
Big-O and Big-𝚯
Lecture 3

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Rates of growth
2. Big-Θ and Big-O
3. Proof for Insertion Sort

2

Today’s outline

1. Rates of growth
2. Big-Θ and Big-O
3. Proof for Insertion Sort

3

Landmarks
We saw that the amount of work done by Insertion Sort, in the worst case,
is roughly indicated by:

𝑓 𝑛 = 1 + 2 +⋯+ 𝑛 − 1 =
𝑛 𝑛 − 1

2
=
𝑛! − 𝑛
2

We'd like to tie this in to some special landmark functions:

Given an algorithm, we estimate how much work it would have to do in the
worst case (call this estimate the time-complexity function of the
algorithm) and then we identify which landmark it should be grouped with.4

Rates of growth

The landmark functions have different rates of growth.
By the rate of growth of f we mean how fast its output f(n)	increases in size
as the input n gets bigger. Intuitively, a function with a slow rate of growth
scales up more efficiently than a function with a high rate of growth.

5

Are plots enough?

6

Lets take a look using the following two growth functions:

𝑓 𝑥 = 10)* ∗ 𝑥+

and

𝑓 𝑥 = '100
1 + 𝑒 ,-).

Pop quiz 1

7

Which function do you think will grow faster?

1. 𝑓 𝑥 = 10)* ∗ 𝑥+

OR

2. 𝑓 𝑥 = ',--
,/0 !"#$

Pop quiz 1

8

Which function do you think will grow faster?

1. 𝑓 𝑥 = 10)* ∗ 𝑥+

OR

2. 𝑓 𝑥 = ',--
,/0 !"#$

Lets find out…

Pop quiz 2

Are plots enough?

Answers
Yes
No

13

Today’s outline

1. Rates of growth
2. Big-Θ and Big-O
3. Proof for Insertion Sort

15

𝚯-notation (Big-theta)

In Lecture 1, we found that the amount of work done by Insertion Sort,
in the worst case, is roughly indicated by:

𝑓 𝑛 =
𝑛+ − 𝑛
2

More specifically, it was: 𝑐, '1%
+ + 𝑐+

1
+
+ 𝑐2

We’ll rewrite this as: 𝑎𝑛+ + 𝑏𝑛 + 𝑐, for some constants a, b, and c.

16

Order of growth

We’ll now make a another simplifying abstraction: are we interested in
the rate of growth, or the order of growth?
Considering our function, 𝑎𝑛+ + 𝑏𝑛 + 𝑐, the lower order-terms of bn
and c are relatively insignificant for large n.
We therefore consider only the leading term, an2

Insertion sort then has a worst-case running time of:
Θ 𝑛+ . This is pronounced “theta n-squared”.

17

Asymptotic efficiency

Once we consider input sizes (n) large enough to make only the order
of growth of the running time relevant, we are studying the asymptotic
efficiency of algorithms.
Usually, an algorithm that is asymptotically more efficient will be the
best choice for all but very small inputs.

18

Efficiency?

Why should we care which is more efficient? While computing
resources are growing, they are not infinite.
Efficiency can mean the survival of a company.
For example, a sort algorithm taking O(n2) on a database of millions of
records may take several days to run, whereas one of measure O(n·log
n) may take only a few minutes.

19

Asymptotic notation

Because asymptotic notation applies to functions, what we wrote as
Θ 𝑛+ , was the function 𝑎𝑛+ + 𝑏𝑛 + 𝑐.
Typically, we will use asymptotic notation to characterize the running
time of an algorithm.

20

Domain of asymptotic notation

The asymptotic running time of an algorithm is defined in terms of
functions, whose domains are the set of natural numbers
ℕ = 1,2,3, … .
By natural numbers, we mean the set of counting numbers - whole
positive integers – that are between 0 and ∞.
We’re dealing with whole positive numbers, not floating point.
Think about it, we can’t have “1/3rd of a CPU instruction cycle”.

21

Defining 𝚯-notation (Big-theta)

For a given function, 𝑔(𝑛), we denote by Θ 𝑔 𝑛 the
set of functions*:

Θ 𝑔 𝑛 = {f(n): there exists positive constants, c1, c2, and n0, such
that: 0 ≤ 𝑐, = 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐1 = 𝑔(𝑛) for all n ≥ n0}

22

* By set of functions, we mean many functions, not just one function

𝚯-notation

What this means is that as n gets large enough, the running time is at
least c1g(n), and at most c2g(n):

23

But only when n > n0

Here’s our function
f(n), sandwiched
between c1g(n) and
c2g(n)

A set of functions

As Θ 𝑔 𝑛 is a set, the relation could also be written using set
notation: f(𝑛) ∈ Θ 𝑔 𝑛 .

The book, and therefore we, will write “f 𝑛 = Θ 𝑔 𝑛 ” to express
this meaning.
Note: The use of “=“ here does not mean equality. It’s confusing. How
can one thing (LHS) equal many things (RHS)? It doesn’t, and this is
abusing equality, as the book notes. But it’s useful to do so, so just be
aware of it

24

Bounding

We now say that g(n) is an asymptotically tight bound for f(n).

It also requires that f(𝑛) ∈ Θ 𝑔 𝑛 be asymptotically nonnegative.

This means that f(n) be nonnegative whenever n is sufficiently large.

25

Discussion

Given that we’re talking about efficiency, do we care that much about
lower bounds?

26

Big-O notation

The Θ-notation asymptotically bounds a function from above and
below.
When we have only an asymptotic upper bound, we use O-notation.
We call this “big-oh” notation.

27

Defining O-notation (Big-oh)

For a given function, 𝑔(𝑛), we denote by 𝑂 𝑔 𝑛 the
set of functions:

𝑂 𝑔 𝑛 = {f(n): there exists positive constants, c and n0, such that:
0 ≤ 𝑓(𝑛) ≤ 𝑐 = 𝑔(𝑛) for all n ≥ n0}

Note that c and n0 are positive, so c ≥ 1 and n0 ≥ 1. Our definition does
not allow c = 0 nor does it allow n0 = 0.

28

O-notation

What this means is that as n gets large enough, the running time is at
most cg(n):

29

But only when n > n0

Here’s our function
f(n), which is upper-
bounded by cg(n).

O’s relation to 𝚯

Given that f(n) = Θ 𝑔 𝑛 , this implies that f(n) = O(g(n)), since 𝚯-
notation is stronger than O-notation.

We can formally write this relation using set notation: Θ 𝑔 𝑛 ⊆
𝑂 𝑔 𝑛 .

That is, Θ 𝑔 𝑛 is a subset of 𝑂 𝑔 𝑛

Therefore, any function f(n) that’s within Θ 𝑔 𝑛 must also be in
𝑂 𝑔 𝑛 .

30

Example

Lets now show that 6n = O(n2)
Note, it is not necessary to find the smallest c and n0, any values will
do.

31

Big-O proof for insertion sort

Consider insertion sort again, which has time complexity: 𝑓 𝑛 = 𝑛(𝑛 − 1)/2.
We now show that 𝑛(𝑛 − 1)/2 = O(n2)
Proof: Is it possible to find c and n0 such that:

⁄𝑛(𝑛 − 1) 2 ≤ 𝑐 = 𝑛+ for all n ≥ n0

Step 1: Choose c, n0: Let c = 1 and n0 = 1
Step 2: Show that ⁄𝑛(𝑛 − 1) 2 = 1 = 𝑛+ for n ≥ 1. If n ≥ 1 then n ≠ 0 and so

⁄𝑛(𝑛 − 1) 2 = ⁄(𝑛+ − 𝑛) 2 = ⁄𝑛+ 2 − ⁄𝑛 2 ≤1 = 𝑛+ = 𝑛+

32
Note, since 𝑛(𝑛 − 1)/2 is actually < n2, it is also ≤ n2

𝚯

It's nice to be able to say that something is no worse than something
else.
But what about saying it is no better either?

It’s straightforward. We’ve already said that f 𝑛 = Θ 𝑔 𝑛 and that
f 𝑛 = 𝑂 𝑔 𝑛 .

If f = O(g) says that f is no worse than g, then it is also saying that g is
no better than f.

33

𝚯

Suppose it is true that f = O(g) and also that g = O(f).
This says that f is no worse than g, and f is no better than g. In other
words, f scales up about as well as g, so in terms of efficiency, f is
equivalent to g.
When f = O(g) and g = O(f), then we may write f = 𝚯(g).
In English, it says “f is equivalent to g in efficiency.”

34

Visualise it

35

f(n) is no worse
than g(n)

Remember, as we’ve said f = 𝚯(g), this means:

f(n) is no better
than g(n)

𝚯 proof for insertion sort
We've already shown that 𝑛(𝑛 − 1)/2 = O(n2), so now just show that
𝑛+ = O 𝑛(𝑛 − 1)/2 .
If we choose c = 3 and n0 = 3, then:

⁄𝑛+ ≤ 𝑐 = 𝑛(𝑛 − 1) 2 for all n ≥ n0

Because:
3𝑛 𝑛 − 1

2
=
3
2
𝑛! −

3
2
𝑛 = 𝑛! +

𝑛!

2
−
3𝑛
2
= 𝑛! +

𝑛! − 3𝑛
2

≥ 𝑛!

since n ≥ 3 so that 1
%)21
+

≥ 0

And now, since we have 1 1),
+

= 𝑂 𝑛+ and 𝑛+ = 1 1),
+

, we have:
1 1),

+
= Θ 𝑛+

36

Comparing functions

What we’ve shown is that the relational properties of real numbers
also apply to asymptotic comparisons.

Reflexivity:

f 𝑛 = Θ f 𝑛

f 𝑛 = 𝑂 f 𝑛
Symmetry:

f 𝑛 = Θ g 𝑛 if and only if g 𝑛 = Θ f 𝑛

37

This mean: f(n) is related to 𝚯(f(n))

This means: If f(n) is related to 𝚯(g(n)), then 𝚯(f(n)) is related to g(n)

Suggested reading

Asymptotic notation is discussed in section 3.1 of the textbook.
Insertion sort is analysed in section 2.2.

38

Solutions

39

Are plots enough?

40

Are plots enough?

41

Are plots enough?

42

Are plots enough?

43

Pop quiz 2

Are plots enough?

Answers
Yes
No

44

Otherwise, today’s lecture would’ve been called “Plots n’ stuff”

Image attributions

45

This Photo by Unknown Author is licensed under CC BY

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

http://2016.igem.org/Team:Kyoto/Integrated_Practices
https://creativecommons.org/licenses/by/3.0/

