
Tutorial on C Programing

1

TELE402	 	

What Does a C Program Look like?
 /* a simple C program (add,c) */

#include <stdio.h>
#define LAST 10

void Incr (int *num, int i);

int main ()
{
 int i, sum =0;
 for (i =1; i<=LAST; i++) {
 Incr (&sum, i); /* add i to sum */
 }
 printf (“sum = %d\n”, sum);

 return 0;
}

void Incr (int *num, int i) {

 *num = *num +i;

}

2

Preprocessing	 	

the	 “main”	 func2on,	 an	 executable	
program	 must	 have	 one	 	

Variable	 declara2on	 	

I/O	 func2ons	

Func2on	 declara2on	

Func2on	 defini2on	

Data Types
•  Four basic data types

•  char -- a single byte, holding one character
•  int -- an integer, natural size of integers on host machine
•  float -- single-precision floating point
•  double -- double-precision floating point

•  Note that there is no boolean type in standard C
•  Qualifiers applicable to basic types

•  short -- 16 bits (short int)
•  long -- 32 bits (long int)
•  signed or unsigned -- (signed char -128 to 127)

3

Variables
•  Variable Names

– Are made up of letters and digits
– The first character must be a letter
–  “_” as a letter to improve readability (e.g num_packets)
– Upper and lower case letters are distinct (case-sensitive)

•  All variables must be declared before use
•  int step, count; /* declare multiple vars of the same type */
•  char esc=‘\\’; /* initialization in declaration */
•  Use const qualifier to declare variables with no changeable

values
 const char msg[] = “warning: ”;
•  Variables must be declared at the beginning of a block (C89).

4

Operators
•  Arithmetic operators

•  + - * / %
•  Relational and logical operators

•  > >= < <=
•  == !=
•  && ||

•  Increment and Decrement operators
•  ++ -- (note that x++ and ++x are different)

•  Bitwise operators
•  & bitwise AND
•  | bitwise OR
•  ^ bitwise exclusive OR
•  << left shift
•  >> right shift
•  ~ one’s complement

•  Assignment operator (=)
5

Control Flow
•  If-Else
•  Else-if: combined with If-Else
•  Switch:

•  While

•  For

•  Do-while
6

 if (expression) statement1; else statement2;

switch (expression) {
 case const-expr: statements;
 case const-expr: statements;
 default: statements;
}

while (expression)
 statements;

for (expr1; expr2; expr3)
 statements;

do
 statements
while (expression);

Functions (1)
•  Not a good idea to implement everything in the main

function
•  Function is the main abstraction which represents an

operation to be performed more than once.
•  Function definition

7

int cal_sum (int a, int b)
{
 int sum=0;
 sum = a + b;
 return sum;
}

Return	 type	

Func2on	 name	

Argument	 declara2ons	

Declara2ons	 and	 statements	

Functions (2)
•  Every C program must have a function named

“main”. This function is called when the program
runs.

•  There are many standard functions defined as part
of the C language. These functions are stored in
libraries
–  <stdio.h> defines the standard input/output functions.
–  <string.h> defines the standard functions for manipulating

strings.
–  …

8

Functions (3)

•  Two approaches to define
and declare functions
–  Define it first, and then use it
–  Forward declaration: declare

it before giving a complete
definition

9

 /* a simple C program (add,c) */

#include <stdio.h>
#define LAST 10
void Incr (int *num, int i);
int main ()
{
 int i, sum =0;
 for (i =1; i<=LAST; i++) {
 Incr (&sum, i); /* add i to sum */
 }
 printf (“sum = %d\n”, sum);

 return 0;
}

void Incr (int *num, int i) {

 *num = *num +i;
}

Functions (4)
•  Scope of the functions or variables is the part of the program

within which they can be used
–  automatic variables declared at the beginning of a function: the scope is

the function in which they are declared
–  local variables of the same name in different functions are unrelated
–  external variables or functions last from the point they are declared.

•  For external variables: declaration ≠ definition
–  declaration announces the properties (primarily the type)
–  definition also causes storage to be set aside
–  extern declaration is mandatory for external variable to be referred to

before definition, or is defined in a different source file.

10

int	 sp;	
double	 val[MAXVAL];	

extern	 int	 sp;	
extern	 double	 double	 val[];	

Functions (5)
•  Automatic variables appear/disappear automatically when a

function is called.
•  “Call-by-value” parameter passing

–  The values of function parameters are automatic
–  They are copy of the values of the variables that were passed to the function

11

#include <stdio.h>
int sum(int a, int b);
// function prototype at the start of the file

int main()
{

 int x = 4, y = 5;
 int total = sum(x, y); // function call
 printf(“The sum of 4 and 5 is %d”, total);
}

int sum(int a, int b) // call-by-value
{
 return(a + b);
}

Functions (6)
•  Static variables

–  Are allocated statically with lifetime across the entire run of the program
–  Will be initialized only once
–  Apply to both external and internal variables

•  Register variables
–  Are variables that will be heavily used
–  Are to be placed in machine registers, resulting in faster programs
–  e.g., register int x;

12

#include <stdio.h>
void func() {
 static int x = 0;
 printf("%d\n", x);
 x = x + 1;
}
int main(int argc, char * const argv[]) {
 func();
 func();
 func();
 return 0;
}

Pointers (1)
•  Memory and Addresses

–  Most modern computers are byte-addressable

 int x = 5, y = 10;
 float f = 12.5, g = 9.8;
 char c = ‘z’;

 (the addresses are at 2100, 2104, etc.)

13

5	 10	 12.5	 9.8	 z	

2100 2104 2108 2112 2116

Pointers (2)
•  A pointer is a variable that contains the address of a variable

•  Address-of operator &

•  Dereference (indirection) operation *

14

char x; // data variable

char *xaddr; // pointer variable

xaddr= &x;

*xaddr= ‘a’;

x

*xaddr

2001	
2002	
2003	
2004	
2005	
2006	

2002

‘a’

Pointers (3)

15

int x = 1, y = 8;
int *ip, *iq;

ip = &x;

y = *ip;

*ip = 6;
iq = ip;

Pointers (4)

16

•  Pointer arithmetic
 int i=10;
 int *ip;

 ip = &i;
 *ip = *ip + 2;
 ip = ip + 2;

The addition of 2 to a pointer increases the value of the address it
contains by the size of two objects of its type.

2001	
2002	
2003	
2004	
2005	
2006	

10

2007	
2008	
2009	 *ip 2002

12

2006

Pointers (5)

17

•  Why use pointers?
#include <stdio.h>

void swap(int, int);

main()
{
 int num1 = 5, num2 = 10;
 swap(num1, num2);
 printf(“num1 = %d and num2 = %d\n”, num1, num2);
}

void swap(int n1, int n2)
 int temp;

 temp = n1;
 n1 = n2;
 n2 = temp;
}

What	 is	 the	 problem?	

Pointers (6)

18

•  Using of pointers solves the problem
#include <stdio.h>

void swap(int*, int*);

main()
{
 int num1 = 5, num2 = 10;
 swap(&num1, &num2);
 printf(“num1 = %d and num2 = %d\n”, num1, num2);
}

void swap(int *n1, int *n2) // passed by ‘reference’
{
 int temp;

 temp = *n1;
 *n1 = *n2;
 *n2 = temp;
}

Array (1)

19

•  An array is a collection of ordered data items, all belonging
to the same type.

•  For example, declare:
 int values[9];
 values[0] = 107;
 values[5] = 33;

•  The first array index is
 always 0.

 values[9]= 10;

•  C performs no array boundary checks.
 This means that you can overrun the end of an array, without
 the compiler complaining.
 This is the cause of many runtime errors!!!

33	

107	

values[8]
values[7]

values[6]

values[5]

values[4]

values[3]

values[2]

values[1]

values[0]

Array (2)

20

•  An example
 #include <stdio.h>

void main(void)
{
 int myary[12]; // 12 cells
 int index, sum = 0;

 // Initialize array before use

 for (index = 0; index < 12; index++)
 {
 myary[index] = index;

 }

 for (index = 0; index < 12; index++)
 {
 sum += myary[index]; // sum array elements

 }
 printf(“The sum is %d”, sum);

}

Array (3)

21

•  Strong relationship between pointers and arrays
– The name of an array is like a pointer to the first element

of the array
–  In most cases array names are converted to pointers

– One difference – an array name is not
 a variable.

‘!’	

‘o’	

‘l’	

‘l’	

‘e’	

‘H’	

v[5]

v[4]

v[3]

v[1]

v[0]

v char v[6];
char *p;

p = &v[0]; equivalent to 	 p = v;

v[i] equivalent to 	 *(v+i);

v++; v=p;

Array (4)
•  Multidimensional arrays

•  What is points[1,2]?
•  Array initialization

 Note that, in the second example, you don’t have to
 specify the array size. The compiler will figure it out.

int points[3][4];
points[1][2]=3;

 int counters[5] = { 0, 0, 0, 0, 4 };
 char letters[] = { ‘a’, ‘b’, ‘c’, ‘d’, ‘e’ };

22

Array (5)
•  Character strings

–  A string constant is an array of characters.
–  An array is terminated by with the null character ‘\0’so that

the program can find the end.

•  We can write
 char word[]= {‘H’,‘e’,‘l’,‘l’,‘0’,‘!’};

 OR
 char word[]= {‘H’,‘e’,‘l’,‘l’,‘0’,‘!’,‘\0’};
 OR

 char word[]= “Hello!”;

What	 is	 the	 length	 of	 a	 string?	

What	 is	 the	 length	 of	 a	 string	 array?	

23

Array (6)
•  When an array (or character string) is passed to a

function, it is passed by reference.

 int main()
 {
 void concat(char result[],char str1[],char str2[];
 char s1[] = { “Hoo “};
 char s2[] = { “Ha!” };
 char s3[20];
 concat(s3, s1, s2);
 printf(“%s\n”, s3);
 }

24

Pointers in C vs. References in Java
•  References might be implemented by storing the address.

–  They may be using an additional layer of indirection to enable easier garbage collection.
But in the end it will (almost always) boil down to (C-style) pointers being involved in
the implementation of (Java-style) references.

•  You can't do pointer arithmetic with references.
–  The most important difference between a pointer in C and a reference in Java
–  In Java, you can't just ask it to point to "the thing after the original thing".

•  References are strongly typed.
–  In C you can have an int* and cast it to a char* and just re-interpret the memory at that

location.
–  That re-interpretation doesn't work in Java: you can only interpret the object at the other

end of the reference as something that it already is (i.e. you can cast a Object reference
to String reference only if the object pointed to is actually a String).

•  Those differences make C pointers more powerful, but also more
dangerous.
–  Both of those possibilities (pointer arithmetic and re-interpreting the values being

pointed to) add flexibility to C and are the source of some of the power of the language.
–  But it's pretty easy to use them incorrectly.

25

Structs (1)
•  A structure is a collection of one or more variables, possibly of

different types, grouped together under a single name for
convenient handling.

•  Structs are like records (in Pascal) or classes in Java (without
methods, though).

26

#include <stdio.h>
struct birthday

{

 int month;

 int day;
 int year;

}; // note semicolon

int main() {

 struct birthday bd;

 struct birthday *pbd = &bd;

 bd.day=1; bd.month=1; bd.year=1977;
 printf(“My birthday is %d/%d/%d\n”, bd.day, bd.month, bd.year);

 printf(“My birthday is %d/%d/%d”, pbd->day, pbd->month, pbd->year);

}

Structs (2)
•  Embedded structure

27

struct person
{
 char name[80]; // elements can be different types
 int age;
 float height;
 struct // embedded struct
 {
 int month;
 int day;
 int year;
 } birth;
};

struct person me;
struct person class[60];

me.birth.year=1977;
class[0].name=“Jack”;
class[0].birth.year = 1971;
. . .

Structs (3)
•  Array of structure

•  Legal operations on a structure include
–  Copy or assign to it as a unit
–  Take its address with &
–  Access its members

•  Not that structures can not be compared

•  Three ways to pass a structure to a function
•  Pass the components separately
•  Pass the entire structures(passed by value, not reference)
•  Pass a pointer to it

28

struct birthday bdarr[10];

bdarr[0].date =1; bdarr[0].month = 1;

Type Conversion (1)
•  When an operator has operands of different types, they

need to be converted to a common type according to a
small number of rules.

•  Some conversions are ‘safe’ and some are ‘unsafe’.
•  Two types of conversions

–  Implicit (automatic) conversion
–  Explicit (forced) conversion – casting operation

29

int i;
float d,f;
d = f + i;
i = d + f

Type Conversion (2)
•  Implicit (automatic) conversions

–  Assigning a value to an object converts the value to the type
of that object.

 void ff(int);
 int val = 3.14159; // converts to int 3
 ff(3.14159); // converts to int 3

–  The widest data type in an arithmetic expression is the target
conversion type:

 val + 3.14159; // à double

 (but val is still an int)

30

Type Conversion (3)
•  Explicit (forced) conversions - casting
•  There are two ways to request a cast:

–  type (expr)
–  (type) expr

•  What happens when we do this?
–  double (int (3.14159));

•  Some conversions are safe on some machines, but not
on others (it depends on the word size of the machine),
because an int is usually the same size as either a
short or a long, but not both.

31

Type Conversion (4)
•  Pointer conversions

32

int ival;
int *pi = 0;
char *pc = 0;
void *pv; // can convert others to this,
 // but a void* pointer cannot
 // be dereferenced directly.
pv = pi; // ok
pc = pv; // ok
*pc = *pv; // error

Memory Management (1)
•  The C programming language manages memory

statically, automatically, or dynamically.
–  Static variables are allocated in the main memory, usually along

with the executable code of the program.
–  Automatic variables are allocated on the stack, and come and go as

functions are called and returned.

–  Dynamic memory allocation in which memory is more explicitly
and flexibly managed, typically, by allocating it from the heap

33

The	 above	 two	 approaches	 are	 not	 adequate	 for	 all	 situa7ons!	
Automa2c-‐allocated	 data	 cannot	 persist	 across	 mul2ple	 func2on	 calls.	
Sta2c	 data	 persists	 for	 the	 life	 of	 the	 program	 whether	 it	 is	 needed	 or	
not.	

Memory Management (2)
•  The C dynamic memory allocation functions are

defined in <stdlib.h> header.
•  Functions

–  void* malloc(size_t size); //Allocates size bytes of uninitialized storage.

–  void* calloc(size_t num, size_t size); //Allocates memory for an
array of num objects of size size and zero-initializes it

–  void *realloc(void *ptr, size_t new_size);//Reallocates the given
area of memory. It must be previously allocated by malloc(), calloc(), or realloc()
and not yet freed.

–  void free(void* ptr); //Deallocates the space previously allocated

34

Memory Management (3)
•  Suppose you want to allocate enough memory to store

1,000 integers. You can
 int *intptr
 intptr = (int *) malloc (1000 * sizeof (int));

35

The cast

Standard Input and Output
•  If you want to use the standard input/output library, you

must have #include <stdio.h> before the first
usage.

•  The simplest function reads one character from the
standard input (usually the keyboard):
int getchar(void);
 (It returns the next input character each time it is called.)

•  The function to put the character c on the on the
standard output, which is usually the screen.
int putchar(int c)

36

Formatted Input/Output (1)
•  Formatted Output – Printf

int printf (char *format, arg1, arg2, …)
The format string contains two types of objects: ordinary
characters and special conversion specifications. Each
conversion begins with a ‘%’.

 printf(“num1 = %d and num2 = %d\n”, num1, num2);

37

Character	 	 Type	

d,	 i	 int;	 decimal	
o	 int;	 unsigned	 octal	
x	 int;	 unsigned	 hexadecimal	 	
u	 Int;	 unsigned	 decimal	
c	 Int;	 single	 character	
s	 Char	 *;	 string	
f	 Double;	

Character	 	 Type	

\b	 backspace	
\n	 Return	 and	 new	 line	
\t	 tab	
\v	 ver2cal	 tab	
\\	 \	
\’	 ’	 ‘	

Formatted Input/Output (2)
•  Formatted Input – Scanf
 int scanf(char *format, arg1, arg2, …)
 e.g. int day, year;

 char monthname[20];

 scanf(“%d %s % d”, &day, monthname,&year)

•  The format string contains conversion specifications
–  Blanks or tabs are ingored
–  Ordinary characters (not %) are expected to match the next non-

white space character of the input stream
–  The input arguments must be a pointer indicating where the

converted input is supposed to be stored

38

File Operation (1)
•  File pointer – points to a structure contains information

about the file
–  The location of the buffer
–  The current character position
–  Being read or written
–  Whether errors or end of file occurs

•  You don’t need to know the details, just declare a
pointer with type of FILE

39

FILE *fp;

File Operation (2)
•  Basic functions for file operation

–  Open a file: FILE *fopen(char *name, char *mode);
•  “r” – read
•  “w” – write
•  “a” – append
•  “b” – binary file(UNIX does not distinguish txt and binary file)

–  Read data from an opened file
•  size_t fread(void *buffer, size_t size, size_t count, FILE
*stream);

–  Write data into an opened file
•  int fwrite(const void *buffer, size_t size, size_t count,
FILE *stream);

–  Close an opened file

40

fp = fopen(“t.txt”, “r”);

size = fread(buffer,1024,2,fp);

size = fwrite(buffer,512,2,fp);

fclose(fp);

Preprocessing (1)
•  The “definition” capability of C provides techniques for

writing programs that are more portable, more readable
and easier to modify reliably.
–  Include standard header files
– Define Constants
– Define Types
– Define Macro Functions
– Undefining
– Conditional compilation
– Conditional debugging

41

Preprocessing (2)
•  Define Constants

 #define BUFSIZE 512
 #define NUMBUFS 10

•  Define Types

 typedef unsigned short ushort;

 typedef int bool;
 #define TRUE 1
 #define FALSE 0

42

Note: with “;” at the end

Preprocessing (4)
•  Macro functions

 if (x<y)

 return y;

 else

 return x;

 #define MAX(x,y) (((x)<(y))? (y):(x))

43

Preprocessing (5)
•  Undefining

 #define NUMBUFS 5

 char b1[NUMBUFS][BUFSIZE];

 #undef NUMBUFS

 #define NUMBUFS 7
 char b2[NUMBUFS][BUFSIZE];

44

Preprocessing (6)
•  Conditional compilation

 #ifdef USHORT
 typedef unsigned short ushort;
 #else
 typedef unsigned ushort; /*assumes 16-bit machine */
 #endif

•  Conditional debugging
 #ifdef DEBUG
 #define asserts(cond, str)\
 {if (!(cond) fprintf(stderr,”Assertion ‘%s’ failed\n”,
 str);}
 #else
 #define asserts(cond, str)
 #endif

45

Standard Library (1)
•  Provides declarations of defined functions, types

and macro definitions
–  <stdio.h> /*input and output */
–  <stdlib.h> /* utility functions */
–  <string.h> /* string functions */
–  <math.h> /* mathematical functions */
–  <time.h> /* date and time functions */
–  <assert.h> /* diagnostics */
– …

46

Standard Library (2)
•  <string.h>

–  char *strcpy(s, ct)
–  char *strncpy(s, ct, n)
–  char *strcat(s, ct)
–  int strcmp(s, ct)
–  int strncmp(s, ct)
–  size_t strlen(s)
– …

47

C vs. Java
•  C is similar to Java

–  C and Java have some similarities:
–  Statements continue until a semicolon (";") character
–  primitive data types (except C has no boolean)
–  if, while, for, and switch statements are very similar to Java
–  C functions resemble Java static methods

•  C differs from Java
–  C precedes Java, and isn't object-oriented:
–  C doesn't have classes (C structs are a long way off), and no exception mechanism.
–  program structure differs (see below)
–  C has pointers (addresses) rather than references. These are more easily abused!
–  C has no booleans: 0 == false, !0 == true.
–  I/O is different
–  A simple (single-file) C program is like a Java program where all methods are

static

48

