Tutorial on C Programing

TELE402

What Does a C Program Look like?

[* a simple C program (add,c) */

Preprocessing

#include <stdio.h> | "
#define LAST 10
: _ — M Function declaration
void Incr (int *num, int i); '
i{nt main () /l Variable declaration
///I

int i, sum =0;

for (i =1;i<=LAST, i++) {
Incr (&sum, i); /* add i to sum */

1 % |/O functions
printf (“sum = %d\n”, sum)/

return O: ———

} the “main” function, an executable

program must have one

void Incr (int *num, int i) {

*num = *num +i;) .
2 Function definition

| | .

Data Types

* Four basic data types
* char --asingle byte, holding one character
* it -- an integer, natural size of integers on host machine
* float -- single-precision floating point

* double -- double-precision floating point

* Note that there 1s no boolean type in standard C

* Qualifiers applicable to basic types
 short --16Dbits (shortint)
* long -- 32 bits (long int)
* signed or unsigned -- (signed char -128 to 127)

Variables

e Variable Names
— Are made up of letters and digits
— The first character must be a letter

cc 9

as a letter to improve readability (e.g num_packets)

— Upper and lower case letters are distinct (case-sensitive)
* All variables must be declared before use

int step, count; /* declare multiple vars of the same type */
char esc=\\'; /* initialization in declaration */

Use const qualifier to declare variables with no changeable
values

const char msg[] = “warning: ”;
Variables must be declared at the beginning of a block (C89).

Operators

Arithmetic operators

- + - * /%
Relational and logical operators
¢« > >= < <=

) = |—

¢« && |

Increment and Decrement operators
e ++ -- (notethatx++ and ++x are different)

Bitwise operators

« & Dbitwise AND

| bitwise OR

A bitwise exclusive OR
<< left shift

e >> right shift

° ~ one’s complement
Assignment operator (=)

Control Flow

[f-Else if (expression) statementl; else statement2;

Else-1f: combined with If-Else

Switch: switch (expression) {
case const-expr: statements;

case const-expr: statements;
default. statements;

;

While

while (expression)
statements;

For for (exprl; expr2; expr3)
statements;

. do
Do-while statements

while (expression),

Functions (1)

Not a good 1dea to implement everything in the main
function

Function 1s the main abstraction which represents an
operation to be performed more than once.

Function definition

[Return type Argument declarations]
int | |cal_sum (\int a, int b

{ \[Function name]

int sum=0;
sum=a + b;

return sum; '
} Declarations and statements

Functions (2)

* Every C program must have a function named
“main”. This function 1s called when the program
runs.

* There are many standard functions defined as part
of the C language. These functions are stored in
libraries

— <stdio.h> defines the standard input/output functions.

— <string.h> defines the standard functions for manipulating
strings.

Functions (3)

/[* a simple C program (add,c) */
* Two approaches to define 4, 1ude <stdio.n>

and declare functions #define LAST 10

, , void Incr (int *num, int i);
— Define it first, and then use 1t ()

. int main ()
— Forward declaration: declare {
1t before giving a complete int I, sum =0;
Ol g g p for (i =1; i<=LAST; i++) {
definition Incr (&sum, i); /* add i to sum */

printf (“sum = %d\n”, sum);

return O;

}

void Incr (int *num, int i) {

*num = *num +i;

Functions (4)

* Scope of the functions or variables is the part of the program
within which they can be used

— automatic variables declared at the beginning of a function: the scope 1s
the function in which they are declared

— local variables of the same name in different functions are unrelated
— external variables or functions last from the point they are declared.

 For external variables: declaration # definition

— declaration announces the properties (primarily the type)
— definition also causes storage to be set aside

— extern declaration is mandatory for external variable to be referred to
before definition, or is defined in a different source file.

int sp; |:> extern int sp;
double val[MAXVAL]J; extern double double val[];

Functions (5)

* Automatic variables appear/disappear automatically when a
function 1s called.

e “Call-by-value” parameter passing
— The values of function parameters are automatic
— They are copy of the values of the variables that were passed to the function

#include <stdio.h>

int sum(int a, int b);
// function prototype at the start of the file

int main ()

{
int x =4, y = 5;
int total = sum(x, vy); // function call
printf (“The sum of 4 and 5 is %d”, total);

}

int sum(int a, int b) // call-by-value

{

return(a + b);

}

Functions (6)

e Static variables

#include <stdio.h>
void func () {
static int x = 0;
printf ("$d\n", x);
Xx =x + 1;
}
int main(int argc, char * const argv[]) {
func () ;
func () ;
func () ;
return 0;

}

— Are allocated statically with lifetime across the entire run of the program
— Will be initialized only once
— Apply to both external and internal variables
* Register variables
— Are variables that will be heavily used
— Are to be placed in machine registers, resulting in faster programs

— C.g., register int x;

Pointers (1)

* Memory and Addresses
— Most modern computers are byte-addressable

int x =5, yv = 10;
float £ = 12.5, g = 9.8;
char ¢ = ‘z’;

(the addresses are at 2100, 2104, etc.)

5 10 12.5 9.8 z

2100 2104 2108 2112 2116

Pointers (2)

* A pointer 1s a variable that contains the address of a variable

char x; // data wvariable

char *xaddr; // pointer wvariable

* Address-of operator &

xaddr= &x; 2001
2002| a’ [
b o L 2003
ereference (indirection) operation 5004
2005| 2002

*xaddr= ‘a’; 2006

Pointers (3)

1p = &X;
y = *1p;
*1p = 6;

Pointers (4)

Pointer arithmetic

2001
int 1=10; 5002 "
int *ip; 2003 12

2004
ip = &1; 2005
*1p = *ip + 2Z; 2006
ip = ip + 2; 2007

2008

5009 2006

The addition of 2 to a pointer increases the value of the address it
contains by the size of two objects of its type.

16

Pointers (5)

Why use pointers?

#include <stdio.h>
What is the problem?

void swap(int, int);

main ()
{
int numl = 5, num2 = 10;
swap(numl, num2);
printf (“numl = %d and num2 = %$d\n”, numl, num2);

}

void swap(int nl, int n2)

int temp;
temp = nl;
nl = n2;

Pointers (6)

* Using of pointers solves the problem

#include <stdio.h>

void swap(int*, int*);

main ()
{
int numl = 5, num2 = 10;
swap(&numl, &num2);
printf (“numl = %d and num2 = %d\n”, numl, num2);

}

void swap(int *nl, int *n2) // passed by ‘reference’

{

int temp;
temp = *nl;
*nl = *n2;
*n2 = temp;

Array (1)

An array 1s a collection of ordered data items, all belonging
to the same type.

1 107
For example, declare: valueslO]
int values[9]; values[1]
values[0] = 107; values[Z2]
values[5] = 33; values|[3]
. . values[4]
The first array index 1s values[5] 33
ahNays(l values|[6]
values[9]= 10;)*(
values|[7]
values[8]

C performs no array boundary checks.

This means that you can overrun the end of an array, without
the compiler complaining.

This is the cause of many runtime errors!!!

Array (2)

* An example
#include <stdio.h>

vold main (void)

{

int myary[12]; // 12 cells
int index, sum = 0;

// Initialize array before use

for (index = 0; index < 12; index++)
{
myary[index] = index;

}
for (index = 0; 1ndex < 12; index++)
{

sum += myary[index]; // sum array elements
}

printf (“The sum 1s $d”, sum);

Array (3)

* Strong relationship between pointers and arrays

— The name of an array 1s like a pointer to the first element
of the array

— In most cases array names are converted to pointers

char v[06]; v

char *p;

p = &v[0]; equivalent to p = v; \\\
Vs [O :| IHI
v[1] equivalent to * (v+1); V1] o

. . III

— One difference — an array name 1s not |
. Vs [3 :| o
a variable. o
v[4] o)

Array (4)

e Multidimensional arrays
int points[3][4];
points[1l] [2]=3;
* Whatispoints[1,2]?
* Array initialization
int counters[(5] = { 0, 0, O, 0, 4 };
char letters[] = { ‘a’, ‘o', ‘c¢’, ", ‘e’ };
Note that, in the second example, you don’t have to
specify the array size. The compiler will figure it out.

Array (5)

* Character strings
— A string constant 1s an array of characters.

— An array is terminated by with the null character *\ 0’ so that
the program can find the end.

What is the length of a string?
What is the length of a string array?

 We can write

char WOId[]: {‘H’,‘e’,‘l’,‘l’,‘O’,‘!’};
OR

char word[]= {‘H’, ‘e’ , 1’, 1", 0", ", \\0"};
OR

char word[]= “Hello!”;

Array (6)

When an array (or character string) 1s passed to a
function, 1t 1s passed by reference.

int main ()
{
vold concat (char result[],char strl[],char str2[];
char sl1[] = { “Hoo “};
char s2[] = { “Ha!” };
char s3[20];
concat(s3, sl, s2);
printf (“$s\n”, s3);

Pointers 1n C vs. References 1n Java

References might be implemented by storing the address.

— They may be using an additional layer of indirection to enable easier garbage collection.
But in the end it will (almost always) boil down to (C-style) pointers being involved in
the implementation of (Java-style) references.

You can't do pointer arithmetic with references.

— The most important difference between a pointer in C and a reference in Java
— InJava, you can't just ask it to point to "the thing after the original thing".

References are strongly typed.

— In C you can have an int* and cast it to a char™ and just re-interpret the memory at that
location.

— That re-interpretation doesn't work in Java: you can only interpret the object at the other
end of the reference as something that it already is (i.e. you can cast a Object reference
to String reference only if the object pointed to is actually a String).

Those differences make C pointers more powerful, but also more
dangerous.

— Both of those possibilities (pointer arithmetic and re-interpreting the values being
pointed to) add flexibility to C and are the source of some of the power of the language.

— But it's pretty easy to use them incorrectly.

Structs (1)

* A structure is a collection of one or more variables, possibly of
different types, grouped together under a single name for
convenient handling.

* Structs are like records (in Pascal) or classes in Java (without
methods, though).

#include <stdio.h>
struct birthday
{

int month;

int day;

int year;

}; // note semicolon

int main () {
struct birthday bd;
struct birthday *pbd = &bd;
bd.day=1; bd.month=1; bd.year=1977;
printf (“My birthday is %d/%d/%d\n”, bd.day, bd.month, bd.year);
printf (“My birthday is %d/%d/%$d”, pbd->day, pbd->month, pbd->year);

Structs (2)

 Embedded structure

struct person
{
char name[80]; // elements can be different types
int age;
float height;
struct // embedded struct
{

int month;
int day;
int year;
} birth;
b7

struct person me;
struct person class[60];

me.birth.year=1977;
class[0] .name=“Jack”;
class[0] .birth.year = 1971;

Structs (3)

Array of structure
struct birthday bdarr[10];

bdarr[0] .date =1; bdarr[0] .month = 1;

Legal operations on a structure include

— Copy or assign to it as a unit
— Take its address with &
— Access its members

Not that structures can not be compared

Three ways to pass a structure to a function

* Pass the components separately

* Pass the entire structures(passed by value, not reference)
* Pass a pointer to it

Type Conversion (1)

When an operator has operands of different types, they
need to be converted to a common type according to a
small number of rules.

int 1;

float d, £;

d = f + 1;

1 =d + £

Some conversions are ‘safe’ and some are ‘unsafe’.

Two types of conversions
— Implicit (automatic) conversion

— Explicit (forced) conversion — casting operation

Type Conversion (2)

* Implicit (automatic) conversions
— Assigning a value to an object converts the value to the type
of that object.
void ff(int);
int val = 3.14159; // converts to int 3
ff(3.14159);// converts to int 3

— The widest data type in an arithmetic expression is the target
conversion type:

val + 3.14159; // =2 double

(but val isstill an int)

Type Conversion (3)

Explicit (forced) conversions - casting

There are two ways to request a cast:
— type (expr)
— (type) expr

What happens when we do this?
— double (int (3.14159));

Some conversions are safe on some machines, but not
on others (1t depends on the word size of the machine),
because an int 1s usually the same size as either a
short ora long, but not both.

Type Conversion (4)

 Pointer conversions

int ival;

int *pi1 = 0;

char *pc = 0;

void *pv; // can convert others to this,
// but a void* pointer cannot
// be dereferenced directly.

pv = pij; // ok

pc = pv; // ok

*pCc = *pv; // error

Memory Management (1)

* The C programming language manages memory
statically, automatically, or dynamically.

— Static variables are allocated in the main memory, usually along
with the executable code of the program.

— Automatic variables are allocated on the stack, and come and go as
functions are called and returned.

The above two approaches are not adequate for all situations!

Automatic-allocated data cannot persist across multiple function calls.

Static data persists for the life of the program whether it is needed or
not.

— Dynamic memory allocation in which memory 1s more explicitly
and flexibly managed, typically, by allocating it from the heap

33

Memory Management (2)

* The C dynamic memory allocation functions are
defined in <stdlib.h> header.

 Functions

void™ malloc(size t size); //Allocates size bytes of uninitialized storage.

void™ calloc(size t num, size t size); //Allocates memory for an
array of num objects of size size and zero-initializes it

void *realloc(void *ptr, size t new size);//Reallocates the given
area of memory. It must be previously allocated by malloc(), calloc(), or realloc()
and not yet freed.

void free(void* ptr ; //Deallocates the space previously allocated
Y

Memory Management (3)

* Suppose you want to allocate enough memory to store
1,000 integers. You can

int *intptr
intptr = (int *) malloc (1000 * sizeof (int));

™S

The cast

Standard Input and Output

* If you want to use the standard input/output library, you
must have #include <stdio.h> before the first
usage.

* The simplest function reads one character from the
standard input (usually the keyboard):
int getchar(void);
(It returns the next input character each time it is called.)

* The function to put the character ¢ on the on the
standard output, which is usually the screen.

int putchar(int c)

Formatted Input/Output (1)

* Formatted Output — Printf
int printf (char *format, arg,, arg,, ..)

The format string contains two types of objects: ordinary
characters and special conversion specifications. Each
conversion begins with a ‘%’.

printf (“numl = $%d and num2 = $d\n”, numl, num2);

Character Type
Character Type

d, i int; decimal

. . \b backspace
0 int; unsigned octal :

: : - \n Return and new line
X int; unsigned hexadecimal

. . \t tab
u Int; unsigned decimal :
_ \v vertical tab
C Int; single character
: \\ \

S Char *; string Xz .
f Double;

37

Formatted Input/Output (2)

* Formatted Input — Scanf

int scanf(char *format, arg,, arg,, ..)
e.g. 1nt day, year;
char monthname[20];
scanf (“sd %s % d”, &day, monthname, &year)
* The format string contains conversion specifications

— Blanks or tabs are ingored

— Ordinary characters (not %) are expected to match the next non-
white space character of the input stream

— The input arguments must be a pointer indicating where the
converted input 1s supposed to be stored

File Operation (1)

* File pointer — points to a structure contains information
about the file
— The location of the buffer
— The current character position
— Being read or written
— Whether errors or end of file occurs
* You don’t need to know the details, just declare a
pointer with type of FILE

FILE *fp;

File Operation (2)

* Basic functions for file operation
—-()pen;afﬂe: FILE *fopen (char *name, char *mode);

* “r” - read
W 77 . _ 111 7 11 ””
e “w”’ - write fp = fopen(t.txt , r);
* “a” - append
* “b” - binary file(UNIX does not distinguish txt and binary file)

— Read data from an opened file
* size t fread(void *buffer, size t size, size t count, FILE
*stream);

size = fread(buffer,1024,2, fp);

— Write data into an opened file
* int fwrite(const void *buffer, size t size, size t count,
FILE *stream);

size = fwrite(buffer,512,2, fp);
— Close an opened file

fclose (fp) ;

40

Preprocessing (1)

* The “definition” capability of C provides techniques for
writing programs that are more portable, more readable
and easier to modify reliably.

— Include standard header files
— Define Constants

— Define Types

— Define Macro Functions

— Undefining

— Conditional compilation

— Conditional debugging

Preprocessing (2)

e Define Constants

#define BUFSIZE 512
#define NUMBUFS 10

* Define Types Note: with “;” at the end

typedef unsigned short ushort;
typedef int bool;

#define TRUE 1
#define FALSE 0

42

Preprocessing (4)

e Macro functions

1t (x<y)
return y;
else

return Xx;

v

#define MAX(x,y) (((x)<(y))? (y):(x))

43

Preprocessing (5)

* Undefining

#define NUMBUFS 5
char bl [NUMBUFS] [BUFSIZE];

#undef NUMBUFS
#tdefine NUMBUF'S 7
char b2 [NUMBUFS] [BRUFSIZE];

44

Preprocessing (6)

* Conditional compilation

#ifdef USHORT

typedef unsigned short ushort;

#else
typedef unsigned ushort;
fendif

* Conditional debugging

#1ifdef DEBUG
#define asserts(cond, str)\

{if (! (cond) fprintf (stderr,”Assertion

str);}
#else

#define asserts(cond, str)
#endif

/*assumes 16-bit machine */

‘$s’ failed\n”,

45

Standard Library (1)

* Provides declarations of defined functions, types
and macro definitions
— <stdio.h> /*mput and output */
— <stdlib.h> /* utility functions */
— <string.h> /* string functions */
— <math.h> /* mathematical functions */
— <time.h> /* date and time functions */

— <assert.h> /* diagnostics */

Standard Library (2)

¢ <string.h>
— char *strcpy(s, ct)
— char *strncpy(s, ct, n)
— char *strcat(s, ct)
— 1nt stremp(s, ct)
— 1nt strncmp(s, ct)
— size t strlen(s)

C vs. Java

e (Cis similar to Java
— C and Java have some similarities:
— Statements continue until a semicolon (";") character
— primitive data types (except C has no boolean)
— 1f, while, for, and switch statements are very similar to Java
— C functions resemble Java static methods

* C differs from Java
— C precedes Java, and isn't object-oriented:
— C doesn't have classes (C structs are a long way off), and no exception mechanism.
— program structure differs (see below)
— C has pointers (addresses) rather than references. These are more easily abused!
— C has no booleans: 0 == false, !0 == true.
— 1/O 1s different

— A simple (single-file) C program is like a Java program where all methods are
static

