
Lecture 7   Overview
•  Last Lecture

–  Introduction to wireless sensor networks (WSNs)
•  This Lecture

– Routing & MAC protocol design in WSNs
–  Source: lecture note

•  Next Lecture
– Data Center Networking
–  Source: lecture note

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 1 



Roadmap
•  Routing protocols for WSNs

– Design challenges
– Energy-aware routing 
– Hierarchical routing 
– Geographic routing
– Graph routing

•  Routing protocol design in Contiki
– Communication architecture in Contiki
– Rime communication stack

•  MAC protocols for WSNs
– Design challenges
– Existing MAC protocols

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 2 



Routing in WSNs 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 3 

•  What is routing? Why do we need routing? 
•  Internet (TCP/IP) 

– Routing tables (often large) 
– Automatic update 

•  WSNs 
– Large number of nodes (scalability) 
– Modest storage (memory efficiency) 
– Limited computation capability (simple routing) 
–  Powered by battery (energy-efficient routing) 
– High data redundancy (data aggregation) 



Routing Metrics 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 4 

•  Hop-count 
•  Energy 

–  Minimum energy consumption per packet 
–  Minimize variance in node power levels 
–  Maximum time to network partition  

•  Quality of Service 
–  Latency  
–  Throughput  
–  Reliability (packet loss) 

•  ETX metric 
•  Location-based  

–  Progress 
–  Advance 



Energy-efficient routing

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 5 

•  Number along links: energy for transmission over link 
•  Number in parentheses: remaining energy capacity 

n  Minimum hop:        S-B-I-O (13) 
n  Minimum energy:   S-A-D-F-I-O (9) 
n  Maximum minimum residual energy: S-C-E-H-G-I-O (16) 

A

B

C

D

E

F

G

H

I

J

K

(5)
(4)

(6)

(5)
(3)

(3)

(4) (1) (5) (4)

(3)

2

1

2 1
2

2

1

4

3
5

2 2

1

3

3

3

3

4
2

4

3
4

S
O

8



Energy-efficient routing (cont.) 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 6 

•  Max-min zPmin  (ACM Sigmobile 2001)  
•  Two extremes 

–  Compute a path with minimal energy consumption Pmin 
–  Computer a path that maximizes the minimal residual power 

•  Tradeoff in Max-min zPmin 
–  Consume at most zPmin (z≥1) 
–  Maximize the minimal residual power 



Energy-efficient routing (cont.)  

•  z = 4/3     zPmin =12 
•  Path with energy cost less than zPmin                       minimum residual energy 
            S-A-D-F-I-O (9)                                                                        1 
            S-B-G-I-O    (12)                                                                       3 
            S-A-D-I-O    (11)                                                                       1 
            S-A-B-G-I-O (12)                                                                      3 
  

A

B

C

D

E

F

G

H

I

J

K

(5)
(4)

(6)

(5)
(3)

(3)

(4) (1) (5) (4)

(3)

2

1

2 1
2

2

1

4

3
5

2 2

1

3

3

3

3

4
2

4

3
4

S
O

8

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 7 



Hierarchical Routing 

sink cluster head regular sensor

COSC402 Lecture 7 – Routing & MAC protocol design in 
WSNs 8 



Hierarchical Routing (cont.) 
•  Sensor communicate directly only with a cluster head
•  Cluster head

–  responsible for propagating sensor data to sink
–  sometimes more powerful than “regular” nodes
–  experiences more traffic than “regular” nodes

•  Challenges in cluster formation:
–  selection (election) of cluster heads
–  selection of cluster to join
–  adaptation of clusters in response to topology changes, failures, etc.

•  Advantages
–  potentially fewer collisions (compared to flat routing)
–  easier duty cycling (energy efficiency)
–  easier routing process (though routes may be longer)
–  easier in-network data aggregation

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 9 



Hierarchical Routing (cont.) 
•  LEACH (Low-Energy Adaptive Clustering Hierarchy)

–  Wendi Rabiner Heinzelman et al HICSS 2000 
–  Adaptive clustering 

•  Periodic independent self-election 
•  Nodes select advertisement with strongest signal strength 

–  Randomized rotation 
•  Recent cluster heads disqualified 
•  Optimal number not guaranteed 
•  Residual energy not considered 

–  Heads perform compression/aggregation 
•  HEED: Hybrid Energy Efficient Distributed Clustering

–  Residual energy considered for heads selection 
•  Energy-Efficient Unequal Clustering (EEUC)

–  Clusters close to the sink have smaller size 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 10 



Geographic Routing

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 11 

•  Key Idea 
– Make use of node location information in routing 

•  Assumptions 
– Nodes know their own geographical location (e.g. GPS) 
– Nodes know their 1-hop neighbors 
– Routing destinations are specified geographically (a 

location, or a geographical region) 
– Greedy localized routing 

  



Geographic Routing (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 12 

•  GPSR: Greedy Perimeter Stateless Routing 
– Brad Karp and H. T. Kung  (MobiCom 2000) 

•  Greedy forwarding   
 ing (GPSR). We aim for scalability under increasing numbers of

nodes in the network, and increasing mobility rate. As these fac-
tors increase, our measures of scalability are:

Routing protocol message cost: How many routing protocol
packets does a routing algorithm send?

Application packet delivery success rate: What fraction of
applications’ packets are delivered successfully by a routing
algorithm?

Per-node state: How much storage does a routing algorithm
require at each node?

Networks that push on mobility, number of nodes, or both include:

Ad-hoc networks: Perhaps the most investigated category,
these mobile networks have no fixed infrastructure, and sup-
port applications for military users, post-disaster rescuers,
and temporary collaborations among temporary associates,
as at a business conference or lecture [10], [12], [20], [21],
[22].

Sensor networks: Comprised of small sensors, these mobile
networks can be deployed with very large numbers of nodes,
and have very impoverished per-node resources [6], [13].
Minimization of state per node in a network of tens of thou-
sands of memory-poor sensors is crucial.

“Rooftop” networks: Proposed by Shepard [24], these wire-
less networks are not mobile, but are deployed very densely
in metropolitan areas (the name refers to an antenna on each
building’s roof, for line-of-sight with neighbors) as an alter-
native to wired networking offered by traditional telecommu-
nications providers. Such a network also provides an alter-
nate infrastructure in the event of failure of the conventional
one, as after a disaster. A routing system that self-configures
(without a trusted authority to configure a routing hierarchy)
for hundreds of thousands of such nodes in a metropolitan
area represents a significant scaling challenge.

Traditional shortest-path (DV and LS) algorithms require state pro-
portional to the number of reachable destinations at each router.
On-demand ad-hoc routing algorithms require state at least pro-
portional to the number of destinations a node forwards packets
toward, and often more, as in the case in DSR, in which a node ag-
gressively caches all source routes it overhears to reduce the prop-
agation scope of other nodes’ flooded route requests.

We will show that geographic routing allows routers to be nearly
stateless, and requires propagation of topology information for only
a single hop: each node need only know its neighbors’ positions.
The self-describing nature of position is the key to geography’s
usefulness in routing. The position of a packet’s destination and
positions of the candidate next hops are sufficient to make correct
forwarding decisions, without any other topological information.

We assume in this work that all wireless routers know their own
positions, either from a GPS device, if outdoors, or through other
means. Practical solutions include surveying, for stationary wire-
less routers; inertial sensors, on vehicles; and acoustic range-finding

y

x

D

Figure 1: Greedy forwarding example. y is x’s closest neighbor
to D.

using ultrasonic “chirps” indoors [28]. We further assume bidirec-
tional radio reachability. The widely used IEEE 802.11 wireless
network MAC [11] sends link-level acknowledgements for all uni-
cast packets, so that all links in an 802.11 network must be bidi-
rectional. We simulate a network that uses 802.11 radios to evalu-
ate our routing protocol. We consider topologies where the wire-
less nodes are roughly in a plane. Finally, we assume that packet
sources can determine the locations of packet destinations, to mark
packets they originate with their destination’s location. Thus, we
assume a location registration and lookup service that maps node
addresses to locations [18]. Queries to this system use the same
geographic routing system as data packets; the querier geographi-
cally addresses his request to a location server. The scope of this
paper is limited to geographic routing. We argue for the eminent
practicality of the location service briefly in Section 3.7. We adopt
IP terminology throughout this paper, though GPSR can be applied
to any datagram network.

In the following sections, we describe the algorithms that comprise
GPSR, measure and analyze GPSR’s performance and behavior
in simulated mobile networks, cite and differentiate related work,
identify future research opportunities suggested by GPSR, and con-
clude by summarizing our findings.

2. ALGORITHMS AND EXAMPLES
We now describe the Greedy Perimeter Stateless Routing algo-
rithm. The algorithm consists of two methods for forwarding pack-
ets: greedy forwarding, which is used wherever possible, and perime-
ter forwarding, which is used in the regions greedy forwarding can-
not be.

2.1 Greedy Forwarding
As alluded to in the introduction, under GPSR, packets are marked
by their originator with their destinations’ locations. As a result,
a forwarding node can make a locally optimal, greedy choice in
choosing a packet’s next hop. Specifically, if a node knows its ra-
dio neighbors’ positions, the locally optimal choice of next hop
is the neighbor geographically closest to the packet’s destination.
Forwarding in this regime follows successively closer geographic
hops, until the destination is reached. An example of greedy next-
hop choice appears in Figure 1. Here, x receives a packet destined
for D. x’s radio range is denoted by the dotted circle about x, and
the arc with radius equal to the distance between y and D is shown
as the dashed arc about D. x forwards the packet to y, as the dis-
tance between y and D is less than that between D and any of x’s
other neighbors. This greedy forwarding process repeats, until the
packet reaches D.



Geographic Routing (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 13 

•  Drawback: holes (local minimums) 
 



Graph Routing

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 14 

•  LLNs: Low power and Lossy Networks 
– Devices have constraints in processing power, memory 

and energy (battery power) 
–  Interconnection links have high loss rate, low data rate 

and instability 

•  RPL: IPv6 Routing Protocol for LLNs  
–  IETF draft  
– ROLL group  - (Routing Over Low power and Lossy 

networks) group 

 



Graph Routing (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 15 

•  Terminology 
–  Directed Acyclic Graph (DAG):  A directed graph in which 

all edges are oriented in such a way that no cycles exist. 
–  Destination Oriented DAG (DODAG):  A DAG rooted at a 

single destination, i.e. at a single DAG root (the DODAG 
root) with no outgoing edges. 

 

 

DAG DODAG



Architecture
•  The communication architecture in Contiki

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 16 

Application data, packet attributes

Collection protocol

Application 1 Application 2 Application 3

Routing protocol

Proprietary packet

format

MAC layer 2MAC layer 1 MAC layer 3

Application

data

Application

data

Rime stack

Chameleon

UDP/IP packets

802.15.4 frames

Figure 2. The Chameleon architecture. Applications and
network protocols run on top of the Rime stack. The out-
put from Rime is transformed into different underlying
protocols by header transformation modules.

3 The Chameleon Architecture
The Chameleon architecture is an adaptive communica-

tion architecture for sensor networks. The purpose of the ar-
chitecture is threefold. First, the architecture is designed to
simplify the implementation of sensor network communica-
tion protocols. This is done through the use of the Rime pro-
tocol stack. Second, the architecture allows for sensor net-
work protocols that are implemented on top of the architec-
ture to take advantage of the features of underlying MAC and
link layer protocols. This is done by using packet attributes
instead of packet headers. Third, the architecture allows for
the packet headers of outgoing packets to be formed inde-
pendently of the protocols or applications running within the
architecture. Separate packet transformation modules handle
packet header construction.

The Chameleon architecture draws from previous work
on sensor network architecture [10, 16, 30] and is inspired
by work in the area of distributed programming [20] and
general-purpose network architecture [3, 9].

Figure 2 shows the Chameleon architecture. The architec-
ture contains three parts: the Rime stack, which provides a
set of communication primitives to applications running on
top of the stack; a set of network protocols running on top
of the Rime stack; and the Chameleon header transformation
modules, which create packets and packet headers from the
output of the Rime stack. Applications run either directly on
top of the Rime stack, or on top of communication protocols
that run on top of Rime.

The Chameleon header transformation modules can pro-
duce either tightly bit-packed packet headers or headers that
conform either to specific MAC or link layer protocols, or
to other communication protocols. Some header transforma-
tion modules also implement parts of the protocol logic of
the protocols they mimic.

Applications and protocols pass application data down to
the Rime stack. The Rime stack adds packet attributes to
the application data before it passes the application data and
packet attributes to the underlying Chameleon header trans-
formation module. The header transformation module con-
structs packet headers from the packet attributes and sends
the final packets to the link-level device driver or the MAC
layer. The MAC layer can inspect the packet attributes to
decide how the packet should be transmitted. For example,
broadcast packets may be sent differently from unicast pack-
ets, and packets that need single-hop reliability can be sent
with link-layer acknowledgements turned on.

3.1 Separation of Protocol Logic and Protocol
Headers

The protocol logic in the Rime stack does not deal with
low-level details of packet headers such as the placement,
structure, and alignment of header fields. Rather, all man-
agement of such low-level details is contained in the header
transformation modules.

Instead of using packet headers, the Chameleon archi-
tecture uses packet attributes. Packet attributes contain the
same information that normally is found in packet headers.
The packet attribute information is a more abstract represen-
tation of the packet header information. Table 3.1 lists the
pre-defined packet attributes in the Chameleon architecture.
Both applications and lower layer protocols may define ad-
ditional packet attributes.

The pre-defined packet attributes include the sender and
receiver addresses, packet IDs, packet types, the number of
times that a packet has been forwarded, as well as feedback
information from the lower layers, such as the estimated link
quality, and information about radio congestion.

Each packet attribute has a scope. The scope of a packet
attribute specifies how far the attribute will follow the packet.
Attributes with scope 0 will only follow the packet within the
node, attributes with scope 1 will be transmitted in packet
headers but will not be forwarded across more than one node,
and attributes with scope 2 will follow the packet to the final
recipient in case of a multi-hop packet.

3.1.1 Header Field Alignment
The headers in general purpose communication proto-

cols, such as the protocols in the TCP/IP stack, are typically
defined so that all header fields are aligned on even byte-
boundaries. The reason for this is that many microprocessors
cannot access quantities that are not properly aligned.

Protocol designers must ensure that all header fields
are properly aligned, and must therefore sometimes insert
padding bytes into the packet headers [24]. Low-power ra-
dio protocols, however, must reduce their header size to a
minimum and therefore in many cases cannot afford to align
all header fields.

With Chameleon’s packet attributes approach, the proto-
col implementations do not have to deal with low-level align-
ment of header fields. Rather, all low-level header alignment
details are contained in the header transformation modules.

3.1.2 Byte Ordering
Protocols headers are typically designed to allow for hosts

with different byte order to communicate with each other.

•  A set of communication 
primitives

•  A set of network protocols

•  Tightly bit-packet packet 
headers

•  Headers that conform to 
specific MAC or link layer 
protocols. 



Architecture (cont.)
•  Design objectives

–  Simplify the implementation of sensor networks 
communication protocols  (via Rime protocol stack)

– Allow sensor network protocols to use the features of 
underlying MAC and link layer protocols (via packet 
attributes instead of packet headers)

– Allow packet headers to be formed independently of 
the protocols or applications (via separate packet 
transformation modules)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 17 



Rime
•  The rime communication stack provides a set of 

communication primitives

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 18 

3.4 Lightweight Layering
The Rime stack is built around a lightweight layering

principle. The communication primitives are designed in a
layered fashion, where more complex communication prim-
itives build on simpler ones. This is inspired by work in the
area of distributed programming [20], where many simple
layers are used to implement complex mechanisms such as
network consensus. The design with many simple layers al-
lows for provable properties of composition of layers; we
leave to future work to investigate if provable properties are
possible in the Rime stack.

For sensor networks, the lightweight layering principle
has several benefits. First, as the communication primitives
are simple, they are easy to implement and test. Second,
the memory footprint of the implementations of the prim-
itives is small, which is important for memory-constrained
sensor nodes. Third, as applications may attach to any layer
of the stack, the applications can express precisely how much
of the communication features that they need. In more
heavyweight-layered stacks, such as the TCP/IP protocol
stack, it generally is not possible to express such fine-grained
feature requirements. For example, a TCP/IP application that
needs congestion control but not guaranteed delivery cannot
express this within the TCP/IP protocol architecture.

3.5 Header Transformations
The header transformation modules in Chameleon pro-

duce headers from the packet attributes supplied by the Rime
stack. Chameleon can transform the packet attributes into an
arbitrary packet header format. By transforming the packet
attributes into a standard packet format, the Chameleon ar-
chitecture can become compatible with another node that
implements the standard. However, header transformations
alone are not enough to mimic another communication pro-
tocol.

3.6 Header Transformations Are Not Enough
The header transformation mechanism is able to construct

headers that are compatible with any communication pro-
tocol. However, a communication protocol is not defined
by its protocol headers, but also by its protocol logic. In
many cases, the Rime protocols already implement the pro-
tocol logic required to fulfill the impersonated protocol. In
those cases, the Chameleon header transformation module
only needs to create headers that match the impersonated
protocol.

In case the protocol to be impersonated contains protocol
logic not implemented by the Rime protocol, the Chameleon
module must itself implement the missing parts of the proto-
col logic of the protocols that it impersonates. For example, a
UDP/IP header transformation module must implement the
ARP protocol if it is running over Ethernet, and a header
transformation module that translates a reliable bulk-transfer
Rime protocol into a TCP stream must implement the SYN-
ACK exchange before data transmission can start.

3.7 Feedback from Lower Layers
The protocols implemented in a header transformation

module may need to send feedback up to the application run-
ning on top of Rime. Examples of this include both conges-
tion notification and estimates of the radio link quality.

ruc rmh

stuc

uc mh

ibc ipolite nf

abc

polite

Identified sender

Anonymous

Reliable transmission

Identified receiver

Single−hop Multi−hop

Unicast

Broadcast

Figure 6. The communication primitives in the Rime
stack and how they are layered.

Chameleon uses packet attributes to provide feedback
from the header transformation modules to the Rime stack.
When an event occurs that needs be forwarded to the appli-
cation, Chameleon associates the event with the channel on
which the event occurred. The next time the channel is active
and a packet is sent towards the local application, Chameleon
sets the appropriate packet attribute for the packet that is sent
up through Rime. The feedback information may also be
piggybacked on acknowledgement packets that Chameleon
produces for the benefit of the application.

4 The Rime Protocol Stack
The Rime protocol stack provides a set of communication

primitives, ranging from best-effort local neighbor broadcast
and reliable local neighbor unicast, to best-effort network
flooding and hop-by-hop reliable multi-hop unicast. Appli-
cations or protocols running on top of the Rime stack may
use one or more of the communication primitives provided
by the Rime stack.

4.1 Rime Communication Primitives
The protocols in the Rime stack are arranged in a layered

fashion, where the more complex protocols are implemented
using the less complex protocols. The communication prim-
itives in the Rime stack and how they are arranged is shown
in Figure 6.

We have chosen the communication primitives in the
Rime stack based on what typical sensor network protocols
use. Applications or protocols running on top of the Rime
stack attach at any layer of the stack and use any of the com-
munication primitives.

The Rime stack supports both single-hop and multi-hop
communication primitives. The multi-hop primitives do not
specify how packets are routed through the network. Instead,
as the packet is sent across the network, the application or
upper layer protocol is invoked at every node to choose the
next-hop neighbor. This makes it possible to implement ar-
bitrary routing protocols on top of the multi-hop primitives.

4.1.1 Anonymous Best-effort Single-hop Broadcast
The anonymous best-effort single-hop broadcast prim-

itive (abc) is the most basic communication primitive in
Rime. The abc primitive provides a way for upper layers
to send a data packet to all local neighbors that listen to the



Rime (cont.)
•  Anonymous Best-effort Single-hop Broadcast (abc)

–  Send a data packet to all local neighbours that listen to the 
channel on which the packet is sent.

– No information about who sent the packet is included in the 
transmission. 

– The most basic communication primitive. All other 
primitives are based on the abc primitive

•  Identified Best-effort Single-hop Broadcast (ibc)
–  Same as abc but adds the single-hop sender address as a 

packet attribute to the outgoing packets. 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 19 



Rime (cont.)
•  Polite Single-hop Broadcast (polite)

–  Sends a packet to all neighbours
– Avoid that multiple copies of a specific set of packet 

attributes is sent on a specified logical channel in the local 
neighbourhood during a time interval.

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 20 

channel on which the packet is sent. No information about
who sent the packet is included in the transmission.

All other Rime primitives are based on the abc primitive.
Normally, however, the abc primitive is not used directly by
applications or protocols that run on top of the Rime stack.
When a packet is received by the abc module, the module
immediately passes the packet to the upper layer.

4.1.2 Identified Best-effort Single-hop Broadcast
The identified best-effort single-shop broadcast primitive

(ibc) sends a packet to all local neighbors. The ibc primitive
adds the single-hop sender address as a packet attribute to
outgoing packets. All Rime primitives that need the identity
of the sender in the outgoing packets use the ibc primitive,
either directly or indirectly through any of the other commu-
nication primitives that are based on the ibc primitive.

4.1.3 Best-effort Single-hop Unicast
The best-effort single-hop unicast primitive (uc) sends a

packet to an identified single-hop neighbor. The uc primi-
tive uses the ibc primitive and adds the single-hop receiver
address attribute to the outgoing packets. For incoming
packets, the uc module inspects the single-hop receiver ad-
dress attribute and discards the packet if the address does not
match the address of the node.

4.1.4 Stubborn Single-hop Unicast
The stubborn single-hop unicast primitive (suc) repeat-

edly sends a packet to a single-hop neighbor using the uc
primitive. The stuc primitive sends and resends the packet
until an upper layer primitive or protocol cancels the trans-
mission. While it is possible for applications and protocols
that use Rime to use the stubborn single-hop unicast primi-
tive directly, the stuc primitive is primarily used by the reli-
able single-hop unicast (ruc) primitive.

Before the stuc primitive sends a packet, it allocates a
queue buffer, to which the application data and packet at-
tributes is copied, and sets a timer. When the timer expires,
the stuc primitive copies the queue buffer to the Rime buffer
and sends the packet using the uc primitive. The stuc prim-
itive sets the number of retransmissions for a packet as a
packet attribute on outgoing packets.

4.1.5 Reliable Single-hop Unicast
The reliable single-hop unicast primitive (ruc) reliably

sends a packet to a single-hop neighbor. The ruc primitive
uses acknowledgements and retransmissions to ensure that
the neighbor successfully receives the packet. When the re-
ceiver has acknowledged the packet, the ruc module notifies
the sending application via a callback. The ruc primitive uses
the stubborn single-hop unicast primitive to do retransmis-
sions. Thus, the ruc primitive does not have to manage the
details of setting up timers and doing retransmissions, but
can concentrate on dealing with acknowledgements.

The ruc primitive adds two packet attributes: the single-
hop packet type and the single-hop packet ID. The ruc prim-
itive uses the packet ID attribute as a sequence number for
matching acknowledgement packets to the corresponding
data packets.

The application or protocol that uses the ruc primitive
can specify the maximum number of transmissions that the
ruc module should attempt before the packet times out. If

Listen only period Random transmission

period

t 0 t 1
t

Figure 7. Timeline of the algorithm used by the polite
broadcast primitive.

a packet times out, the application or protocol that sent the
packet is notified with a callback.

4.1.6 Polite Single-hop Broadcast
The polite single-hop broadcast primitive (polite) is a gen-

eralization of the polite gossip algorithm from Trickle [25].
The polite gossip algorithm is designed to reduce the total
amount of packet transmissions by not repeating a message
that other nodes have already sent. The purpose of the po-
lite broadcast primitive is to avoid that multiple copies of a
specific set of packet attributes is sent on a specified logical
channel in the local neighborhood during a time interval.

The polite broadcast primitive is useful for implement-
ing broadcast protocols that use, e.g., negative acknowledge-
ments. If many nodes need to send the negative acknowl-
edgement to a sender, it is enough if only a single message is
delivered to the sender.

The upper layer protocol or application that uses the po-
lite broadcast primitive provides an interval time, and mes-
sage along with a list of packet attributes for which multi-
ple copies should be avoided. The polite broadcast primitive
stores the outgoing message in a queue buffer, stores the list
of packet attributes, and sets up a timer. The timer is set to
a random time during the second half of the interval time, as
shown in Figure 7.

During the first half of the time interval, the sender lis-
tens for other transmissions. If it hears a packet that matches
the attributes provided by the upper layer protocol or appli-
cation, the sender drops the packet. The send timer has been
set to a random time some time during the second half of
the interval. When the timer fires, and the sender has not yet
heard a transmission of the same packet attributes, the sender
broadcasts its packet to all its neighbors.

The polite broadcast module does not add any packet at-
tributes to outgoing packets apart from those added by the
upper layer.

4.1.7 Identified Polite Single-hop Broadcast
Identified polite single-hop broadcasts (ipolite) works in

the same way as the polite primitive but adds the identity of
the sender as a packet attribute through the use of the ibc
layer.

4.1.8 Best-effort Multi-hop Unicast
The best-effort multi-hop unicast primitive (mh) sends a

packet to an identified node in the network by using multi-
hop forwarding at each node in the network. The applica-
tion or protocol that uses the mh primitive supplies a routing
function for selecting the next-hop neighbor. If the mh prim-
itive is requested to send a packet for which no suitable next
hop neighbor is found, the caller is immediately notified of
this and may choose to initiate a route discovery process.



Rime (cont.)
•  Identified Polite Single-hop Broadcast (ipolite)

– Works in the same way as polite but adds the identity of the 
sender as a packet attribute

•  Best-effort Multi-hop Unicast (mh)
–  Sends a packet to an identified node using multi-hop 

forwarding 
– Application protocol that uses the mh primitive supplies a 

routing function for selecting the next-hop neighbor
– When the next-hop neighbour is found, the mh primitive 

uses the best-effort unicast primitive to send the packet. 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 21 



Rime (cont.)
•  Best-effort Single-hop Unicast (uc)

–  Sends a packet to an identified single-hop neighbour.
–  Uses the ibc primitive and adds the single-hop receiver address 

attribute to the outgoing packet.s
•  Stubborn Single-hop Unicast (suc)

–  Repeatedly sends a packet to a single-hop neighbour using the uc 
primitive until an upper layer primitive or protocol cancels the 
transmission.

•  Reliable Single-hop Unicast (ruc)
–  Reliably sends a packet to a single-hop neighbour
–  Uses ack and retransmission to ensure successful packet delivery. 
–  Can specify  the maximum number of transmissions for a packet

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 22 



Rime (cont.)
•  Hop-by-hop Reliable Multi-hop Unicast (rmh)

– Works in the same way as mh except that it uses the ruc 
primitive for the communication between two single-hop 
neighbours. 

•  Best-effort Network Flooding
–  Sends a packet to all nodes in the networks. 
– Uses polite broadcast at every hop to reduce the number of 

redundant transmissions. 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 23 



MAC Design Goals

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 24 

•  Medium Access Control (MAC) 
–  Avoid interference between transmissions 
–  Mitigate effects of collisions (retransmit) 
–  Optimize channel access 

•  Design Goals 
–  Minimize energy consumption  

•  Overhearing: unnecessarily receive a packet destined to another node 
•  Idle listening: staying active to receive even if there is no sender 

–  Minimize the active time 
–  Eliminate packet collisions 
–  Minimize control packet overhead 
–  Prevent buffer overflow 
–  … 



Energy Consumption in a Sensor Mote

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 25 

•  Observations 
–  Radio activities dominate the 

energy consumption 
–  Idle listening consumes much 

energy 
–  Turning radio off saves much 

energy 
–  Keeping MCU in sleep state 

further reduces energy 
consumption 

MCU Mode Sensor Radio(mW) Data rate Power(
mW)

Active On Tx(0.74,OOK) 2.4Kbps 24.58

Tx(0.74,OOK) 19.2Kbps 25.37

Tx(0.10,OOK) 2.4Kbps 19.24

Tx(0.74,OOK) 19.2Kbps 20.05

Tx(0.74,ASK) 19.2Kbps 27.46

Tx(0.10,ASK) 2.4Kbps 21.26

Active On Rx - 22.20

Active On Idle - 22.06

Active On Off - 9.72

Idle On Off - 5.92

Sleep Off Off - 0.02

UCLA	  Medusa	  node	  (ATMEL	  CPU)	  



Periodic Listen and Sleep

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 26 

n  Problem: Idle listening consumes significant energy 
n  Solution: Periodic listen and sleep 

n  Tradeoffs 
 

 

sleep listen listen sleep 

Latency Energy 

q  Turn off radio when sleeping
q  Reduce duty cycle



S-MAC

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 27 

•  S-MAC: An Energy-Efficient MAC Protocol for 
Wireless Sensor Networks  
–  Wei Ye, John Heidemann and Deborah Estrin,  INFOCOM 2002 
 

•  Key ideas: 
–  Idle listening  ---  Periodic listen and sleep
–  Collision  ---  Using RTS and CTS
–  Overhearing --- Interfering nodes go to sleep during transmission
–  Control overhead --- Message passing



S-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 28 

•  Periodic listen and sleep 
–  Each node sleeps for some time, and then wakes up and listens to 

see if any other node wants to talk to it 
–  All nodes are free to choose their own listen/sleep schedule, but 

needs to synchronize with neighbors, that is,  nodes and their 
neighbors listen at the same time and go sleep at the same time. 

–  Synchronization is achieved by periodically broadcasting SYNC 
packets.  496 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

Fig. 2. Neighboring nodes A and B have different schedules. They
synchronize with nodes C and D respectively.

We call a complete cycle of listen and sleep a frame. The listen
interval is normally fixed according to physical-layer and MAC-
layer parameters, e.g., the radio bandwidth and the contention
window size. The duty cycle is defined as the ratio of the listen
interval to the frame length. The sleep interval can be changed
according to different application requirements, which actually
changes the duty cycle. For simplicity, these values are the same
for all nodes.

All nodes are free to choose their own listen/sleep schedules.
However, to reduce control overhead, we prefer neighboring
nodes to synchronize together. That is, they listen at the same
time and go to sleep at the same time. It should be noticed that
not all neighboring nodes can synchronize together in a mul-
tihop network. Two neighboring nodes A and B may have dif-
ferent schedules if they must synchronize with different nodes,
C, and D, respectively, as shown in Fig. 2.

Nodes exchange their schedules by periodically broadcasting
a SYNC packet to their immediate neighbors. A node talks to its
neighbors at their scheduled listen time, thus ensuring that all
neighboring nodes can communicate even if they have different
schedules. In Fig. 2, for example, if node A wants to talk to
node B, it waits until B is listening. The period for a node to
send a SYNC packet is called the synchronization period.

One characteristic of S-MAC is that it forms nodes into a
flat, peer-to-peer topology. Unlike clustering protocols, S-MAC
does not require coordination through cluster heads. Instead,
nodes form virtual clusters around common schedules, but com-
municate directly with peers. One advantage of this loose coor-
dination is that it can be more robust to topology change than
cluster-based approaches.

The downside of the scheme is the increased latency due to
the periodic sleeping. Furthermore, the delay can accumulate on
each hop. In Section IV, we will present a technique that is able
to significantly reduce such latency.

B. Collision Avoidance

If multiple neighbors want to talk to a node at the same time,
they will try to send when the node starts listening. In this case,
they need to contend for the medium. Among contention pro-
tocols, the 802.11 does a very good job on collision avoidance.
S-MAC follows similar procedures, including virtual and phys-
ical carrier sense, and the RTS/CTS exchange for the hidden
terminal problem [14].

There is a duration field in each transmitted packet that in-
dicates how long the remaining transmission will be. If a node
receives a packet destined to another node, it knows how long
to keep silent from this field. The node records this value in a
variable called the network allocation vector (NAV) [1] and sets
a timer for it. Every time when the timer fires, the node decre-
ments its NAV until it reaches zero. Before initiating a trans-
mission, a node first looks at its NAV. If its value is not zero, the
node determines that the medium is busy. This is called virtual
carrier sense.

Physical carrier sense is performed at the physical layer by
listening to the channel for possible transmissions. Carrier sense
time is randomized within a contention window to avoid colli-
sions and starvations. The medium is determined as free if both
virtual and physical carrier sense indicate that it is free.

All senders perform carrier sense before initiating a trans-
mission. If a node fails to get the medium, it goes to sleep
and wakes up when the receiver is free and listening again.
Broadcast packets are sent without using RTS/CTS. Unicast
packets follow the sequence of RTS/CTS/DATA/ACK between
the sender and the receiver. After the successful exchange of
RTS and CTS, the two nodes will use their normal sleep time for
data packet transmission. They do not follow their sleep sched-
ules until they finish the transmission.

With the low-duty-cycle operation and the contention mech-
anism during each listen interval, S-MAC effectively addresses
the energy waste due to idle listening and collisions. In the next
section, we will present details of the periodic sleep coordinated
among neighboring nodes. Then we will present two techniques
that further reduce the energy waste due to overhearing and con-
trol overhead.

IV. COORDINATED SLEEPING

Periodic sleeping effectively reduces energy waste on idle lis-
tening. In S-MAC, nodes coordinate their sleep schedules rather
than randomly sleep on their own. This section details the pro-
cedures that all nodes follow to set up and maintain their sched-
ules. It also presents a technique to reduce latency due to the
periodic sleep on each node.

A. Choosing and Maintaining Schedules

Before each node starts its periodic listen and sleep, it needs
to choose a schedule and exchange it with its neighbors. Each
node maintains a schedule table that stores the schedules of all
its known neighbors. It follows the steps below to choose its
schedule and establish its schedule table.

1) A node first listens for a fixed amount of time, which is
at least the synchronization period. If it does not hear a
schedule from another node, it immediately chooses its
own schedule and starts to follow it. Meanwhile, the node
tries to announce the schedule by broadcasting a SYNC
packet. Broadcasting a SYNC packet follows the normal
contention procedure. The randomized carrier sense time
reduces the chance of collisions on SYNC packets.

2) If the node receives a schedule from a neighbor before
choosing or announcing its own schedule, it follows that
schedule by setting its schedule to be the same. Then the
node will try to announce its schedule at its next sched-
uled listen time.

3) There are two cases if a node receives a different schedule
after it chooses and announces its own schedule. If the
node has no other neighbors, it will discard its current
schedule and follow the new one. If the node already fol-
lows a schedule with one or more neighbors, it adopts
both schedules by waking up at the listen intervals of the
two schedules.



S-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 29 

•  Collision avoidance 
–  RTS/CTS exchange for the hidden terminal problem 

•  Choosing and maintaining schedules 
–  Each node maintains a schedule table that stores the schedules of 

all its known neighbors. 
–  To communicate with a neighbor, the node chooses its neighbor’s 

schedule 



S-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 30 

YE et al.: MAC WITH COORDINATED ADAPTIVE SLEEPING FOR WIRELESS SENSOR NETWORKS 497

To illustrate this algorithm, consider a network where all
nodes can hear each other. The node who starts first will pick
up a schedule first, and its broadcast will synchronize all its
peers on its schedule. If two or more nodes start first at the
same time, they will finish initial listening at the same time, and
will choose the same schedule independently. No matter which
node sends out its SYNC packet first (wins the contention), it
will synchronize the rest of the nodes.

However, two nodes may independently assign schedules if
they cannot hear each other in a multihop network. In this case,
those nodes on the border of two schedules will adopt both. For
example, nodes A and B in Fig. 2 will wake up at the listen
time of both schedules. In this way, when a border node sends a
broadcast packet, it only needs to send it once. The disadvantage
is that these border nodes have less time to sleep and consume
more energy than others.

Another option is to let a border node adopt only one
schedule—the one it receives first. Since it knows that some
other neighbors follow another schedule, it can still talk to
them. However, for broadcasting, it needs to send twice to the
two different schedules. The advantage is that the border nodes
have the same simple pattern of periodic listen and sleep as
other nodes.

We expect that nodes only rarely see multiple schedules, since
each node tries to follow an existing schedule before choosing
an independent one. However, a new node may still fail to dis-
cover an existing neighbor for a few reasons. The SYNC packet
from the neighbor could be corrupted by collisions or interfer-
ence. The neighbor may have delayed sending a SYNC packet
due to the busy medium. If the new node is on the border of two
schedules, it may only discover the first one if the two schedules
do not overlap.

To prevent the case that two neighbors miss each other for-
ever when they follow completely different schedules, S-MAC
introduces periodic neighbor discovery, i.e., each node period-
ically listens for the whole synchronization period. The fre-
quency with which a node performs neighbor discovery depends
on the number of neighbors it has. If a node does not have
any neighbor, it performs neighbor discovery more aggressively
than in the case that it has many neighbors. Since the energy
cost is high during the neighbor discovery, it should not be per-
formed too often. In our current implementation, the synchro-
nization period is 10 s, and a node performs neighbor discovery
every 2 min if it has at least one neighbor.

B. Maintaining Synchronization

Since neighboring nodes coordinate their sleep schedules,
the clock drift on each node can cause synchronization errors.
We use two techniques to make it robust to such errors. First,
all exchanged timestamps are relative rather than absolute.
Second, the listen period is significantly longer than clock drift
rates. For example, the listen time of 0.5 s is more than 10
times longer than typical clock drift rates. Compared to TDMA
schemes with very short time slots, S-MAC requires much
looser time synchronization.

Although the long listen time can tolerate fairly large clock
drift, neighboring nodes still need to periodically update each

Fig. 3. Timing relationship between a receiver and different senders. CS stands
for carrier sense.

other with their schedules to prevent long-term clock drift. The
synchronization period can be quite long. The measurements on
our testbed nodes show that the clock drift between two nodes
does not exceed 0.2 ms per second.

As mentioned earlier, schedule updating is accomplished by
sending a SYNC packet. The SYNC packet is very short, and
includes the address of the sender and the time of its next sleep.
The next sleep time is relative to the moment that the sender
starts transmitting the SYNC packet. When a receiver gets the
time from the SYNC packet it subtracts the packet transmission
time and use the new value to adjust its timer.

In order for a node to receive both SYNC packets and data
packets, we divide its listen interval into two parts. The first one
is for SYNC packets, and the second one is for data packets, as
shown in Fig. 3. Each part has a contention window with many
time slots for senders to perform carrier sense. For example, if a
sender wants to send a SYNC packet, it starts carrier sense when
the receiver begins listening. It randomly selects a time slot to
finish its carrier sense. If it has not detected any transmission by
the end of that time slot, it wins the contention and starts sending
its SYNC packet. The same procedure is followed when sending
data packets.

Fig. 3 shows the timing relationship of three possible situa-
tions that a sender transmits to a receiver. Sender 1 only sends
a SYNC packet. Sender 2 only sends a unicast data packet.
Sender 3 sends both a SYNC and a data packet.

C. Adaptive Listening

The scheme of periodic listen and sleep is able to signifi-
cantly reduce the time spent on idle listening when traffic load
is light. However, when a sensing event indeed happens, it is
desirable that the sensing data can be passed through the net-
work without too much delay. When each node strictly follows
its sleep schedule, there is a potential delay on each hop, whose
average value is proportional to the length of the frame. We
therefore introduce a mechanism to switch the nodes from the
low-duty-cycle mode to a more active mode in this case.

•  Adaptive listening
–  Periodic listen and sleep can increase communication delay 
–  Let the node who overhears its neighbor’s transmission wake up 

for a short period of time at the end of the transmission.  



T-MAC

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 31 

•  T-MAC: An Adaptive Energy-Efficient MAC 
Protocol for Wireless Sensor Networks 
–  Tijs van Dam and Koen Langendoen, SenSys 2003 

•  Key ideas: 
–  Reduce idle listening by transmitting all messages in bursts 

of variable length, and sleeping between bursts. 
–  Dynamically determine the optimal length of active time 

based on the traffic load. 
 



T-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 32 

•  Overview 

–  RTS/CTS/ACK 
–  An active period ends when none of the following events 

has occurred during a period of TA 
•  The firing of a periodic frame timer  
•  Receiving data packets 
•  Sense radio activity 
•  The end-of-transmission of a node’s own packet or acknowledgement 
•  The knowledge that a data exchange of a neighbor has ended.  

active state

sleep state

normal

S-MAC

Figure 1: The S-MAC duty cycle; the arrows
indicate transmitted and received messages; note
that messages come closer together.

can communicate with its neighbors and send any messages
queued during the sleeping part, as shown in Figure 1. Since
all messages are packed into the active part, instead of be-
ing ‘spread out’ over the whole frame, the time between
messages, and therefore the energy wasted on idle listening,
is reduced.

S-MAC needs some synchronization, but that is not as
critical as in TDMA-based protocols: the time scale is much
larger. Typically, there may be an active part of 200 ms in
a frame of one second. A clock drift of 500 µs will not be a
problem.

The S-MAC protocol essentially trades used energy for
throughput and latency. Throughput is reduced because
only the active part of the frame is used for communication.
Latency increases because a message-generating event may
occur during sleep time. In that case, the message will be
queued until the start of the next active part.

3. T-MAC PROTOCOL DESIGN
Energy consumption is the main criterion for our MAC

protocol design. We have already identified the problem of
idle listening. Other forms of energy waste are:

collisions if two nodes transmit at the same time and in-
terfere with each others transmission, packets are cor-
rupted. Hence, the energy used during transmission
and reception is wasted;

protocol overhead most protocols require control packets
to be exchanged; as these contain no application data,
we may consider any energy used for transmitting and
receiving these packets as overhead;

overhearing since the air is a shared medium, a node may
receive packets that are not destined for it; it could
then as well have turned off its radio.

These other sources of energy consumption are relatively
insignificant when compared to the energy wasted by idle
listening, especially when messages are infrequent. Consider
our example where 99% of the time is spent on idle listen-
ing. If, then, the actual transmission and receiving time
increases by a factor two—due to collisions and overhead—,
idle listening time decreases only from 99% to 98%.

Although reducing the idle listening time, a solution with a
fixed duty cycle, like the S-MAC protocol [12], is not optimal.
S-MAC has two important parameters: the total frame time,
which is limited by latency requirements and buffer space,
and the active time. The active time depends mainly on
the message rate: it can be so small that nodes are able to
transfer all their messages within the active time.

active time

sleep time

normal

T-MAC
TA TA TA

Figure 2: The basic T-MAC protocol scheme, with
adaptive active times.

The problem is that, while latency requirements and buffer
space are generally fixed, the message rate will usually vary
(Section 1.1). If important messages are not to be missed–
and unimportant messages should not have been sent in any
case–, the nodes must be deployed with an active time that
can handle the highest expected load. Whenever the load is
lower than that, the active time is not optimally used and
energy will be wasted on idle listening.

The novel idea of the T-MAC protocol is to reduce idle
listening by transmitting all messages in bursts of variable
length, and sleeping between bursts. To maintain an optimal
active time under variable load, we dynamically determine
its length. We end the active time in an intuitive way: we
simply time out on hearing nothing.

3.1 Basic protocol
Figure 2 shows the basic scheme of the T-MAC protocol.

Every node periodically wakes up to communicate with its
neighbors, and then goes to sleep again until the next frame.
Meanwhile, new messages are queued. Nodes communi-
cate with each other using a Request-To-Send (RTS), Clear-
To-Send (CTS), Data, Acknowledgement (ACK) scheme,
which provides both collision avoidance and reliable trans-
mission [1]. This scheme is well known and used, for exam-
ple, in the IEEE 802.11 standard [4].

A node will keep listening and potentially transmitting,
as long as it is in an active period. An active period ends
when no activation event has occurred for a time TA. An
activation event is:

• the firing of a periodic frame timer;

• the reception of any data on the radio;

• the sensing of communication1 on the radio, e.g. dur-
ing a collision;

• the end-of-transmission of a node’s own data packet or
acknowledgement;

• the knowledge, through overhearing prior RTS and
CTS packets, that a data exchange of a neighbor has
ended.

A node will sleep if it is not in an active period. Conse-
quently, TA determines the minimal amount of idle listening
per frame.

The described timeout scheme moves all communication
to a burst at the beginning of the frame. Since messages
between active times must be buffered, the buffer capacity
determines an upper bound on the maximum frame time.
1Through a Received Signal Strength Indication (RSSI)
signal from the radio.

173



B-MAC

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 33 

•  B-MAC: Berkeley Media Access Control for low 
power wireless sensor networks 
–  “Versatile Low Power Media Access for Wireless Sensor 

Networks”, Joseph Polastre, Jason Hill, and David Culler, 
SenSys 2004 

•  Key ideas: 
–  Low power listening (LPL) for low power communication.  
–  Clear channel assessment (CCA) and packet backoff for 

channel arbitration 
–  Link layer acknowledge for reliability 



B-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 34 

•  Low power listening (LPL)  
–  Extended preamble and preamble sampling 
–  Each time a node wakes up, it turns on its radio to check for 

activity. If a preamble signal is detected, it will stay awake for the 
time required to receive the incoming packet.  

–  The preamble length is matched to the interval that the channel is 
check, e.g., the preamble must be at least 100ms if the channel is 
check every 100ms. 

Send
DATA time

Long preambleLPL
Sender (S)

Target address in data header

time
LPL
Receiver (R)

R wakes up

time
X-MAC
Sender (S)

Send
DATA

time
X-MAC
Receiver (R)

Recv
DATA

R wakes up

Short preambles with
target address information

A
C
K

Receive early ACK

Send early ACK

extended wait time

Time & energy
saved at S & R

Recv
DATA

Listen for queued packets

Figure 1. Comparison of the timelines between LPL’s
extended preamble and X-MAC’s short preamble ap-
proach.

hearing, excessive preamble and incompatibility with pack-
etizing radios.
3.1 Asynchronous Duty Cycling
A visual representation of asynchronous low power lis-

tening (LPL) duty cycling is shown in the top section of
Figure 1. When a node has data to send, it first transmits
an extended preamble, and then sends the data packet. All
other nodes maintain their own unsynchronized sleep sched-
ules. When the receiver awakens, it samples the medium. If
a preamble is detected, the receiver remains awake for the
remainder of the long preamble, then determines if it is the
target. After receiving the full preamble, if the receiver is not
the target, it goes back to sleep.
3.2 Embedding the Target ID in the Preamble

to Avoid Overhearing
A key limitation of LPL is that non-target receivers who

wake and sample the medium while a preamble is being sent
must wait until the end of the extended preamble before find-
ing out that they are not the target and should go back to
sleep. This is termed as the overhearing problem, and ac-
counts for much of the inefficiency and wasted energy in
current asynchronous techniques. This means that for ev-
ery transmission, the energy expended is proportional to the
number of receivers in range. Hence, the energy usage is
dependent on density as well as traffic load. This problem
is exacerbated by the fact that sensor networks are often de-
ployed with high node densities in order to provide sensing
at a fine granularity.
In X-MAC, we ameliorate the overhearing problem by di-

viding the one long preamble into a series of short preamble
packets, each containing the ID of the target node, as indi-
cated in Figure 1. The stream of short preamble packets ef-
fectively constitutes a single long preamble. When a node
wakes up and receives a short preamble packet, it looks at
the target node ID that is included in the packet. If the node
is not the intended recipient, the node returns to sleep imme-
diately and continues its duty cycling as if the medium had

been idle. If the node is the intended recipient, it remains
awake for the subsequent data packet. As seen in the figure,
a node can quickly return to sleep, thus avoiding the over-
hearing problem.
With this technique, the energy expenditure is signifi-

cantly less affected by network density. The approach of a
series of short preamble packets scales well with increasing
density, i.e. as the number of senders increases in a neigh-
borhood, energy expenditure remains largely flat. In com-
parison, as the number of senders increase in each neighbor-
hood of a WSN using LPL, the entire WSN stays awake for
increasing amounts of time.
Another advantage of this approach is that it can be em-

ployed on all types of radios. Any packetizing radio, such
as the CC2420 characteristic of MICAz and TelosB motes,
the CC2500, and/or the XBee, will be capable of sending a
series of short packets containing the target ID. As we will
see later, such universal support across packetizing radios is
not true of the traditional extended preamble LPL. In addi-
tion, the short preamble packets can be supported across all
radios with bit streaming interfaces, e.g. the CC1000 that is
found in the MICA2 mote.

3.3 Reducing Excessive Preamble using
Strobing

Using an extended preamble and preamble sampling al-
lows for low power communications, yet even greater en-
ergy savings are possible if the total time spent transmit-
ting preambles is reduced. In traditional asynchronous tech-
niques, the sender sends the entire preamble even though,
on average, the receiver will wake up half way through the
preamble. The entire preamble needs to be sent before every
data transmission because there is no way for the sender to
know that the receiver has woken up. This is one case where
more time is spent sending the preamble than is necessary,
as illustrated by the extended wait time in Figure 1. Another
case occurs when there are a number of transmitters waiting
to send to a particular receiver. After the first sender begins
transmitting preamble packets, subsequent transmitters will
stay awake and wait until the channel is clear. They will
then begin sending their preamble, and this occurs for every
subsequent sender. Consequently, each sender transmits the
entire preamble when in fact the receiver was woken up by
the first transmitter in the series.
In the development of X-MAC, we provide solutions for

both of these cases. Instead of sending a constant stream of
preamble packets, as would most closely approximate tradi-
tional LPL, we insert small pauses between packets the series
of short preamble packets, during which time the transmit-
ting node pauses to listen to the medium. These gaps enable
the receiver to send an early acknowledgment packet back
to the sender by transmitting the acknowledgment during
the short pause between preamble packets. When a sender
receives an acknowledgment from the intended receiver, it
stops sending preambles and sends the data packet. This al-
lows the receiver to cut short the excessive preamble, which
reduces per-hop latency and energy spent unnecessarily wait-
ing and transmitting, as can be seen in Figure 1. Since the
sender quickly alternates between a short preamble packet



B-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 35 

•  Clear Channel Assessment (CCA) 
–   filtering to remove noise 
–   thresholding to estimate channel status 

interface MacControl {
command result_t EnableCCA();
command result_t DisableCCA();
command result_t EnableAck();
command result_t DisableAck();
command void* HaltTx();

}

interface MacBackoff {
event uint16_t initialBackoff(void* msg);
event uint16_t congestionBackoff(void* msg);

}

interface LowPowerListening {
command result_t SetListeningMode(uint8_t mode);
command uint8_t GetListeningMode();
command result_t SetTransmitMode(uint8_t mode);
command uint8_t GetTransmitMode();
command result_t SetPreambleLength(uint16_t bytes);
command uint16_t GetPreambleLength();
command result_t SetCheckInterval(uint16_t ms);
command uint16_t GetCheckInterval();

}

Figure 1: Interfaces for flexible control of B-MAC by higher
layer services. These TinyOS interfaces allow services to tog-
gle CCA and acknowledgments, set backoffs on a per message
basis, and change the LPL mode for transmit and receive.

through repeated rounds of resynchronization.
T-MAC [19] improves on S-MAC’s energy usage by using a very

short listening window at the beginning of each active period. After
the SYNC section of the active period, there is a short window to
send or receive RTS and CTS packets. If no activity occurs in that
period, the node returns to sleep. By changing the protocol to have
an adaptive duty cycle, T-MAC saves power at a cost of reduced
throughput and additional latency. T-MAC, in variable workloads,
uses one fifth the power of S-MAC. In homogeneous workloads, T-
MAC and S-MAC perform equally well. T-MAC suffers from the
same complexity and scaling problems of S-MAC. Shortening the
active window in T-MAC reduces the ability to snoop on surround-
ing traffic and adapt to changing network conditions.
Many of these protocols have only been evaluated in simulation.

Not only must the protocol perform well in simulation, it must also
integrate well with the implementation of wireless sensor network
applications. Each of the protocols described in this section provide
solutions that meet a subset of our goals. Motivated by monitoring
applications for wireless sensor networks, we build upon ideas from
previously published work to create a reconfigurable protocol that
meets all of the goals from Section 1.

3. DESIGN AND IMPLEMENTATION
To achieve the goals outlined in Section 1, we designed a CSMA

protocol for wireless sensor networks called B-MAC, BerkeleyMe-
dia Access Control for low power wireless sensor networks. Al-
though B-MAC is motivated by the needs of monitoring applica-
tions, the flexibility of our protocol allows allows other services
and applications to be realized efficiently. These services include,
but are not limited to, target tracking, localization, triggered event
reporting, and multihop routing.
Classical MAC protocols perform channel access arbitration and

are tuned for good performance over a set of workloads thought
to be representative of the domain. S-MAC is an example of a
wireless sensor network protocol designed using a classical ap-
proach. S-MAC provides an RTS-CTS mechanism for channel ar-

0 20 40 60 80 100
110

100

90

80

sig
na

l (d
Bm

)

0 20 40 60 80 100

0

1

Th
re

sh
old

0 20 40 60 80 100

0

1

Time (ms)

Ou
tlie

r

Figure 2: Clear Channel Assessment (CCA) effectiveness for a
typical wireless channel. The top graph is a trace of the received
signal strength indicator (RSSI) from a CC1000 transceiver. A
packet arrives between 22 and 54ms. The middle graph shows
the output of a thresholding CCA algorithm. 1 indicates the
channel is clear, 0 indicates it is busy. The bottom graph shows
the output of an outlier detection algorithm.

bitration and hidden terminal avoidance, synchronization with its
neighbors for low power operation, and message fragmentation for
efficiently transferring bulk data. S-MAC is not only a link proto-
col, but also network and organization protocol. Applications and
services must rely on S-MAC’s internal policies to adjust its op-
eration as node and network conditions change; such changes are
opaque to the application. In contrast, the B-MAC protocol con-
tains a small core of media access functionality. B-MAC uses clear
channel assessment (CCA) and packet backoffs for channel arbitra-
tion, link layer acknowledgments for reliability, and low power lis-
tening (LPL) for low power communication. B-MAC is only a link
protocol, with network services like organization, synchronization,
and routing built above its implementation. Although B-MAC nei-
ther provides multi-packet mechanisms like hidden terminal sup-
port or message fragmentation nor enforces a particular low power
policy, B-MAC has a set of interfaces that allow services to tune its
operation (shown in Figure 1) in addition to the standard message
interfaces1. These interfaces allow network services to adjust B-
MAC’s mechanisms, including CCA, acknowledgments, backoffs,
and LPL. By exposing a set of configurable mechanisms, protocols
built on B-MAC make local policy decisions to optimize power
consumption, latency, throughput, fairness or reliability.
For effective collision avoidance, a MAC protocol must be able

to accurately determine if the channel is clear, referred to as Clear
Channel Assessment (CCA). Since the ambient noise changes de-
pending on the environment, B-MAC employs software automatic
gain control for estimating the noise floor. Signal strength samples
are taken at times when the channel is assumed to be free–such as
immediately after transmitting a packet or when the data path of
the radio stack is not receiving valid data. Samples are then en-
tered into a FIFO queue. The median of the queue is added to an
exponentially weighted moving average with decay �. The median
1Standard interfaces for message transmission in TinyOS [18] are
BareSendMsg for transmission, ReceiveMsg for reception,
and RadioCoordinator for time stamping and start of frame
delimiter (SFD) information.

97



X-MAC

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 36 

•  X-MAC: A Short Preamble MAC Protocol for 
Duty-Cycled Wireless Sensor Networks 
–  Michael Buettner, Gary V. Yee, Eric Anderson and Richard 

Han, SenSys 2006 

•  Key ideas: 
–  employs a short preamble to further reduce energy 

consumption and to reduce latency.  
–  embed address information of the target in the preamble so 

that non-target receivers can quickly go back to sleep 
–  use a strobed preamble to allow the target receiver to 

interrupt the long preamble as soon as it wakes up and 
determines that it is the target receiver.



X-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 37 

•  Embedding the target ID in the preamble 
–  Divide the one long preamble into a series of short preamble 

packets. 
–  Each packet contains the ID of the target node.  

Send
DATA time

Long preambleLPL
Sender (S)

Target address in data header

time
LPL
Receiver (R)

R wakes up

time
X-MAC
Sender (S)

Send
DATA

time
X-MAC
Receiver (R)

Recv
DATA

R wakes up

Short preambles with
target address information

A
C
K

Receive early ACK

Send early ACK

extended wait time

Time & energy
saved at S & R

Recv
DATA

Listen for queued packets

Figure 1. Comparison of the timelines between LPL’s
extended preamble and X-MAC’s short preamble ap-
proach.

hearing, excessive preamble and incompatibility with pack-
etizing radios.
3.1 Asynchronous Duty Cycling
A visual representation of asynchronous low power lis-

tening (LPL) duty cycling is shown in the top section of
Figure 1. When a node has data to send, it first transmits
an extended preamble, and then sends the data packet. All
other nodes maintain their own unsynchronized sleep sched-
ules. When the receiver awakens, it samples the medium. If
a preamble is detected, the receiver remains awake for the
remainder of the long preamble, then determines if it is the
target. After receiving the full preamble, if the receiver is not
the target, it goes back to sleep.
3.2 Embedding the Target ID in the Preamble

to Avoid Overhearing
A key limitation of LPL is that non-target receivers who

wake and sample the medium while a preamble is being sent
must wait until the end of the extended preamble before find-
ing out that they are not the target and should go back to
sleep. This is termed as the overhearing problem, and ac-
counts for much of the inefficiency and wasted energy in
current asynchronous techniques. This means that for ev-
ery transmission, the energy expended is proportional to the
number of receivers in range. Hence, the energy usage is
dependent on density as well as traffic load. This problem
is exacerbated by the fact that sensor networks are often de-
ployed with high node densities in order to provide sensing
at a fine granularity.
In X-MAC, we ameliorate the overhearing problem by di-

viding the one long preamble into a series of short preamble
packets, each containing the ID of the target node, as indi-
cated in Figure 1. The stream of short preamble packets ef-
fectively constitutes a single long preamble. When a node
wakes up and receives a short preamble packet, it looks at
the target node ID that is included in the packet. If the node
is not the intended recipient, the node returns to sleep imme-
diately and continues its duty cycling as if the medium had

been idle. If the node is the intended recipient, it remains
awake for the subsequent data packet. As seen in the figure,
a node can quickly return to sleep, thus avoiding the over-
hearing problem.
With this technique, the energy expenditure is signifi-

cantly less affected by network density. The approach of a
series of short preamble packets scales well with increasing
density, i.e. as the number of senders increases in a neigh-
borhood, energy expenditure remains largely flat. In com-
parison, as the number of senders increase in each neighbor-
hood of a WSN using LPL, the entire WSN stays awake for
increasing amounts of time.
Another advantage of this approach is that it can be em-

ployed on all types of radios. Any packetizing radio, such
as the CC2420 characteristic of MICAz and TelosB motes,
the CC2500, and/or the XBee, will be capable of sending a
series of short packets containing the target ID. As we will
see later, such universal support across packetizing radios is
not true of the traditional extended preamble LPL. In addi-
tion, the short preamble packets can be supported across all
radios with bit streaming interfaces, e.g. the CC1000 that is
found in the MICA2 mote.

3.3 Reducing Excessive Preamble using
Strobing

Using an extended preamble and preamble sampling al-
lows for low power communications, yet even greater en-
ergy savings are possible if the total time spent transmit-
ting preambles is reduced. In traditional asynchronous tech-
niques, the sender sends the entire preamble even though,
on average, the receiver will wake up half way through the
preamble. The entire preamble needs to be sent before every
data transmission because there is no way for the sender to
know that the receiver has woken up. This is one case where
more time is spent sending the preamble than is necessary,
as illustrated by the extended wait time in Figure 1. Another
case occurs when there are a number of transmitters waiting
to send to a particular receiver. After the first sender begins
transmitting preamble packets, subsequent transmitters will
stay awake and wait until the channel is clear. They will
then begin sending their preamble, and this occurs for every
subsequent sender. Consequently, each sender transmits the
entire preamble when in fact the receiver was woken up by
the first transmitter in the series.
In the development of X-MAC, we provide solutions for

both of these cases. Instead of sending a constant stream of
preamble packets, as would most closely approximate tradi-
tional LPL, we insert small pauses between packets the series
of short preamble packets, during which time the transmit-
ting node pauses to listen to the medium. These gaps enable
the receiver to send an early acknowledgment packet back
to the sender by transmitting the acknowledgment during
the short pause between preamble packets. When a sender
receives an acknowledgment from the intended receiver, it
stops sending preambles and sends the data packet. This al-
lows the receiver to cut short the excessive preamble, which
reduces per-hop latency and energy spent unnecessarily wait-
ing and transmitting, as can be seen in Figure 1. Since the
sender quickly alternates between a short preamble packet



X-MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 38 

•  Reducing excessive preamble using strobing 
–  Insert small gaps between the series of short preamble 

packets. 
–  These gaps enable the receiver to send an early 

acknowledgement during the short pause between preamble 
packets.  

–  When a sender receives an acknowledgement for the 
intended receiver, it stops sending the preamble and starts 
sending the data packet 



RI-MAC 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 39 

•  RI-MAC: A Receiver-Initiated Asynchronous Duty 
Cycle MAC Protocol for Dynamic Traffic Loads in 
Wireless Sensor Networks 
–  Yanjun Sun, Omer Gurewitz, and David B. Johnson, SenSys 

2008 

•  Key Idea 
–  Receiver-Initiated, which uses receiver-initiated data 

transmission in order to efficiently and effectively operate 
over a wide range of traffic loads.  



RI-MAC (cont.) 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 40 

•  Overview 
–  Each node periodically wakes up based on its won schedule to 

check if there are any incoming data intended for this this node 
–  A node with pending data to send stays active silently while 

waiting for the beacon from the intended receiver 
–  Upon  receiving a beacon from the intended receiver, the node 

start sending data packet 
–  Received packet will be acknowledged with another beacon 

BDATA

DATA

B

B B

B

R

S

Node sends a beacon when it wakes up

Wake up to send and 
wait for beacon

Start data transmission upon receving R’s beacon

Node sends a beacon but goes
to sleep since no incoming DATA

Figure 3: Overview of RI-MAC. Each node periodically wakes
up and broadcasts a beacon. When node S wants to send a
DATA frame to node R, it stays active silently and starts DATA
transmission upon receiving a beacon from R. Node S later
wakes up but goes to sleep after transmitting a beacon frame
since there is no incoming DATA frame.

Hardware Preamble

Frame Length

FCF FCSSrc DstBW

RI-MAC-Specific

Figure 4: The format of an RI-MAC beacon frame for an IEEE
802.15.4 radio. Dashed rectangles indicate optional fields. The
Frame Length, Frame Control Field (FCF), and Frame Check
Sequence (FCS) are fields from IEEE 802.15.4 standard.

and X-MAC when the senders are hidden to each other, which can
be common in ad hoc sensor networks. As discussed in Section 3.4,
after transmitting a beacon, a receiver detects collisions within the
duration of the backoff window specified in the beacon, which is
much shorter than the delay of a sleep interval needed in B-MAC
and X-MAC.
RI-MAC also reduces overhearing, as a receiver expects incom-

ing data only within a small window after beacon transmission. To-
gether with the lower cost for detecting collisions and recovering
lost DATA frames, RI-MAC achieves higher power efficiency, es-
pecially when the network load increases. Even under light traffic
load, which is the worst case for RI-MAC for power efficiency,
RI-MAC still shows comparable performance to X-MAC in our
simulation and experimental evaluation onMICAzmotes. RI-MAC
still decouples the sender’s and receiver’s duty cycle schedules as
do B-MAC and X-MAC, which removes the overhead of synchro-
nization compared to synchronous duty cycle MAC protocols.

3.2. Beacon Frames
A beacon frame in RI-MAC always contains a Src field, which is
the address of the source transmitting node of the beacon. We call
a beacon with only a Src field a base beacon. A beacon can also in-
clude two optional fields, depending on the roles the beacon serves:
Dst, for destination address, and BW, for backoff window size. The
RI-MAC beacon frame format for an IEEE 802.15.4 radio is illus-
trated in Figure 4 as an example.
A node that receives a beacon can determine which fields are

present in the beacon by looking at the size of the beacon; with an
IEEE 802.15.4 radio, size of a beacon is saved in the Frame Length
field. A beacon in RI-MAC can play two simultaneous roles: as an
acknowledgment to previously received DATA, and as a request for
the initiation of the next DATA transmission, as illustrated in Fig-
ure 5. After node R wakes up and senses clear medium, R transmits
a base beacon. If the medium is busy, R does a backoff and attempts
to transmit the beacon later. After receipt of the first DATA frame
from S in the figure, in the following beacon transmission by R, the
Dst field is set to S to indicate that this beacon also serves as the
acknowledgment for the DATA received from S. Similar to ACK

BDATA

DATA

DATA

DATA

B B

B B B
R

S

Transmit upon receiving the acknowledgment beacon

Send an acknowledgment beacon

Dwell time

Figure 5: The dual roles of a beacon in RI-MAC. A beacon
serves both as an acknowledgment to previously received DATA
and as a request for the initiation of the next DATA transmis-
sion to this node.

transmission in IEEE 802.11, transmission of this acknowledgment
beacon starts after SIFS delay, regardless of medium status. Nodes
other than S ignore the Dst field in the beacon and treat it as a re-
quest for the initiation of a new data transmission. The use of the
BW field in a beacon is discussed in detail in Section 3.4.
The duty cycle in RI-MAC is controlled by a parameter called

the sleep interval, which determines how often a node wakes up
and generates a beacon to poll for pending DATA frames. Suppose
a sleep interval of L is used in some WSN. After a node generates
a beacon, the interval before the next beacon generation is set to
a random value between 0.5×L and 1.5×L. In this way, we at-
tempt to minimize the possibility that beacon transmissions from
two nodes become coincidentally synchronized.

3.3. Dwell Time for Queued Packets
After successfully receiving a DATA frame, a node remains active
for some extra time in order to allow queued packets to be sent
to it immediately, as shown in Figure 5. We refer to this time as
the dwell time. Unlike in X-MAC, where the dwell time is set to
a fixed value of the maximum backoff window, the dwell time in
RI-MAC adapts to the number of contending senders. The duration
of the dwell time is defined as the BW value from the last beacon
plus SIFS and the maximum propagation delay. Since the BW in
a beacon is automatically adjusted based on channel collisions ob-
served by a node as discussed in detail next, so is the dwell time.
The fewer contending senders and thus the fewer collisions, the
shorter the dwell time. This self-adaptation helps RI-MAC using
the shortest waiting time possible under light channel contention
while avoiding collisions under heavy channel contention.

3.4. DATA Frame Transmissions from
Contending Senders

The challenges in handling transmissions from an unpredictable
number of contending senders are twofold:

• minimize the active time of a receiver for power efficiency;
and

• minimize the cost for collision detection and recovery of lost
data, whether or not senders are hidden to each other.

To meet these goals in RI-MAC, a receiver employs beacon
frames to coordinate DATA frame transmissions from contending
senders, as shown in Figure 6. The BW field in a beacon speci-
fies the backoff window size senders should use when they contend
for the medium. If a received beacon does not contain a BW field
(i.e., a base beacon), senders for this receiver should start transmit-
ting DATA without backing off. If a beacon contains a BW field,
each sender does a random backoff using the BW as the backoff



RI-MAC (cont.) 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 41 

•  Dwell time for queued packets 
–  After receiving a packet, a node remains active for some extra 

time to allow the sending of queued packets  
–  The extra time is called the dwell time, which can be adapted 

based on the number of contending senders.  

BDATA

DATA

B

B B

B

R

S

Node sends a beacon when it wakes up

Wake up to send and 
wait for beacon

Start data transmission upon receving R’s beacon

Node sends a beacon but goes
to sleep since no incoming DATA

Figure 3: Overview of RI-MAC. Each node periodically wakes
up and broadcasts a beacon. When node S wants to send a
DATA frame to node R, it stays active silently and starts DATA
transmission upon receiving a beacon from R. Node S later
wakes up but goes to sleep after transmitting a beacon frame
since there is no incoming DATA frame.

Hardware Preamble

Frame Length

FCF FCSSrc DstBW

RI-MAC-Specific

Figure 4: The format of an RI-MAC beacon frame for an IEEE
802.15.4 radio. Dashed rectangles indicate optional fields. The
Frame Length, Frame Control Field (FCF), and Frame Check
Sequence (FCS) are fields from IEEE 802.15.4 standard.

and X-MAC when the senders are hidden to each other, which can
be common in ad hoc sensor networks. As discussed in Section 3.4,
after transmitting a beacon, a receiver detects collisions within the
duration of the backoff window specified in the beacon, which is
much shorter than the delay of a sleep interval needed in B-MAC
and X-MAC.
RI-MAC also reduces overhearing, as a receiver expects incom-

ing data only within a small window after beacon transmission. To-
gether with the lower cost for detecting collisions and recovering
lost DATA frames, RI-MAC achieves higher power efficiency, es-
pecially when the network load increases. Even under light traffic
load, which is the worst case for RI-MAC for power efficiency,
RI-MAC still shows comparable performance to X-MAC in our
simulation and experimental evaluation onMICAzmotes. RI-MAC
still decouples the sender’s and receiver’s duty cycle schedules as
do B-MAC and X-MAC, which removes the overhead of synchro-
nization compared to synchronous duty cycle MAC protocols.

3.2. Beacon Frames
A beacon frame in RI-MAC always contains a Src field, which is
the address of the source transmitting node of the beacon. We call
a beacon with only a Src field a base beacon. A beacon can also in-
clude two optional fields, depending on the roles the beacon serves:
Dst, for destination address, and BW, for backoff window size. The
RI-MAC beacon frame format for an IEEE 802.15.4 radio is illus-
trated in Figure 4 as an example.
A node that receives a beacon can determine which fields are

present in the beacon by looking at the size of the beacon; with an
IEEE 802.15.4 radio, size of a beacon is saved in the Frame Length
field. A beacon in RI-MAC can play two simultaneous roles: as an
acknowledgment to previously received DATA, and as a request for
the initiation of the next DATA transmission, as illustrated in Fig-
ure 5. After node R wakes up and senses clear medium, R transmits
a base beacon. If the medium is busy, R does a backoff and attempts
to transmit the beacon later. After receipt of the first DATA frame
from S in the figure, in the following beacon transmission by R, the
Dst field is set to S to indicate that this beacon also serves as the
acknowledgment for the DATA received from S. Similar to ACK

BDATA

DATA

DATA

DATA

B B

B B B
R

S

Transmit upon receiving the acknowledgment beacon

Send an acknowledgment beacon

Dwell time

Figure 5: The dual roles of a beacon in RI-MAC. A beacon
serves both as an acknowledgment to previously received DATA
and as a request for the initiation of the next DATA transmis-
sion to this node.

transmission in IEEE 802.11, transmission of this acknowledgment
beacon starts after SIFS delay, regardless of medium status. Nodes
other than S ignore the Dst field in the beacon and treat it as a re-
quest for the initiation of a new data transmission. The use of the
BW field in a beacon is discussed in detail in Section 3.4.
The duty cycle in RI-MAC is controlled by a parameter called

the sleep interval, which determines how often a node wakes up
and generates a beacon to poll for pending DATA frames. Suppose
a sleep interval of L is used in some WSN. After a node generates
a beacon, the interval before the next beacon generation is set to
a random value between 0.5×L and 1.5×L. In this way, we at-
tempt to minimize the possibility that beacon transmissions from
two nodes become coincidentally synchronized.

3.3. Dwell Time for Queued Packets
After successfully receiving a DATA frame, a node remains active
for some extra time in order to allow queued packets to be sent
to it immediately, as shown in Figure 5. We refer to this time as
the dwell time. Unlike in X-MAC, where the dwell time is set to
a fixed value of the maximum backoff window, the dwell time in
RI-MAC adapts to the number of contending senders. The duration
of the dwell time is defined as the BW value from the last beacon
plus SIFS and the maximum propagation delay. Since the BW in
a beacon is automatically adjusted based on channel collisions ob-
served by a node as discussed in detail next, so is the dwell time.
The fewer contending senders and thus the fewer collisions, the
shorter the dwell time. This self-adaptation helps RI-MAC using
the shortest waiting time possible under light channel contention
while avoiding collisions under heavy channel contention.

3.4. DATA Frame Transmissions from
Contending Senders

The challenges in handling transmissions from an unpredictable
number of contending senders are twofold:

• minimize the active time of a receiver for power efficiency;
and

• minimize the cost for collision detection and recovery of lost
data, whether or not senders are hidden to each other.

To meet these goals in RI-MAC, a receiver employs beacon
frames to coordinate DATA frame transmissions from contending
senders, as shown in Figure 6. The BW field in a beacon speci-
fies the backoff window size senders should use when they contend
for the medium. If a received beacon does not contain a BW field
(i.e., a base beacon), senders for this receiver should start transmit-
ting DATA without backing off. If a beacon contains a BW field,
each sender does a random backoff using the BW as the backoff



RI-MAC (cont.) 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 42 

•  Data transmissions from contending senders 
–  Employs beacon frames to coordinate data packet transmission 

from contending senders.  
–  The beacon contains the size of the backoff window that the 

senders should use when they contend for the medium. 

DATA DATA

DATA

DATA

DATA

DATA DATA

B B B

B BB B

B B B B
R

S1

S2

Beacon containing a larger backoff window

Collision Backoff

Figure 6: DATA frame transmission from contending senders
in RI-MAC. For the first beacon, the receiver R requests
senders (here, S1 and S2) to start transmitting DATA imme-
diately upon receiving the beacon. If a collision is detected, R
sends another beacon with increased BW value to request that
senders do a backoff before their next transmission attempt.

window size over which to choose the actual backoff. The receiver
increases the value of the BW field upon detecting collisions.
If a node cannot start data transmission as soon as it receives a

beacon, prior to actual DATA transmission, a sender should make
sure that the medium has been idle for at least Tp time using CCA
(clear channel assessment) checks. The CCA checks prevent a
sender from starting DATA transmission while the intended receiver
is generating an acknowledgment beacon to a DATA frame just re-
ceived from another sender. The time Tp here is set to SIFS plus the
maximum propagation delay. If a node needs more time to generate
and send an acknowledgment beacon, such as a software ACK used
in TinyOS, Tp should be increased correspondingly, as described in
Section 3.8.
After waking up, a node always broadcasts a base beacon with

no BW field. We made this design choice to optimize RI-MAC for
the most common cases of a typical WSN where there is light or
no traffic most of the time. By enforcing all senders with pend-
ing DATA frames to transmit immediately, we attempt to minimize
time for the node to determine whether or not there is incoming
DATA. The shorter this duration, the less energy is used at each
wakeup. In this way, we attempt to minimize energy consump-
tion if the network is idle most of the time. The duration can be
very short, as it is the the maximum round trip propagation delay
plus radio switch delay (SIFS in IEEE 802.15.4). If the receiver
detects no channel activity within this duration, the receiver goes
to sleep immediately. Although a base beacon could lead to con-
current DATA transmissions to a same receiver, we found that they
do not necessarily lead to collisions in our experimental implemen-
tation on MICAz motes [6], due to the presence of capture effect
in the CC2420 radio [4]. This feature makes it possible for one
sender to successfully transmit a packet to the receiver even if the
transmission overlaps with others, especially when senders have
different distances to the receiver (and thus different received sig-
nal strengths) [16, 17].

3.5. Collision Detection and Retransmissions
By coordinating DATA frame transmissions at receivers, RI-MAC
greatly reduces the cost for detecting collisions and recovering lost
DATA frames compared to B-MAC and X-MAC. As a sender
can transmit DATA frame only upon receiving a beacon, and since
the backoff window size is explicitly controlled by the intended
receiver, the receiver knows the maximum delay before a DATA
frame’s arrival. This delay can be calculated from the BW value
in the previous beacon. The receiver need only detect the Start
of Frame Delimiter (SFD) to learn of an incoming frame. If
no SFD is detected in time, while some channel activity is de-
tected by the CCA (clear channel assessment) check, the receiver

BDATA

DATAB

BB

B B
R

S

Initial beacon

Beacon sent on request from S’s beacon

Figure 7: RI-MAC beacon-on-request. When node S wakes up
for transmitting a pending DATA frame, it sends a beacon with
the Dst field set to the destination of the pending DATA. If the
destination node R is already active, R in response transmits a
beacon to enable S to begin DATA transmission immediately.

will decide that there was a collision and will generate another
beacon with a larger BW value. In RI-MAC, this new beacon
is transmitted after the longest possible DATA transmission has
finished so that all senders’ radios are already in receive mode.
Prior to transmitting the beacon, a node does a random backoff
to avoid possible repeated collisions with beacons from another
node.
After detecting a collision, a receiver calculates the new BW

value that will be used in the next beacon, by employing some
backoff strategy such as binary exponential backoff (BEB) in IEEE
802.11 or Sift [14,21], depending on the density of a network. BEB
is used in our implementation in TinyOS, as we found it adapts to
networks of different densities and resolves collisions efficiently in
RI-MAC in our evaluations.
As RI-MAC initiates transmissions at the receiver, retransmis-

sion in RI-MAC is significantly different from that in sender-
initiated approaches such as IEEE 802.11. In RI-MAC, a receiver
plays the major role in retransmission control by managing the tim-
ing and number of beacon transmissions. If the BW value has
reached the maximum backoff window size, or if the receiver keeps
detecting collisions after a number of consecutive beacon transmis-
sions, the receive goes to sleep without further attempts. The cor-
responding senders also become involved in retransmission con-
trol, because a sender could miss receiving a beacon either be-
cause of collisions or poor channel conditions. Thus, a sender
maintains a retry count for each DATA frame. If no beacon has
been received from the intended receiver within a time span 3
times as long as the sleep interval, the sender increases the cur-
rent retry count by 1. In addition, the sender increases this retry
count if no acknowledgment beacon is received within the maxi-
mum backoff window after the sender transmitted a DATA frame
following receipt of a beacon. When the retry count reaches a pre-
defined retry limit, the sender cancels the transmission of the DATA
frame.

3.6. Beacon-on-Request
It is possible that the intended receiver node for some sender is al-
ready active when the sender wakes up to transmit a DATA frame
to it. An optimization, called beacon-on-request, is for this sender,
after waking up for DATA transmission, to broadcast a beacon fol-
lowing a CCA check, as illustrated in Figure 7. In this beacon, the
sender S sets the Dst field to the receiver’s address, R. If the receiver
R happens to be active, it generates a beacon in response after some
random delay longer than the BW announced in the received bea-
con from S. This beacon generated by the receiver on request of
the sender allows the sender to transmit the pending DATA frame
immediately, rather than waiting until the next scheduled beacon
transmission by R.



RI-MAC (cont.) 

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 43 

•  Beacon-on-request 
–  The intended receiver for some sender is already active when the 

sender wakes up to transmit a data packet to it.  
–  After waking up for data transmission, the sender will broadcast a 

beacon after a CCA check.  
–  If the receiver happens to be active, it generates a beacon in 

response after some random delay larger than the backoff 
window.  

DATA DATA

DATA

DATA

DATA

DATA DATA

B B B

B BB B

B B B B
R

S1

S2

Beacon containing a larger backoff window

Collision Backoff

Figure 6: DATA frame transmission from contending senders
in RI-MAC. For the first beacon, the receiver R requests
senders (here, S1 and S2) to start transmitting DATA imme-
diately upon receiving the beacon. If a collision is detected, R
sends another beacon with increased BW value to request that
senders do a backoff before their next transmission attempt.

window size over which to choose the actual backoff. The receiver
increases the value of the BW field upon detecting collisions.
If a node cannot start data transmission as soon as it receives a

beacon, prior to actual DATA transmission, a sender should make
sure that the medium has been idle for at least Tp time using CCA
(clear channel assessment) checks. The CCA checks prevent a
sender from starting DATA transmission while the intended receiver
is generating an acknowledgment beacon to a DATA frame just re-
ceived from another sender. The time Tp here is set to SIFS plus the
maximum propagation delay. If a node needs more time to generate
and send an acknowledgment beacon, such as a software ACK used
in TinyOS, Tp should be increased correspondingly, as described in
Section 3.8.
After waking up, a node always broadcasts a base beacon with

no BW field. We made this design choice to optimize RI-MAC for
the most common cases of a typical WSN where there is light or
no traffic most of the time. By enforcing all senders with pend-
ing DATA frames to transmit immediately, we attempt to minimize
time for the node to determine whether or not there is incoming
DATA. The shorter this duration, the less energy is used at each
wakeup. In this way, we attempt to minimize energy consump-
tion if the network is idle most of the time. The duration can be
very short, as it is the the maximum round trip propagation delay
plus radio switch delay (SIFS in IEEE 802.15.4). If the receiver
detects no channel activity within this duration, the receiver goes
to sleep immediately. Although a base beacon could lead to con-
current DATA transmissions to a same receiver, we found that they
do not necessarily lead to collisions in our experimental implemen-
tation on MICAz motes [6], due to the presence of capture effect
in the CC2420 radio [4]. This feature makes it possible for one
sender to successfully transmit a packet to the receiver even if the
transmission overlaps with others, especially when senders have
different distances to the receiver (and thus different received sig-
nal strengths) [16, 17].

3.5. Collision Detection and Retransmissions
By coordinating DATA frame transmissions at receivers, RI-MAC
greatly reduces the cost for detecting collisions and recovering lost
DATA frames compared to B-MAC and X-MAC. As a sender
can transmit DATA frame only upon receiving a beacon, and since
the backoff window size is explicitly controlled by the intended
receiver, the receiver knows the maximum delay before a DATA
frame’s arrival. This delay can be calculated from the BW value
in the previous beacon. The receiver need only detect the Start
of Frame Delimiter (SFD) to learn of an incoming frame. If
no SFD is detected in time, while some channel activity is de-
tected by the CCA (clear channel assessment) check, the receiver

BDATA

DATAB

BB

B B
R

S

Initial beacon

Beacon sent on request from S’s beacon

Figure 7: RI-MAC beacon-on-request. When node S wakes up
for transmitting a pending DATA frame, it sends a beacon with
the Dst field set to the destination of the pending DATA. If the
destination node R is already active, R in response transmits a
beacon to enable S to begin DATA transmission immediately.

will decide that there was a collision and will generate another
beacon with a larger BW value. In RI-MAC, this new beacon
is transmitted after the longest possible DATA transmission has
finished so that all senders’ radios are already in receive mode.
Prior to transmitting the beacon, a node does a random backoff
to avoid possible repeated collisions with beacons from another
node.
After detecting a collision, a receiver calculates the new BW

value that will be used in the next beacon, by employing some
backoff strategy such as binary exponential backoff (BEB) in IEEE
802.11 or Sift [14,21], depending on the density of a network. BEB
is used in our implementation in TinyOS, as we found it adapts to
networks of different densities and resolves collisions efficiently in
RI-MAC in our evaluations.
As RI-MAC initiates transmissions at the receiver, retransmis-

sion in RI-MAC is significantly different from that in sender-
initiated approaches such as IEEE 802.11. In RI-MAC, a receiver
plays the major role in retransmission control by managing the tim-
ing and number of beacon transmissions. If the BW value has
reached the maximum backoff window size, or if the receiver keeps
detecting collisions after a number of consecutive beacon transmis-
sions, the receive goes to sleep without further attempts. The cor-
responding senders also become involved in retransmission con-
trol, because a sender could miss receiving a beacon either be-
cause of collisions or poor channel conditions. Thus, a sender
maintains a retry count for each DATA frame. If no beacon has
been received from the intended receiver within a time span 3
times as long as the sleep interval, the sender increases the cur-
rent retry count by 1. In addition, the sender increases this retry
count if no acknowledgment beacon is received within the maxi-
mum backoff window after the sender transmitted a DATA frame
following receipt of a beacon. When the retry count reaches a pre-
defined retry limit, the sender cancels the transmission of the DATA
frame.

3.6. Beacon-on-Request
It is possible that the intended receiver node for some sender is al-
ready active when the sender wakes up to transmit a DATA frame
to it. An optimization, called beacon-on-request, is for this sender,
after waking up for DATA transmission, to broadcast a beacon fol-
lowing a CCA check, as illustrated in Figure 7. In this beacon, the
sender S sets the Dst field to the receiver’s address, R. If the receiver
R happens to be active, it generates a beacon in response after some
random delay longer than the BW announced in the received bea-
con from S. This beacon generated by the receiver on request of
the sender allows the sender to transmit the pending DATA frame
immediately, rather than waiting until the next scheduled beacon
transmission by R.



TDMA MAC

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 44 

•  Applications  
–  Industrial networks with stringent requirement of communication 

delay and reliability 
–  WirelessHART,  ISA 100.11a, IEEE802.15.4e 

Slot Frame Cycle 

Unallocated Slot Allocated Slot 



TDMA MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 45 

•  Channel hopping 
–  Mitigate Channel Impairments: adds frequency diversity to 

mitigate the effects of interference and multipath fading 
–  Increase Network Capacity: one timeslot can be used by multiple 

links at the same time 
doc.: IEEE 802.15-08-0581-02-004e 

Submission 

September, 2008 

Kris Pister et al. Slide 12 

Channel Hopping 

•  Combined with timeslot access  to enhance reliability 

  

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

80
2.

15
.4

 C
ha

nn
el

s 

Slot n Slot n-1 Slot n-2 Slot n+1 Slot n+2 



TDMA MAC (cont.)

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 46 

•  Link Scheduling 
–  Dedicated slots 
–  Shared slots 

doc.: IEEE 802.15-08-0581-02-004e 

Submission 

September, 2008 

Kris Pister et al. Slide 14 

B!A 

B!C 

B!A 

C!A 

D!A 

B!E 

B!F 

B 
C 

Link = (Timeslot , Channel Offset) 

A 

Time 

Chan. 
offset 

One Slot 
D 

•  The two links from B to A are dedicated 
•  D and C share a link for transmitting to A 
•  The shared link does not collide with the dedicated links 

F E 



Conclusions
•  Routing protocols for WSNs

– Design challenges
– Energy-aware routing 
– Hierarchical routing 
– Geographic routing
– Graph routing
–   Routing protocol design in Contiki

•  MAC protocols for WSNs
– Design challenges
–  S-MAC, T-MAC, B-MAC, X-MAC, RI-MAC, TDMA 

MAC

COSC402 Lecture 7 – Routing & MAC protocol design in WSNs 47 


