Induction examples Lecture 5

COSC 242 – Algorithms and Data Structures

Today's outline

- 1. Proving the sum of consecutive natural numbers
- 2. Divisible by 3
- 3. Proving the runtime of Insertion sort
- 4. More examples

Today's outline

- 1. Proving the sum of consecutive natural numbers
- 2. Divisible by 3
- 3. Proving the runtime of Insertion sort
- 4. More examples

Recall: Steps of Induction

- 1. Base case: Verify that P(1) is True.
- 2. Induction step: Use the assumption that P(n) is True, to prove that P(n + 1) is True.

The hypothesis in Step 2, that our statement holds for a particular n, is called the **induction hypothesis**.

To prove the inductive step, we assume the induction hypothesis for n, and then use this assumption to prove that the statement holds for n + 1.

Replace n with n+1

1. Base case:
$$P(1)$$
: $\sum_{k=1}^{n} \frac{1(1+1)}{2} = 1$

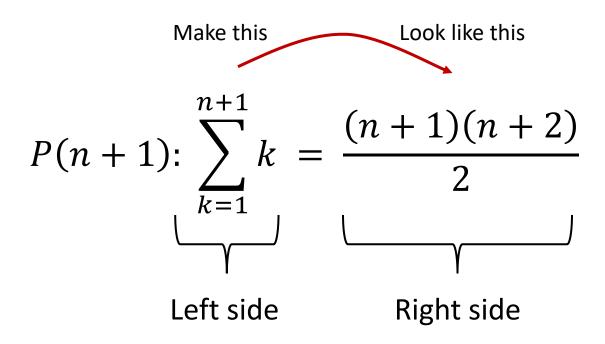
2. Induction step: We now use the assumption that P(n) is True to show that P(n + 1) is also True.

We start by replacing all instances of n in P(n) with n+1.

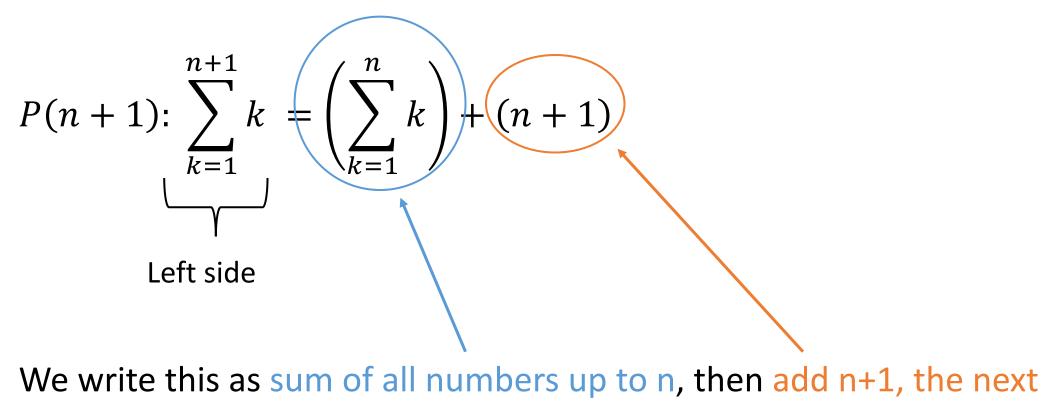
$$P(n+1): \sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Make the left side match the right side

We now take the left side of the equality, and try to make it look like the right side of the equality:



Make the LHS match the RHS



number in the sequence.

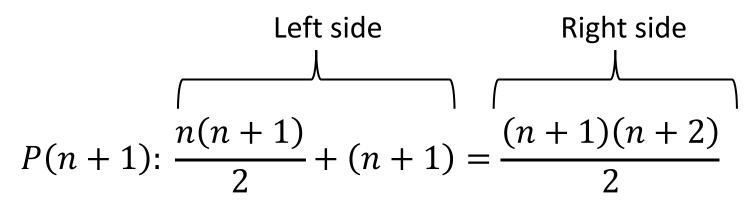
Use the assumption that P(n) is True

We now use the assumption that P(n) is True, by replacing $\sum_{k=1}^{n+1} k$ with n(n + 1)/2.

$$P(n+1): \sum_{k=1}^{n+1} k = \left(\sum_{k=1}^{n} k\right) + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

We now use algebra to show the two sides of the equality are equivalent.

Rearranging the left hand side



Left hand side becomes:

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2}$$
$$\frac{n^2 + n + 2n + 2}{2} = \frac{(n+1)(n+2)}{2}$$
 Or, $\frac{n(n+1)}{2} + (n+1) = (n+1)\left(\frac{n}{2} + 1\right)$

Conclusion: Since both the base case and the inductive step have been proved, by mathematical induction the statement P(n) holds for every natural number n. ■

Key to induction

Our ability to relate P(n+1) to P(n), which permits us to use the **induction hypothesis** that P(n) is True, is the key to our success of using proof by induction.

When considering a proof technique, and you are unable to relate P(n+1) to P(n), then another technique may be needed.

However, if you can relate P(n+1) to P(n), then induction is easier to use than almost any other proof technique.

Confused by the proof?

This Kahn Academy video provides an even gentler introduction to this proof [1].

Today's outline

- 1. Proving the sum of consecutive natural numbers
- 2. Divisible by 3
- 3. Proving the runtime of Insertion sort
- 4. More examples

Divisible by 3

Lets return to our first example in Lecture 04 that pushed us to examine mathematical induction ^[L04, Slide #39].

Consider the set $X \in \mathbb{R}$, where $X = \{3, 12, 33, 72, ...\}$ Where X is given by $f(n) = n^3 + 2n$ Are all the elements of X divisible by 3?

Pop quiz 1

Question

Does this example lend itself to proof by induction? Why? Where X is given by $f(n) = n^3 + 2n$ Are all the elements of X divisible by 3?

Base case: $f(1) = 1^3 + 2 \cdot 1 = 3$ - True Inductive step: P(n + 1): $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$ $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$

= (n+1)(n+1)(n+1) + 2n + 2

Base case: $f(1) = 1^3 + 2 \cdot 1 = 3$ - True Inductive step: P(n + 1): $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$

$$f(n + 1) = (n + 1)^{3} + 2 \cdot (n + 1)$$

= $(n + 1)(n + 1)(n + 1) + 2n + 2$
= $(n^{2} + 2n + 1)(n + 1) + 2n + 2$
= $(n^{3} + 3n^{2} + 3n + 1) + 2n + 2$

Base case:
$$f(1) = 1^3 + 2 \cdot 1 = 3$$
 - True
Inductive step: $P(n + 1)$: $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$
 $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$
 $= (n + 1)(n + 1)(n + 1) + 2n + 2$
 $= (n^2 + 2n + 1)(n + 1) + 2n + 2$
 $= (n^3 + 3n^2 + 3n + 1) + 2n + 2$
 $= n^3 + 2n + 3n^2 + 3n + 3$
Here's our f(n). Lets use the induction
hypothesis, and assume that f(n) is True...

Base case:
$$f(1) = 1^3 + 2 \cdot 1 = 3$$
 - True
Inductive step: $P(n + 1)$: $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$
 $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$
 $= (n + 1)(n + 1)(n + 1) + 2n + 2$
 $= (n^2 + 2n + 1)(n + 1) + 2n + 2$
 $= (n^3 + 3n^2 + 3n + 1) + 2n + 2$
 $= n^3 + 2n + 3n^2 + 3n + 3$
 $= f(n) + 3n^2 + 3n + 3$
 $= f(n) + 3 \cdot (n^2 + n + 1)$
This term will always be divisible by 3.

Base case:
$$f(1) = 1^3 + 2 \cdot 1 = 3$$
 - True
inductive step: $P(n + 1)$: $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$
 $f(n + 1) = (n + 1)^3 + 2 \cdot (n + 1)$
 $= (n + 1)(n + 1)(n + 1) + 2n + 2$
 $= (n^2 + 2n + 1)(n + 1) + 2n + 2$
 $= (n^3 + 3n^2 + 3n + 1) + 2n + 2$
 $= n^3 + 2n + 3n^2 + 3n + 3$
 $= f(n) + 3n^2 + 3n + 3$
 $= f(n) + 3 \cdot (n^2 + n + 1)$
This term will always be divisible by 3.

Conclusion: Since both the base case and the inductive step have been proved, the statement P(n) is True for n+1, and so the proof is complete. ■

Today's outline

- 1. Proving the sum of consecutive natural numbers
- 2. Divisible by 3
- 3. Proving the runtime of Insertion sort
- 4. More examples

Insertion sort

In lecture L01, we stated that the run time of insertion sort was roughly indicated by $0 + 1 + 2 + 3 + \dots + n - 1 = \frac{n(n-1)}{2} = \frac{n^2 - n}{2}$.

Section 2.1 of the text explains how we arrived at that equation.

This example is slightly different to our earlier proofs, as we have a left hand side (LHS) and a right hand side (RHS):

$$l(n) = 1 + 2 + \dots + n - 1$$
$$r(n) = \frac{n(n-1)}{2}$$

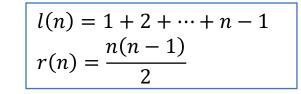
We want to show that l(n) = r(n) for all $n \ge 1$

Class challenge 1

How did we arrive at
$$\sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}$$
?

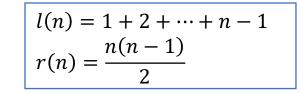
$$l(n) = 1 + 2 + \dots + n - 1$$
$$r(n) = \frac{n(n-1)}{2}$$

Base case:
$$l(1) = 0 = r(1) = \frac{1(1-1)}{2} = 0$$



Base case:
$$l(1) = 0 = r(1) = \frac{1(1-1)}{2} = 0$$

Inductive step: assume l(n) = r(n), which is our P(n) induction hypothesis, and use it to show that l(n + 1) = r(n + 1)

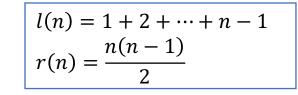


Base case:
$$l(1) = 0 = r(1) = \frac{1(1-1)}{2} = 0$$

Inductive step: assume l(n) = r(n), which is our P(n) induction hypothesis, and use it to show that l(n + 1) = r(n + 1)

$$l(n + 1) = 1 + 2 + \dots + n - 1 + n$$

= $l(n) + n = r(n) + n$



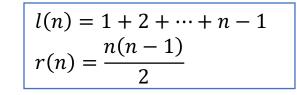
Base case:
$$l(1) = 0 = r(1) = \frac{1(1-1)}{2} = 0$$

Inductive step: assume l(n) = r(n), which is our P(n) induction hypothesis, and use it to show that l(n + 1) = r(n + 1)

$$l(n + 1) = 1 + 2 + \dots + n - 1 + n$$

= $l(n) + n = r(n) + n$
 $r(n + 1) = (n + 1)((n + 1) - 1)/2$
= $(n + 1)(n)/2$

Lets try and make this look like our RHS(n) = $\frac{n^2 - n}{2}$



Base case:
$$l(1) = 0 = r(1) = \frac{1(1-1)}{2} = 0$$

Inductive step: assume l(n) = r(n), which is our P(n) induction hypothesis, and use it to show that l(n + 1) = r(n + 1)

$$l(n + 1) = 1 + 2 + \dots + n - 1 + n$$

= $l(n) + n = r(n) + n$
 $r(n + 1) = (n + 1)((n + 1) - 1)/2$
= $(n + 1)(n)/2$
= $(n^2 + n)/2$
= $(n^2 - n + 2n)/2$
= $(n^2 - n + 2n)/2$
= $(n^2 - n)/2 + 2n/2$
= $r(n) + n = l(n) + n$

Conclusion: By P.M.I, the statement P(n) is True for n+1, and so the proof is complete. ■

Today's outline

- 1. Proving the sum of consecutive natural numbers
- 2. Divisible by 3
- 3. Proving the runtime of Insertion sort
- 4. More examples

Recursively defined sets

We can use induction proofs on any set that is recursively defined. For example, we can define the set of natural numbers, \mathbb{N} as: **Base case**: $0 \in \mathbb{N}$ **Inductive step**: if $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$

Similarly, the set of prime numbers, \mathbb{P} as:

Base case: $2 \in \mathbb{P}$

Inductive step: $p \in \mathbb{P}$, if and only if, $p \neq cn$ for some constant c, and then n < p

Prove that
$$n^2 = O(2^n)$$

Prove that $n^2 = O(2^n)$.

We begin by stating the definition of Big-O:

Show that there exists some c, n_0 such that $n^2 \leq c \cdot 2^n$ for all $n \geq n_0$

Lets choose appropriate values of c, n₀

 $c = 1, n_0 = 4$

Lets rewrite as a more traditional induction proof:

Prove that $n^2 = O(2^n)$

Prove that $n^2 \leq 2^n$ for all $n \geq 4$

Base case: $4^2 = 16 \le 2^4 = 16$

Induction hypothesis: $2^n \ge n^2$ for some $n \ge 4$ Inductive step: $2^{n+1} \ge (n+1)^2 = n^2 + 2n + 1$ Prove that $n^2 = O(2^n)$ Prove that $n^2 \leq 2^n$ for all $n \geq 4$ **Base case**: $4^2 = 16 \le 2^4 = 16$ **Induction hypothesis**: $2^n \ge n^2$ for some $n \ge 4$ Inductive step: $2^{n+1} \ge (n+1)^2 = n^2 + 2n + 1$ $2^{n+1} = 2 \cdot 2^n$ $= 2^n + 2^n \longleftarrow$ Lets use our induction hypothesis here, that $2^n > n^2$ $> n^2 + n^2 *$

Prove that $n^2 = O(2^n)$ Prove that $n^2 \leq 2^n$ for all $n \geq 4$ **Base case**: $4^2 = 16 \le 2^4 = 16$ **Induction hypothesis**: $2^n \ge n^2$ for some $n \ge 4$ Inductive step: $2^{n+1} \ge (n+1)^2 = n^2 + 2n + 1$ $2^{n+1} = 2 \cdot 2^n$ $= 2^{n} + 2^{n} + 2^{n}$ Lets use our induction hypothesis here, that $2^n > n^2$ $> n^2 + n^2$ $\geq n^2 + n \cdot n$ Lets use the second part of our induction hypothesis, $n \ge 4$ $> n^2 + 4 \cdot n$

Prove that $n^2 = O(2^n)$ Prove that $n^2 \leq 2^n$ for all $n \geq 4$ **Base case**: $4^2 = 16 \le 2^4 = 16$ **Induction hypothesis**: $2^n \ge n^2$ for some $n \ge 4$ Inductive step: $2^{n+1} \ge (n+1)^2 = n^2 + 2n + 1$ $2^{n+1} = 2 \cdot 2^n$ $= 2^{n} + 2^{n} \leftarrow$ Lets use our induction hypothesis here, that $2^n > n^2$ $> n^2 + n^2$ $\geq n^2 + n \cdot n$ Lets use the second part of our induction hypothesis, $n \ge 4$ $> n^2 + 4 \cdot n$ $\geq n^2 + 2 \cdot n + 2 \cdot n$ Lets use the second part of our induction hypothesis, $n \ge 4$ $\geq n^2 + 2 \cdot n + 8$ $> n^2 + 2 \cdot n + 1$

Prove that $n^2 = O(2^n)$ Prove that $n^2 \leq 2^n$ for all $n \geq 4$ **Base case**: $4^2 = 16 \le 2^4 = 16$ **Induction hypothesis**: $2^n \ge n^2$ for some $n \ge 4$ Inductive step: $2^{n+1} \ge (n+1)^2 = n^2 + 2n + 1$ $2^{n+1} = 2 \cdot 2^n$ $= 2^{n} + 2^{n} \checkmark$ Lets use our induction hypothesis here, that $2^n > n^2$ $> n^2 + n^2$ $> n^2 + n \cdot n$ Lets use the second part of our induction hypothesis, $n \ge 4$ $> n^2 + 4 \cdot n$ $> n^2 + 2 \cdot n + 2 \cdot n$ Lets use the second part of our induction hypothesis, $n \ge 4$ $> n^2 + 2 \cdot n + 8$ **Conclusion**: Since both the base case and the inductive $> n^2 + 2 \cdot n + 1$ step have been proved, the statement P(n) is True for n+1, 37 for all n > 4.

Class challenge 2

Prove that $2^n = O(n!)$, for some c, n_0 , such that $2^n < n!$ for all $n > n_0$

Helpful resources on proofs

The textbook does not cover mathematical proofs. Instead, you may find the following resources helpful:

Free resources

- Data Structures & Algorithm Analysis, C. A. Shaffer, 2013, Dover. [link]
- Mathematical Reasoning: Writing and Proof, T. Sundstrom, 2020, Grand Valley State University. [link]
- Proofs and Mathematical Reasoning, A. Stefanowicz, 2014, University of Birmingham. [<u>link</u>]
- American Institute of Mathematics. [link]

Paid resources

• How to read and do proofs, D. Solow, 2013, Wiley.

Solutions

Pop quiz 1

Question

Does this example lend itself to proof by induction? Why? Where X is given by $f(n) = n^3 + 2n$ Are all the elements of X divisible by 3?

Answer

For every integer $n \ge 1$, "something happens". "f(n) is divisible by 3"

Class challenge 1

How did we arrive at
$$\sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}$$
?

Lets write out our series going forwards, and backwards:

Lets now add the two series together:

$$1 + (n - 1) + 2 + (n - 2) + \dots + 1 =$$

(n) + (n) + \dots + (n)

We now have n-1 many n's. $\rightarrow n * (n - 1)$. But since we added two series together, we need to divide our result by 2, producing: $\sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}$

Class challenge 2

Prove that $2^n \leq n!$ for all $n \geq 4$

Base case: $2^4 = 16 \le 4! = 4 * 3 * 2 * 1 = 24$

Induction hypothesis: $2^n \le n!$ for some $n \ge 4$

Inductive step: $2^{n+1} \le (n+1)!$ $(n+1)2^n \le (n+1)n!$ $(n+1)2^n \le (n+1)!$

Lets multiple both sides of inequality by (n+1)

Since n + 1 > 2, then $(n + 1)2^n > 2 \cdot 2^n = 2^{n+1}$ Therefore: $2^{n+1} \le (n + 1)!$ for all $n \ge 4$

Conclusion: Since both the base case and the inductive step have been proved, the statement P(n) is True for n+1, for all n > 4.

References and attributions

1. <u>https://www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction</u>

Attributions

This Photo by Unknown Author is licensed under <u>CC BY-ND</u>

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses, the attributed parties and/or websites listed above.