decrypted
by asking the user for their passphrase, and then adding the decrypted private key to the
user’s Keychain. Remembering that the user’s Keychain is encrypted on disk with the user’s
login password, and that a well-chosen passphrase should be stronger than a well-chosen
password, you should be able to see that we have likely reduced the strength of the protection
for the private key by using the login password to encrypt the Keychain.

Below are the steps to add your SSH key into the Keychain of MacOS and to enable the
ssh-agent to handle the key for you automatically. Once successful, you can login to vertex
without either password or passphrase.

1. First, store the key in the Keychain.

workstation$ ssh-add -K ~/.ssh/id_rsa
Enter passphrase for /home/User/.ssh/id_rsa:
Enter your key passphrase and you won't be asked again!
Identity added: /home/User/.ssh/id_rsa (User@workstation.otago.ac.nz)

2. Create a ~/.ssh/config file and add the following lines.

Host *

3

Remote Terminal Services

 UseKeychain yes
 AddKeysToAgent yes
 IdentityFile ~/.ssh/id_rsa

where it tells SSH to use the Keychain and to add the following keys to the SSH agent.
Note that you can add more keys with additional lines of IdentityFile.

1.2. [Optional] Logging in Without a Password
From Windows
This section is optional; but it is useful to know in order to access a server from off-campus
using a Windows machine. Public-key authentication can be really useful, and sometimes it
can even be required (to prevent dictionary attacks on passwords); we shall see more of this
in the section on Section 7, “[Optional] Preventing Dictionary Attacks”.

Windows, in the past, did not supply SSH client software, so third party software must be
used. With the recent Windows 10 update there is a built-in SSH client, however, we have not
tested it. PuTTY is a very common application for this task, which does a good job and is freely
available (another option is SecureCRT, however this costs money). PuTTY is also available
on other platforms such as Linux; its position in that market can be seen as a GUI SSH client.

In this section we shall look at PuTTYgen for generating our key-pair; PuTTY for our SSH
client program; Pageant for our SSH Key agent and WinSCP for transferring files using SFTP.
All software mentioned here is also Open Source software.

You could reuse (import) an existing key-pair, but for this section we shall assume that we
will create a new key-pair for ourselves. To do this we shall use PuTTYgen. Launch PuTTYgen
from within the Start menu (you’ll find it under the PuTTY folder). Select the SSH-2 RSA
option (it will likely already be the default), and make the number of bits in the key 2048
instead of 1024, which is a little short for today.

Click Generate; you will notice the helpful progress meter. You will need to move the mouse
as instructed… it appears that this is the only source PuTTYgen gets it entropy from. When
this has completed, you should see a window similar to the following:

Tip
Despite the screen-shots being from Windows XP the proces (and interface)
has remained unchanged over the years.

4

Remote Terminal Services

What you should see after initial creation of a key-pair using PuTTYgen. The default
comment is not useful and should be changed, and the passphrase needs to be set.

Change the comment to something more meaningful, and set a good passphrase. When done,
you need to click Save public key and also Save private key. There appears to be no standard
location for this, such as ~/.ssh on Unix hosts, so I suggest you create a folder My Documents
\SSH and store them in there. Give the public and private key the same base name, but
distinguish them by putting public and private at the end of the name (not as the extension).

Before you can use the key to log into an OpenSSH server, you must first convert the public
key to the format expected by OpenSSH. Fortunately, PuTTYgen recognises this as a very
common requirement and in its main window has the public key which in the correct format.
Select and copy the public key.

5

Remote Terminal Services

Now login to your server using PuTTY. You will want to make some changes and set up a
session for the particular server. This includes data such as: what host you wish to connect
to; what username (if any) you want to log in as by default; which private key you want to use
to authenticate and whether agent forwarding should be enabled. Save the session using the
Save button in the Session pane. The first time you log into a machine from the client you will
be prompted regarding the server’s fingerprint, as the client will not have seen the server’s
certificate before and by default has no way of knowing if it is legitimate. Click Yes, noting
that it is right to be suspicious if you don’t expect this dialog.

It is best to check the fingerprint of the key to ensure that
you are connecting to who you think you are connecting to.

You will see that PuTTY outputs Server refused our key on the terminal. This is because
we have yet to install our public key in the target account’s ~/.ssh/authorized_keys file.
Open this file in an editor and paste your key into it ensuring it is stored as a single line.

The server refuses our key because our public key has not been installed into the account.

Tip
To paste in PuTTY simply right-click. This is counter-intuitive (note that middle-
click doesn’t work, but a Windows user wouldn’t expect that to work), and Ctrl-
V doesn’t work because that is passed through the SSH channel.

Log out when you are done. Now when you log into the server again you should be asked
Passphrase for key “key comment” rather than for the password. We will be asked this
each time because we’re not using a key agent (Pageant) at this time; let’s remedy this now.

We are asked for our passphrase each time because there is key agent currently running.

6

Remote Terminal Services

Start Pageant from within the PuTTY menu of the Start menu. A new icon will appear in your
system tray. If you right-click on this icon you will get a menu from which you can interact
with Pageant or start any saved PuTTY session. Use the View Keys item to add the key to your
key list; you will be asked to unlock your private key using by entering your passphrase.

Pageant is software that caches unlocked private keys; it plays the role of the key agent.

Now, when you use PuTTY to connect Pageant will be consulted for the unlocked private key
instead of prompting the user for the passphrase.

Now that our private key has been unlocked and loaded into
the key agent our SSH client doesn’t need to ask the user.

Now let’s try WinSCP, which is made by different people. WinSCP also includes Pageant and
PuTTYgen as part of its installation, so it should work.

Launch WinSCP. Fill in the entries for hostname, username and private key (not password).
We would also suggest setting the SSH protocol version to 2 only and only selecting Enable
compression if you are going over an Internet link or WAN. Click Save… to save your session
details. Then click Login to log into the server.

You will notice that a different server key cache is used, so you will need to tell WinSCP to
trust the server’s key since this is the first time you will have connected to the given server
using WinSCP on this machine. WinSCP is not a bad program, but it does have one major
annoyance: it doesn’t have good support for Unicode filenames… the WinSCP program was
not written as a Unicode application, and it would apparently take a lot of work to make it so.

2. Using ssh
Now that we’ve got fast, secure, and convenient access, the world (or at least, our network)
is our oyster. Lets try using ssh in various ways. We’ve already seen how we can get a simple
terminal, how about something more exciting? Try these commands.

7

Remote Terminal Services

• Run a command on a remote host and receive its output.

Client1$ ssh username@vertex.otago.ac.nz uptime
Banner removed if there is a banner set up on vertex. If you don't see a banner it is ok.
 11:29:06 up 41 days, 33 min, 10 users, load average: 0.00, 0.00, 0.00

• Interactive programs often require a terminal (or rather, a psuedo-terminal)

Client1$ ssh -t username@vertex.otago.ac.nz top
Banner romoved.
The 'top' program should run. Type q to quit.

• What about an X11 program? We can do that too. This requires LAN speeds to be really
effective, although with compression turned on can also be used over a broadband internet
link. Servers have this turned off by default.

Client1$ ssh -X username@vertex.otago.ac.nz xclock
Banner romoved.
A clock should pop up on your display.
It may not work on MacOS if the X11 server is not available.

• Banners are written to stderr, so we can redirect that if we really don’t want to see banners
(note though that this might also cause other things to be ignored, which could be bad).
In this case we’re counting the number of lines in the output (which as it happens, isn’t
very interesting at all.)

Client1$ ssh username@vertex.otago.ac.nz uptime 2>/dev/null \
> | wc -l
 1

• ssh is just another process, so you can still easily pipe the output. In the command
local_cmds | ssh … remote_commands, the output of local_commands is passed to the local
command ssh. ssh logs into the remote end. On the remote end, the remote SSH (sshd)
starts remote_commands. The local and remote side send any data between them, essentially
gluing the output of local_commands to remote_commands.

This example shows how you can use ssh to send a very simple backup (the output of tar
in this case) to a remote machine. The command cat > backup.tgz will be run on the
remote end. We need to escape special characters in the command to prevent the shell from
interpreting them on the local side.

Client1$ tar -zcv some_directory | ssh username@vertex.otago.ac.nz \
> cat \> /tmp/$USER-backup.tgz
$USER isn’t escaped, so it will be expanded locally.

• What if the command we want to run remotely contains shell meta characters? In the first
command below, the * is expanded on the local side, expanding to a set of files particular
to the local machine. In the second command, the * is escaped, making it be expanded on
the remote side, which is what we want.

You can get some really complex commands going; for complex commands, you should put
them into a script, if you value your sanity, as the amount of escaping that is required grows
wildly.

Your output for these commands will look different.
Here the * is expanded on the local side.
Client1$ ssh username@vertex.otago.ac.nz du -sh /tmp/*

8

Remote Terminal Services

Your output will differ, but it will still likely fail.
du: cannot access `/tmp/501': No such file or directory
…
Here the * is expanded on the remote side.
Client1$ ssh username@vertex.otago.ac.nz du -sh /tmp/*
0 /tmp/file-on-vertex
4.0K /tmp/another-on-vertex
…

• What about running ssh in the background? It may need to ask you for authentication
(either a password, of a pass-phrase if it can’t get it from an SSH Agent), so we can’t use &
to background it normally, so we inste-ad use the option -f, which tells ssh to go into the
background only after it has completed the authentication process.

Client1$ ssh -f -X username@vertex.otago.ac.nz xload

• When scripting, you generally don’t want ssh asking for any interaction from the user,
otherwise it would hang indefinately waiting for input. We can use a particular option to tell
ssh not to do anything that requires interaction. If it needed to, it would fail immediately.

Client1$ ssh -o 'BatchMode=yes' username@vertex.otago.ac.nz uptime
 11:29:06 up 41 days, 33 min, 10 users, load average: 0.00, 0.00, 0.00

• Things not working as expected? The first thing to try would be turning on some debugging
messages. If this or the system logs on the server don’t reveal the problem, then you can
start the server with debugging turned on. Consult sshd(8) for more information. In a
production system where others are expecting to use the SSH service, you will probably
want to start the debugging server on a different port (but check firewall configuration) so
other users can continue to log in normally… assuming of course SSH is currently usable.

On the client-side, you can enable more verbose output using -v, although to be honest
in our experience they don’t tend to be very useful for solving most authentication-related
problems.

Client1$ ssh -v username@vertex.otago.ac.nz
…

• Sometimes, you need to abort a connection. This is most common when you’ve lost your
network connection (eg. you’ve forgotten to log-out before disconnecting from the network
on your laptop). You can’t use Ctrl+C, because that gets passed through to the remote side.

Instead, type the sequence Return ~ .. That’s three keys, one at a time, and remembering
that ~ also needs Shift. If you make a mistake, you must start over, as a backspace will
break the sequence. This key sequence will abort the session and return you to your local
prompt. The ~ is the escape character, and is only recognised at the beginning of a line
(hence the Return first). The dot after the escape character says to abort the connection.
Another ~ just sends a ~. You can see a list using ~ ?

3. scp & sftp
scp is a service that is provided by the SSH protocol, and its all about copying files (and
directories). Its not as flexible as ssh however, and slower compared to unencrypted traffic,
but still useful for the task it was designed for. You can copy remote to local, local to remote,
local to local, and even remote to remote, although that’s inefficient compared to direct
copying between the two machines.

9

Remote Terminal Services

• Local to remote. It will end up in the home directory (the directory you end up in just after
you login) on the remote system. Try this between your local machine and vertex. Note that
the colon (:) is important as it signifies a remote file.

Client1$ scp myfile.txt username@vertex.otago.ac.nz:
…

• Remote to local. Here we show how you can specify a different usercode on the remote
system. Remember, . is the current directory.

Client1$ scp username@vertex.otago.ac.nz:myfile.txt .
…

• You can copy a directory using the -r (recursive) option.
Use a small directory for trying this command.

Client1$ scp -r source-dir username@vertex.otago.ac.nz:target-dir
…

FTP is not a protocol that can have cryptography easily wrapped around it. We can use sftp
to provide the feel of a fairly basic ftp client, though it is, in no way, the FTP protocol. Actualy,
it uses the scp mechanism.

workstation$ sftp vertex.otago.ac.nz
Connecting to vertex.otago.ac.nz...
sftp> Type `?' if you don’t know how to use ftp.

4. Server (sshd) and Client
Configuration in Linux
In this section we shall move into our virtual environment, so start up Server1 and Client1.

Install and configure sshd
Install the openssh-server package on Server1 only.

The configuration files for the SSH server are stored in /etc/ssh/. The main configuration
file is sshd_config, which controls the daemon. There is also ssh_config, which controls the
default behaviour of the SSH client program. Finally, there are a number of keys, which are
the public and private keys for the server. The only thing we need to edit is sshd_config.

You can get information on what the various keywords mean by consulting the manual page
for sshd_config(5) and/or sshd(8). You’ll need to harden the configuration and tailor the
settings of the daemon to suit our requirements. Note that not all the options may have an
effect, as not all possible features are compiled into the binary at compile-time.

Make the following settings in sshd_config on your SSH server. You should consult the
appropriate manpage.

• Turn off anything to do with rhosts, or host based authentication. (Should be off by default
anyway).

• Do you want to allow root to login? On a workstation this can be useful for management
tools. For example, on a management machine you could imagine a manager wanting to
run an administrative command on each machine, perhaps in a loop. For example:

10

Remote Terminal Services

example$ for wsn in $(cat workstations-lab-A.txt)
example> do
example> ssh -o BatchMode=yes root@${wsn} apt-get install …
example> done

At other times this is inadvisable. You should never enable this option on servers. On Ubuntu
it is, by default, pointless. This is because root’s account is locked by default.

• Do you want X-Forwarding available? You’ll find it will default to different values on different
systems, so it pays to check and make any configuration explicit. This is useful if you want
to use GUI programs on the server, but have them display locally. Most servers ought not
to have GUI environments, but many do. It’s more useful on workstations.

• In some countries, in order to get protection from the law, you have to show a banner
when someone tries to login. Make a simple banner /etc/issue.net that says something
containing the hostname (hint: look at the banner program available in the ‘sysvbanner’
package), and the string AUTHORISED USERS ONLY, and tell sshd to display it.

Tip
Choose your words carefully. Avoid using words like “welcome”, which could
allow an attacker to defend their actions.

Restart the server (/etc/init.d/ssh restart) and check that it’s running.

Currently, you will find that you won’t be able to access the SSH service, because most
versions of OpenSSH are configured to use TCP Wrappers, which we have previously
configured to default-deny.

You should normally decide on an appropriate access policy, whether people can access any
machine from the internet (typically this is bad, due to password dictionary attacks), or
whether they must first log into another machine.

You could use one of the following lines in hosts.allow to allow the appropriate level of
access to SSH:

sshd: ALL
OR
sshd: 127.0.0.1 [::1] 192.168.1.0/24 [fd6b:4104:35ce::]/64

Breaking an entry into multiple lines
If the above square brackets around the ::1 address or any IPv6 addresses are
forgotten, it will cause the whole line to be ignored by tcpd. This will prevent
any access to SSH. If instead we had put in at least two lines (one for IPv4,
one for IPv6), it would have only been a partial break if we missed the square
brackets for IPv6, instead of a complete break. At least IPv4 would work for SSH
in that situation. Therefore, it is better to have multiple lines in hosts.allow,
one for each IP address or each class of IP addresses.

Double-check that hosts.deny has ALL:ALL, or at least sshd:ALL to block unwanted SSH or
other connections.

Check that you can login to Server1 from Client1 as the user “mal”. Before doing so, make
sure the server and the client are connected via an internal network in VirtualBox.

11

Remote Terminal Services

Client1$ ssh mal@server1.localdomain

Set up ssh-agent for password-less login
Once you can login to Server1 from Client1, logout Server1 and follow the steps below to
configure ssh in Client1 so that you can login to Server1 without password.

1. Generate a RSA key in Client1 with ssh-keygen as done previously.

2. Copy the public key in ~/.ssh/id_rsa.pub in Client1 to the file ~/.ssh/authorized_keys
in Server1 under the home of mal, similar to what you have done before. This will tell sshd
in Server1 to use the key instead of the password for identity check of mal at login time.
Note you need to create the directory .ssh if it does not exist.

3. Start ssh-agent:

mal@client1:~$ eval $(ssh-agent -s)

The eval will execute ssh-agent and export the environment variables used by ssh-agent
to the current login session.

4. Configure ssh for ssh-agent to use the generated RSA key. Create a file ~/.ssh/config
with the following content in Client1.

Host *
 AddKeysToAgent yes
 IdentityFile ~/.ssh/id_rsa

You can add more keys as you wish with more lines of IdentityFile. Alternatively, you
can use ssh-add to add keys manually but you will have to use the command again after
logout as the keys are not permanently added by ssh-add. To permanently add a key for
ssh-agent, edit the above ~/.ssh/config file.

5. Now try login to Server1 from Client1:

mal@client1:~$ ssh mal@server1.localdomain

You need to type the passphrase for the first time. Then for future logins, you need to type
neither passphrase nor password. Try logout from Server1 and login again. Do this for a
couple of times.

Though we have used ssh-agent successfully, the previous work was only temporary. If the
system reboots, you will have to repeat most of the above procedure. To avoid that, you need
to edit some files as below.

1. First, kill the ssh-agent process:

$ ssh-agent -k

2. Add in ~/.profile the following command for starting ssh-agent automatically at login
time.

eval $(ssh-agent -s)

You can just add it at the end of the file.

12

Remote Terminal Services

3. Add in ~/.bashrc the following line to kill the ssh-agent process after logout.

trap '/usr/bin/ssh-agent -k' EXIT

Again you can just add it at the end of the file.

Now reboot Client1 and see if everything works as expected. You can try every ssh command
from the previous sections. If you want to try X11 related applications like xclock, you should
install them on Server1 as below.

$ sudo apt install x11-apps

Then you should see the following command works.

$ ssh -X mal@server1.localdomain xclock

5. Local Port Forwarding
Port forwarding is an advanced topic, and not something I require you to know how to do, so
don’t worry about it for this lab. It is such a powerful tool though, it would be disappointing
if the more adventurous of you didn’t try it.

Here is an example of how to use Local Port Forwarding, which is the most common type.
Note that just because you can do something, it doesn’t mean you should. Seek permission
from any administrators before potentially violating policy.

In the lecture on SSH, you were given an example of how you could use local port forwarding
to tunnel a clear-text protocol inside an encrypted SSH session. Earlier in the course, we
implemented a simple, clear-text file-transfer service called “tinyfs”. Let’s enarmour tinyfs so
we can use it over the network. We can use a tool such as tcpdump or wireshark to verify
that nothing about tinyfs is being sent in the clear over the network.

Start the tunnel
Client1$ ssh -fNL 9000:localhost:900 server1.localdomain
Banner removed.

See what’s listening
Client1$ lsof -Pni Don’t need root privs here.
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
An established connection to the SSH service on Server1
ssh 2481 mal 3u IPv6 16213 0t0 TCP ↩
 [fd6b:4104:35ce:0:a00:27ff:fe99:c27d]:36218->[fd6b:4104:35ce::1]:22 (ESTABLISHED)
And IPv4 and IPv6 listening ports on loopback TCP/9000
ssh 2481 mal 4u IPv6 16285 0t0 TCP [::1]:9000 (LISTEN)
ssh 2481 mal 5u IPv4 16286 0t0 TCP 127.0.0.1:9000 (LISTEN)

Start up wireshark, starting a capture immediately
Don’t forget to dismiss the warning window about running as root.
Client1$ sudo -b wireshark -i eth0 -k

Connect to our forwarded port
Client1$ echo '/etc/hostname\r\n' | nc -q-1 ::1 9000
OK Success, output from the server
server1

When you’re done, tear down the tunnel
Client1$ ps -eo pid,command | grep ssh
 825 /usr/sbin/sshd
 1256 /usr/bin/ssh-agent /usr/bin/dbus-launch --exit-with-session gnome-session

13

Remote Terminal Services

 2481 ssh -fNL 9000:localhost:900 server1.localdomain Note
 2601 grep --color=auto ssh
Client1$ kill 2481

Have a look in Wireshark. Did you see any TCP/900 traffic? What if you right-click on one of
the SSH packets and select Follow TCP Stream? You should see that nothing is sent in the
clear over the Ethernet, and the SSH traffic is unintelligable because it is encrypted.

Repeat the experiment, but this time start the capture on the “lo” loopback interface. What
do you find now? Should you be worried?

You may be wondering what the significance of the port numbers 9000 and 900 is. There
is nothing really significant here, except that port 900 is the TCP port that our tinyfs
service uses, and that port 9000 is above 1024 and so doesn’t need root privileges to accept
connections. Otherwise, there is no limitation, so long as the port is not already used. The
two port numbers could even be the same, but usually we end up using a high-numbered
port for the local side.

6. User Imposed Restrictions on Public
Keys
We’ve talked a lot about using keys to gain access. But how can you restrict what a key may
be used for? Edit, creating the directory (mode 0700) and/or file if they don’t exist, ~/.ssh/
authorized_keys on the machine(s) you wish the key to be used to log into. We can restrict
what a key can do by inserting some rules at the start of each line (note the lines are very
long and will wrap).

The various restrictions you can put on a key are outlined in the man page for sshd, under the
section titled “AUTHORIZED_KEYS FILE FORMAT”. There are some examples further down
the page. There aren’t many, so you can read them all.

1. Add a restriction such that you can no-longer request X11 forwarding. Test it. You may
remove the restriction after you have completed the test.

7. [Optional] Preventing Dictionary
Attacks

Note
This section is purely for your information; you are not expected to implement
these protection measures, but it will be useful to you later on if you ever
operate internet-facing SSH servers. These measures are also applicable to
other services, not just SSH.

As you will rapidly come to realise when you have an internet facing (meaning able to accept
connections from the internet) SSH server, there are many attempts of people trying to break
into your system using known/harvested username/password pairs, or just trying to find weak
passwords by brute force. Most of the time it just creates a lot of noise in the system, but
sometimes they succeed, and then they have a vector into the rest of the network, and possibly
an easier method to get root access to the system (if that was their goal, they may just want
to enlist your server in their illicit activities.

14

Remote Terminal Services

Split access policy
For this reason, it can be quite useful to disable password authentication, and prefer to use
authentication systems such as public-key authentication or other authentication systems
such as one-time pads, where the password is different each time or calculated via some other
parameter. However, to use public-keys, you need to able to put the key into the account.
It also becomes more important to carry your encrypted private key (and usually also your
public key) around with you when you travel, typically on a USB flash drive. In order to install
your public key into your account, you either need to a) access the system locally and copy
the key over, b) access another system that has the same home directory mounted, c) ask a
system admininistrator to install it for you, or more likely d) authenticate via a password and
install the key so you can subsequently authenticate using your public-key.

(d) above would be nice, but it does require that we are able to configure sshd to have a policy
that allows password authentication to known client systems, and disables it for systems on
the internet. Fortunately, recent versions of OpenSSH give us a way to do just that, using
the Match keyword.

Let’s say for now that we only want to allow password authentication to IPv4 clients in
192.168.1.0/24, and public-key authentication can be used from anywhere. Phrased another
way, be default we want password authentication to be disabled, and allow it explicitly.

Edit sshd_config, find, uncomment and disable the PasswordAuthentication option. Then, at
the end of the file, add the following:

PasswordAuthentication no Deny by default
…
at end of file
Match Address 192.168.1.0/24 Effective until next Match block or End-of-File
 PasswordAuthentication yes

To test, we shall need to first ensure that the client won’t authenticate using public-keys
(temporarily). We can do this by renaming ~/.ssh/authorized_keys on Server1 to something
else, such as ~/.ssh/authorized_keys.OFF. That way, it will fall-back to trying a password.

Thus, according to our policy, only login via IPv4 should work. This is because public key
authentication is the only allowable method for IPv6, and we’ve essentially broken that
temporarily for our testing.

The easiest way in our particular case would be to force the use of IPv4 or IPv6
using the -4 or -6 option to ssh. Alternatively, we could specify the host as either
server1.ipv4.localdomain or server1.ipv6.localdomain. Remember that typically,
server1.localdomain will use the IPv6 address first.

When using such a policy, it becomes important to educate your users on the new policy, and
provide resources for them to understand how to use the new authentication mechanism, and
why this policy is in place to begin with.

Dynamic Banning
Another way to protect yourself is to scan your logs periodically (perhaps every 10 minutes),
and dynamically ban — using hosts.deny or a firewall rule — any IPs where repeated
authentication failures are happening, especially if the username that is being authenticated
does not exist in the system. There are a number of products out there to assist with this.

15

Remote Terminal Services

DenyHosts is one that scans the logs and edits hosts.deny, depending on particular rules that
are set by the administrator. However, because an attacker might get lucky and successfully
authenticate before being banned, DenyHosts supports a synchronised mode, whereby many
participating servers tell a central repository which machines they have banned, so other
systems can ban them also.

8. Self-assessment
1. Create an SSH keypair on Client1, and demonstrate that you can use it to login to

Server1 without a password and use the ssh command in various ways.

2. Your server and client configurations must be suitably well-configured. You should
understand the relevance of some of it to the behavior of SSH.

3. Give three useful policies or practices that users should be encouraged or even required
to do with regard to the secure use of SSH public keys, particularly with regard to Mac
OS X 10.5 “Leopard”.

16

