
Lecture 3 Overview
•  Last Lecture
– TCP socket and Client-Server example
–  Source: Chapters 4&5

•  This Lecture
–  I/O multiplexing and Socket Options
–  Source: Chapters 6 & 7

•  Next Lecture
– Name Address Conversion & IPv6
–  Source: Chapters 11&12

Lecture 3 I/O Multiplexing & Socket Options 1

Problems from Last Time

•  Client could be blocked in fgets and miss data
from readline.

•  Sending and receiving data should be independent.

Lecture 3 I/O Multiplexing & Socket Options 2

I/O Multiplexing (1)

•  What is I/O multiplexing?
– The capacity to tell the kernel that we want to be notified

if one or more I/O conditions are ready (e.g. input is
ready to be read, or the buffer is capable of taking more
output)

–  Provided by select and poll functions

Lecture 3 I/O Multiplexing & Socket Options 3

I/O Multiplexing (2)

•  Scenarios for I/O multiplexing in C/S
–  A client handles multiple descriptors, or sockets
–  A server handles both a listening socket and its connected

sockets
–  A server handles both TCP and UDP
–  A server handles multiple services and protocols (e.g. the

inetd daemon)
–  It is possible, but rare, for a client to handle multiple sockets

at the same time.

Lecture 3 I/O Multiplexing & Socket Options 4

I/O Models
•  There are five I/O models under Unix

–  Blocking I/O
–  Nonblocking I/O
–  I/O multiplexing (select and poll)
–  Signal driven I/O (SIGIO)
–  Asynchronous I/O

•  Two distinct phases for an input operation
–  Waiting for the data to be ready
–  Copying the data from the kernel to the process

Lecture 3 I/O Multiplexing & Socket Options 5

Blocking I/O
•  Process is put to sleep if blocked

Lecture 3 I/O Multiplexing & Socket Options 6

Nonblocking I/O
•  When an I/O cannot be completed, the process is not put to

sleep, but returns with an error (EWOULDBLOCK)
•  Waste of CPU time

Lecture 3 I/O Multiplexing & Socket Options 7

Polling

I/O Multiplexing
•  Use select or poll to report if some descriptor is readable or

writable. select may be blocked if no descriptor is readable
or writable.

Lecture 3 I/O Multiplexing & Socket Options 8

Signal driven I/O
•  If a descriptor is ready, notify the process with the SIGIO

signal

Lecture 3 I/O Multiplexing & Socket Options 9

Asynchronous I/O
•  The process initiates an I/O operation. When it is complete,

the process is notified.

Lecture 3 I/O Multiplexing & Socket Options 10

Comparison of I/O models
•  The first four are synchronous I/O.

Lecture 3 I/O Multiplexing & Socket Options 11

Synchronous I/O vs Asynchronous I/O
•  POSIX definition:
– A synchronous I/O operation causes the requesting

process to be blocked until that I/O operation
completes.

– An asynchronous I/O operation does not cause the
requesting process to be blocked.

Lecture 3 I/O Multiplexing & Socket Options 12

Select (1)
•  select function
–  Instruct the kernel to wait for any one of multiple events to

occur and to wake up the process only when one or more of
these events occurs or when a specified amount of time has
passed

•  Examples of when to use select
–  Wait for descriptors {1,4,5} are ready for reading
–  Wait for descriptors {2,7} are ready for writing
–  Wait for descriptors {1,4} have an exception condition

pending
–  Wait for 10.2 seconds

Lecture 3 I/O Multiplexing & Socket Options 13

Select (2)

Lecture 3 I/O Multiplexing & Socket Options 14

int select(int maxfdp1,
 fd_set *readset,
 fd_set *writeset,
 fd_set *exceptset,
 const struct timeval *timeout)

Returns: positive count of ready descriptors, 0 on timeout, -1 on error

Select (3)
struct timeval { long tv_sec;
 long tv_usec; }

•  Three ways for timeout
–  Wait forever: return only when one of the specified

descriptors is ready. The timeout argument is specified as
NULL

–  Wait up to a fixed time: return when one of the specified
descriptors is ready, but don’t wait beyond the time specified
by timeout.

–  Don’t wait at all: return immediately after checking the
descriptors. The two elements of timeout is specified as both
0. This is called polling.

Lecture 3 I/O Multiplexing & Socket Options 15

Select (4)
•  The wait during select can be interrupted by signals

(first two ways)
•  Exception conditions
–  The arrival of out-of-band data

Lecture 3 I/O Multiplexing & Socket Options 16

Select (5)
•  The middle three arguments specify the

descriptors we want the kernel to test.
•  They are:
–  readset
– writeset
–  exceptset

•  They are value-result arguments. (most
common error)

•  On return, the result indicates the descriptors
that are ready.

Lecture 3 I/O Multiplexing & Socket Options 17

Select (6)
•  Macros for fd_set datatype
–  FD_ZERO(fd_set *fdset);
 // clear all bits in fdset
–  FD_SET(int fd, fd_set *fdset);
 // turn on the bit for fd in fdset
–  FD_CLR(int fd, fd_set *fdset);
 // turn off the bit for fd in fdset
–  Int FD_ISSET(int fd, fd_set *fdset);
 // is the bit for fd on in fdset?

Lecture 3 I/O Multiplexing & Socket Options 18

Select (7)
•  maxfdp1 specifies the number of descriptors to be

tested. Its value is the maximum descriptor to be
tested, plus 1. (most common error)

•  Maximum number of descriptors: 256?, 1024
(Linux)?

Lecture 3 I/O Multiplexing & Socket Options 19

Conditions for Readiness (1)
•  A socket is ready for reading if any of the following

conditions is true:
–  Data received in buffer greater than or equal to the low-

water mark
–  Read-half of the connection is closed (receives a FIN)
–  A listening socket with nonzero number of connections
–  A socket error is pending

Lecture 3 I/O Multiplexing & Socket Options 20

Conditions for Readiness (2)
•  A socket is ready for writing if any of the following

conditions is true:
–  Available space in the socket send buffer is greater than the

low-water mark and the socket is connected or does not
require a connection (UDP)

–  The write-half of the connection is closed (SIGPIPE)
–  A socket using a non-blocking connect has completed the

connection, or the connect has failed
–  A socket error is pending

•  A socket has an exception condition pending if there
exists out-of-band data for the socket.

Lecture 3 I/O Multiplexing & Socket Options 21

Revised str_cli (1)
•  Three conditions for socket
–  If peer TCP sends data, socket becomes readable and

read returns greater than 0
–  If peer TCP sends a FIN, the socket becomes readable

and read returns 0 (EOF)
–  If peer TCP sends RST, socket becomes readable and

read returns -1, and errno contains specific error code.

Lecture 3 I/O Multiplexing & Socket Options 22

Revised str_cli (2)

Lecture 3 I/O Multiplexing & Socket Options 23

Revised str_cli (3)

int maxfdp1;
fd_set rset;

FD_ZERO(&rset);
for (; ;){
 FD_SET(fileno(fp), &rset);
 FD_SET(sockfd, &rset);
 maxfdp1=max(fileno(fp),sockfd) + 1;
 select(maxfdp1, &rset, NULL, NULL, NULL);

Lecture 3 I/O Multiplexing & Socket Options 24

Revised str_cli (4)

Lecture 3 I/O Multiplexing & Socket Options 25

 if (FD_ISSET(sockfd, &rset)) {
 if (readline(sockfd, recvline, MAXLINE)==0)
 err_quit(“str_cli-server term premature”);
 fputs(recvline, stdout);
 }
 if (FD_ISSET(fileno(fp), &rset)) {
 if (fgets(fileno(fp), MAXLINE, fp)==NULL)
 return;
 writen(sockfd, sendline, strlen(sendline));
 }
}

Shutdown (1)

•  Normal way to terminate a network connection is to call
close

•  There are two limitations with close
–  close decrements the descriptor’s reference count and closes

the socket only if count reaches 0.
–  close terminates both directions of data transfer, reading and

writing.

Lecture 3 I/O Multiplexing & Socket Options 26

Shutdown (2)

Lecture 3 I/O Multiplexing & Socket Options 27

Shutdown (3)

•  shutdown function
–  Can initiate connection termination sequence regardless of

the reference count
–  Can only terminate one direction of data transfer
–  int shutdown(int sockfd,
 int howto)
–  Returns: 0 if OK, -1 on error
–  howto: SHUT_RD, SHUT_WR, SHUT_RDWR

Lecture 3 I/O Multiplexing & Socket Options 28

str_cli (again) 1

void str_cli (FILE *fp, int sockfd) {
 int maxfdp1, stdlineof;
 fd_set rset;
 char buf[MAXLINE];
 int n;

 stdlineof = 0;
 FD_ZERO(&rset);

Lecture 3 I/O Multiplexing & Socket Options 29

str_cli (again) 2

 for (; ;) {
 if (stdlineof == 0)
 FD_SET(fileno(fp), &rset);
 FD_SET(sockfd, &rset);
 maxfdp1 = max(fileno(fp), sockdf) + 1;
 select(maxfdp1, &rset, NULL, NULL, NULL);

 // deal with socket

 // deal with file

 }
} // end of str_cli

Lecture 3 I/O Multiplexing & Socket Options 30

str_cli (again) 3

// deal with socket

 if (FD_ISSET(sockdf, &rset) {
 if ((n=read(sockfd, buf, MAXLINE)) == 0) {
 if (stdlineof == 1)
 return;
 else
 err_quit(“str_cli: server
 terminated prematurely”);
 }
 write(fileno(stdout), buf, n);
 }

Lecture 3 I/O Multiplexing & Socket Options 31

str_cli (again) 4

// deal with file

 if (FD_SET(fileno(fp), &rset)) {
 if ((n=read(fileno(fp), buf, MAXLINE)) == 0) {
 stdlineof = 1;
 shutdown(sockfd, SHUT_WR); // send FIN
 FD_CLR(fileno(fp), &rset);
 continue;
 }
 writen(sockfd, buf, n);
 }

Lecture 3 I/O Multiplexing & Socket Options 32

select-based Server (1)

•  Use select to handle multiple clients instead of
forking one child per client.
– Need to keep track of each client and its descriptor

(array)
– Need to keep track of the highest used descriptor
– Good for many short lived clients

•  See the attached source code for the TCP echo
server

Lecture 3 I/O Multiplexing & Socket Options 33

select-based Server (2)

Lecture 3 I/O Multiplexing & Socket Options 34

server

lis
te

ni
ng

-­‐1	

-­‐1	

-­‐1	

-­‐1	

-­‐1	

client[]
[0]
[1]
[2]

[FD_SETSIZE-1]

0	
 0	
 0	
 1	
 rset:

maxfd+1 =4

[3]

FD_SETSIZE: the number of descriptors in the fd_set data type.

fd1 fd2 fd3fd0

select-based Server (3)

Lecture 3 I/O Multiplexing & Socket Options 35

server

lis
te

ni
ng

4	

-­‐1	

-­‐1	

-­‐1	

-­‐1	

client[]
[0]
[1]
[2]

[FD_SETSIZE-1]

0	
 0	
 0	
 1	
 rset:

maxfd+1 =5

[3]

client1
co

nn
ec

te
d

fd1 fd2 fd3 fd4fd0
1	

select-based Server (4)

Lecture 3 I/O Multiplexing & Socket Options 36

server

lis
te

ni
ng

4	

5	

-­‐1	

-­‐1	

-­‐1	

client[]
[0]
[1]
[2]

[FD_SETSIZE-1]

0	
 0	
 0	
 1	
 rset:

maxfd+1 =6

[3]

client1
co

nn
ec

te
d

fd1 fd2 fd3 fd4fd0
1	

client2

co
nn

ec
te

d

fd5
1	

select-based Server (5)

Lecture 3 I/O Multiplexing & Socket Options 37

server

lis
te

ni
ng

-­‐1	

5	

-­‐1	

-­‐1	

-­‐1	

client[]
[0]
[1]
[2]

[FD_SETSIZE-1]

0	
 0	
 0	
 1	
 rset:

maxfd+1 =6

[3]

client1
co

nn
ec

te
d

fd1 fd2 fd3 fd4fd0
0	

client2

co
nn

ec
te

d

fd5
1	

Socket Options
•  There are many socket options for programmers to set

for fine control of the underlying system and protocols
– Generic socket options
–  IPv4 socket option
– TCP socket options
–  IPv6 socket options
–  ICMPv6 socket options

•  Options can be manipulated with the following functions
–  getsockopt
–  setsockopt

Lecture 3 I/O Multiplexing & Socket Options 38

getsockopt and setsockopt (1)
•  These two functions apply only to sockets

int getsockopt(int sockfd,
 int level,

 int optname,

 void *optval,
 socklen_t *optlen);

int setsockopt(int sockfd,
 int level,

 int optname,
 const void *optval,

 socklen_t optlen);

Lecture 3 I/O Multiplexing & Socket Options 39

getsockopt and setsockopt (2)
– Both return: 0 if OK, -1 on error
–  sockfd must refer to an open socket descriptor
–  level specifies the code in the system to interpret the option

(the general code or protocol-specific code).
–  optname is an integer representing the specific option.
–  optval is a pointer to a variable storing the option value. (new

value for setsockopt; current value for getsockopt)
–  Optlen is a result-value parameter referring to the size of

optval

Lecture 3 I/O Multiplexing & Socket Options 40

Lecture 3 I/O Multiplexing & Socket Options 41

Summary of IP-layer
socket options

Lecture 3 I/O Multiplexing & Socket Options 42

Summary of transport-layer socket options

Option Values
•  There are two types of option values
–  Binary options that enable or disable a certain feature (flags

with • in the tables)
•  0 for disable
•  nonzero for enable.

–  Options that fetch and return specific values that we can either
set or examine (values). The actual values are passed between
the kernel and the user spaces.

•  Data types for values
–  Most option values are integer
–  Some are structures, such as timeval, linger, and character

array

Lecture 3 I/O Multiplexing & Socket Options 43

Socket States
•  Some socket options have timing considerations about

when to set or fetch the option due to the state of the socket
•  The following options are inherited by a connected TCP

socket from the listening socket
–  SO_DEBUG, SO_DONTROUTE, SO_KEEPALIVE,

SO_LINGER, SO_OOBINLINE, SO_RCVBUF, SO_SNDBUF,
SO_RCVLOWAT, SO_SNDLOWAT, TCP_MAXSEG, AND
TCP_NODELAY

–  For TCP, the connected socket is not returned to a server by
accept until the three-way handshake is completed by the TCP
layer.

–  To ensure that one of the above options is set for the connected
socket when the three-way handshake completes, we must set
that option for the listening socket.

Lecture 3 I/O Multiplexing & Socket Options 44

Generic Socket Options (1)
•  SO_BROADCAST
–  Enable or disable the ability of the socket to send broadcast

messages
•  SO_DEBUG
–  Supported only by TCP. When enabled, the kernel keeps

track of detailed info about all the packets sent or received
by the socket

•  SO_DONTROUTE
–  Bypass the normal routing mechanism of the underlying

protocol

Lecture 3 I/O Multiplexing & Socket Options 45

Generic Socket Options (2)
•  SO_ERROR
–  Get pending error and clear
–  so_error is set to a Exxxx value
–  Called a pending error
–  Two ways for process to be immediately notified

•  If blocked in a call to select, select returns
•  If using signal-driven I/O, SIGIO signal is generated

–  Process can obtain so_error by fetching SO_ERROR option.
–  If so_error is nonzero

•  If read is called and no data to return, -1 is returned and
errno=so_error

•  If read is called and data is queued, data is returned instead of the
error condition

•  If write is called, -1 is returned and errno=so_error

Lecture 3 I/O Multiplexing & Socket Options 46

Generic Socket Options (3)
•  SO_KEEPALIVE
–  If there is no data exchanged in either direction for 2 hours,

a probe is sent to the peer if this option is set. One of three
scenarios exists:
•  Peer responds with an ACK
•  Peer responds with a RST
•  No response

Lecture 3 I/O Multiplexing & Socket Options 47

Ways to detect TCP conditions

Lecture 3 I/O Multiplexing & Socket Options 48

Linger (1)
•  SO_LINGER
–  Specifies how close operates for a connection-oriented protocol
–  The following structure is used:

struct linger {

 int l_onoff;

 int l_linger;

}
// l_onoff - 0=off; nonzero=on

// l_linger specifies seconds

–  Three scenarios:
•  If l_onoff is 0, close returns immediately. If there is any data still

remaining in the socket send buffer, the system will try to deliver
the data to the peer. The value of l_linger is ignored.

Lecture 3 I/O Multiplexing & Socket Options 49

Linger (2)
•  If l_onoff is nonzero and linger is 0, TCP aborts the connection when

close is called. TCP discards data in the send buffer and sends RST
to the peer.

•  If l_onoff is nonzero and linger is nonzero, the kernel will linger
when close is called.
•  If there is any data in the send buffer, the process is put to sleep until

either:
–  the data is sent and acknowledged
Or
–  the linger time expires (for a nonblocking socket the process will not wait

for close to complete)
•  When using this feature, the return value of close must be checked. If

the linger time expires before the remaining data is send and
acknowledged, close returns EWOULDBLOCK and any remaining
data in the buffer is ignored.

Lecture 3 I/O Multiplexing & Socket Options 50

close scenarios (1)

Lecture 3 I/O Multiplexing & Socket Options 51

close scenarios (2)

Lecture 3 I/O Multiplexing & Socket Options 52

close scenarios (3)
•  Application ACK to confirm the receipt of data

Lecture 3 I/O Multiplexing & Socket Options 53

close and shutdown

Lecture 3 I/O Multiplexing & Socket Options 54

Generic Socket Options (4)
•  SO_OOBINLINE
–  Out-of-band data can be placed in the normal input queue

•  SO_RCVBUF and SO_SNDBUF
–  Get/set the send buffer size and receive buffer size
–  These sizes are related to capacity of the connection

•  SO_RCVLOWAT and SO_SNDLOWAT
–  Decide the conditions for readable and writable

Lecture 3 I/O Multiplexing & Socket Options 55

Generic Socket Options (5)
•  SO_RCVTIMEO and SO_SNDTIMEO
–  Place a timeout on socket receives and sends
–  They affect read and write function families

•  SO_TYPE
–  Returns the socket type such as SOCK_STREAM and

SOCK_DGRAM
•  SO_USELOOPBACK
–  Applies only to routing sockets

Lecture 3 I/O Multiplexing & Socket Options 56

Generic Socket Options (6)
•  SO_REUSEADDR
–  Allows a listening server to start and bind its well-known port

even if previously established connections exist that use this
port as their local port

–  Allows multiple instances of the same server to be started on
the same port, as long as each instance binds a different local
IP address.

–  Allows a single process to bind the same port to multiple
sockets, as long as each bind specifies a different local IP
address

–  Allows completely duplicate bindings: a bind of an IP address
and port, when that same IP address and port are already
bound to another socket (normally for support of
multicasting).

Lecture 3 I/O Multiplexing & Socket Options 57

IPv4 Socket Options (2)
•  IP_TOS
–  Get/set the type-of-service field in the IP header

•  IP_TTL
–  Get/set the default TTL

•  TCP_MAXSEG
–  Get/set the maximum segment size for a TCP

connection
•  TCP_NODELAY
–  Disable the delay algorithm (Nagle algorithm)

Lecture 3 I/O Multiplexing & Socket Options 58

Nagle Algorithm

TELE402
2016

Lecture 4 Socket Options 59

A typical scenario

Lecture 3 I/O Multiplexing & Socket Options 60

TCP client/server

UDP client/server

Lecture 3 I/O Multiplexing & Socket Options 61

recvfrom and sendto (1)
ssize_t recvfrom(int sockfd,
 void *buff, size_t nbytes,
 int flags, struct sockaddr *from,
 socklen_t *addrlen);

ssize_t sendto(int sockfd,
 const void *buff, size_t nbytes,

 int flags, const struct sockaddr *to,
 socklen_t addrlen);

•  Both return: number of bytes read or written if OK, -1 on error

Lecture 3 I/O Multiplexing & Socket Options 62

recvfrom and sendto (2)
•  sockfd, buff, and nbytes are identical to read/write
•  flags is normally set 0, but can be set for advanced

functions
•  The final two arguments to recvfrom are similar to the final

two arguments to accept. They can be NULL.
•  The final two arguments to sendto are similar to the final

two arguments to connect
•  Send 0 bytes is ok; likewise receive 0 bytes is ok

Lecture 3 I/O Multiplexing & Socket Options 63

Simple UDP C/S
•  Refer to udpcliserv/udpserv01.c, lib/dg_echo.c, udpcliserv/

udpcli01.c, and lib/dg_cli.c for details
•  Sockets are created with type SOCK_DGRAM

•  If a datagram is lost, the client will wait forever
•  Timeout is needed, but not enough (duplicate problem)

Lecture 3 I/O Multiplexing & Socket Options 64

