
Divide and Conquer
Lecture 6

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Divide and conquer
2. Binary search
3. Binary search analysis
4. Merge
5. Mergesort

2

Types of algorithms

In COSC242, we will be looking at 3 general types of algorithms:
1. Divide-and-conquer algorithms
2. Greedy algorithms
3. Dynamic programming algorithms

Each type of algorithm can be used to naturally, or more easily, solve a
particular type of problem.
It is useful to keep a list of the typical problems that a given type of
algorithm is good for.

3

Incremental approach

In L01 we looked at Insertion sort. This algorithm applied an
incremental approach:
Having already sort A[1..j-1], we insert the single element A[j] into its
proper place, yielding the sorted subarray A[1..j].
Today we will look at a different approach, known as “divide and
conquer”.

4

Divide and conquer

Many useful algorithms are recursive in structure. To solve a given
problem, they call themselves recursively one or more times to deal
with closely related smaller problems.
These algorithms typically follow a divide-and-conquer approach.
Divide-and-conquer algorithms usually work on sequential data
structures of known size. Thus, they are commonly used when working
with arrays.

5

Divide, then conquer. But first lets divide…

The divide-and-conquer paradigm involves three steps at each level of
the recursion:

1. Divide – the problem into a number of subproblems that are
smaller instances of the same problem.

2. Conquer – the subproblems by solving them recursively. If the
subproblem sizes are small enough, however, just solve the
subproblems in a straightforward manner.

3. Combine - the solutions to the subproblems into the solution for
the original problem.

6

Divide, then conquer. But first lets divide…

Divide-and-conquer processes the data structure X as:

1. if X is an atom then
2. process X directly
3. else
4. divide X into two or more smaller pieces
5. apply the algorithm to each piece “recursively”
6. combine the processed pieces (if necessary)

7

Looking up a name

Lets say you’re looking for company in the phone book. We’ll call them
the “Max’s mini donuts”.
How would you go about finding them, assuming for a moment there’s
no search function?
Would you start at “AAA aardvarks” and work your way forward, one
entry at a time? Or would you start in the middle, as “M” is not too far
from the middle.

8

Discussion: Guessing game

Your friend asked you to guess a number between 1 and 100. You have
7 tries, and they will only respond with: correct, higher, or lower.

Questions
What number would you start with?
Can you win in 7 tries?
Would this work for pulling numbers out of a jar? Why, why not?

9

Binary search

The strategy we’ve just seen is an example of binary search. It’s an
efficient algorithm for finding an item in a sorted list.
Consider an array A[0..n-1] of sorted keys, and suppose we want to
locate a target value x. The simplest way to search is sequentially, but
sequential search is linear: O(n).
In binary search, we find the index 𝑚 = ⁄𝑛 − 1 2 of the middle
element, then compare x with A[m].

11

Binary search

There are 4 possibilities:
If x	=	A[m], we have found x.
If x	<	A[m], we have the smaller array A[0..m-1]
If x	>	A[m], we search the smaller array A[m+1..n-1]
If the breaking down process ever gives an empty array, we've gone too
far and can stop.

12

0 mid n-1A

Binary search pseudocode
Binary_search(A,	x,	low,	high):
1. if low	>	high	then
2. report	failure	and	stop
3. else
4. mid	ß (low	+	high)	/	2
5. if x	=	A[mid]	then
6. report	success	and	return	mid
7. else if x	<	A[mid]	then
8. return	Binary_search(A,	x,	low,	mid	– 1)
9. else	if	x	>	A[mid]	then
10. return	Binary_search(A,	x,	mid+1,	high)

13

Class challenge 1

Questions
1. Write the function call execute a binary search on A, below,

searching for number 31.

2. Trace the operations of the binary search.

14

8 13 20 21 22 31 33 39 42 55A

Binary search analysis

To look for x in an array A of length n, you would call Binary_search(A,	
x,	0,	n	- 1)
Analysis: How many times (in the worst case) can we divide the length
n in half? Try it for 8, 16, 32, 64.
2n = 2x2x2x…2. How many times can I divide that by 2?
Complexity function is f =

19

Merge two arrays
We have two arrays X and Y each in sorted order. We want to build array Z containing
all the keys of X and Y in sorted order. Length(X) = l, length(Y) = m:

1. initialise i,	j,	k to 0 (i,	j,	k index the arrays X, Y, Z)
2. while i <	l	and j	<	m do
3. if X[i] < Y[j] then
4. Z[k] ß X[i]
5. i ß i + 1
6. else if X[i] ≥ Y[j] then
7. Z[k] ß Y[j]
8. j ß j + 1
9. k ß k + 1
10. if i ≥	l then copy the end of Y to the end of Z
11. else copy the end of X to the end of Z

21

Merge analysis

How many times through the merge while loop?
One thing we notice is that i,	j,	k all start at 0. Each time through the
loop k is incremented and either i or j is incremented. Neither i,	j or k
ever gets smaller.
At the end of the loop:
either (i =	l and j	<	m) or (j	=	m and i <	l),
k is just the sum of i and j, so k	<	l	+	m.

22

Merge analysis

Since k is incremented every time through the loop, the number of
times through the loop is less than l+m. Then, whichever array has not
been fully scanned is copied onto the end of Z.
So the number of operations is some constant times l+m. Let n	=	l+m,
so Merge is O(n). Or more specifically, it’s 𝚯(n).

23

Mergesort

To mergesort an array A[0	..	n	- 1] of keys, we repeatedly split A, and after
getting to the bottom we rebuild by merging the pieces. To identify the
pieces that must be split or patched together, we use indices left and right.

Mergesort(A, left, right) // sorts the keys in A[left	..	right]
1. if left	≥ right then
2. stop since A[left	..	right] is sorted
3. else
4. mid	ß (left	+	right)	/	2
5. Mergesort(A, left,	mid)
6. Mergesort(A, mid	+	1,	right)
7. Merge subarrays A[left	..	mid] and A[mid	+	1	..	right]

24

Pop quiz 1

What is the primary way in which binary search and mergesort
algorithms are related?

25

Mergesort analysis

Let's call the time complexity function T.
If n	=	1, then mergesort takes constant time, so T(1)	=	1.
Otherwise the number of operations needed to mergesort n keys is
equal to the number of operations needed to do two mergesorts of size
n/2 (the recursive calls), plus the merge needed to patch the two
sorted arrays of length n/2 together (which is linear, shown previously).
So T(n)	=	2T(n/2)	+	n.
We'll see how to analyse these sorts of complexity functions in the next
lecture.

27

Suggested reading

Divide and conquer algorithms are discussed in section 2.3 of the
textbook, including a look at mergesort and its analysis*.

*Section numbers refer to those in the 3rd edition.

28

Solutions

29

Discussion: Guessing game

Your friend asked you to guess a number between 1 and 100. You have
7 tries, and they will only respond with: correct, higher, or lower.

Questions
What number would you start with?
Can you win in 7 tries?
Would this work for pulling numbers out of a jar? Why, why not?

30

100 50 25 13 7 4 2 1

7 guesses

Class challenge 1

31

8 13 20 21 22 31 33 39 42 55
0 1 2 3 4 5 6 7 8 9

A

Binary_search(A,	31,	0,	9)
1. Mid = ⁄0 + (9) 2 = 4 . x != 22, and x > 22

Class challenge 1

32

8 13 20 21 22 31 33 39 42 55
0 1 2 3 4 5 6 7 8 9

A

Binary_search(A,	31,	0,	9)
1. Mid = ⁄0 + (9) 2 = 4 . x != 22, and x > 22
2. Low = mid + 1 = 5. Mid = ⁄5 + (9) 2 = 7 . x != 39, and x < 39

Class challenge 1

33

8 13 20 21 22 31 33 39 42 55
0 1 2 3 4 5 6 7 8 9

A

Binary_search(A,	31,	0,	9)
1. Mid = ⁄0 + (9) 2 = 4 . x != 22, and x > 22
2. Low = mid + 1 = 5. Mid = ⁄5 + (9) 2 = 7 . x != 39, and x < 39
3. High = mid – 1 = 6. Mid = ⁄5 + (7) 2 = 6. x != 6, and x < 33.

Class challenge 1

34

8 13 20 21 22 31 33 39 42 55
0 1 2 3 4 5 6 7 8 9

A

Binary_search(A,	31,	0,	9)
1. Mid = ⁄0 + (9) 2 = 4 . x != 22, and x > 22
2. Low = mid + 1 = 5. Mid = ⁄5 + (9) 2 = 7 . x != 39, and x < 39
3. High = mid – 1 = 6. Mid = ⁄5 + (7) 2 = 6. x != 6, and x < 33.
4. High = mid – 1 = 5. x == 5, report success and return 5.

Pop quiz 1

What is the primary way in which binary search and mergesort
algorithms are related?

Answers
Use of a divide and conquer, which entails recursion

35

Image attributions

36

This Photo by Unknown Author is licensed under CC0

This Photo by Unknown Author is licensed under CC BY

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

https://commons.wikimedia.org/wiki/File:Merge_sort_algorithm_diagram.svg
https://creativecommons.org/licenses/by/3.0/
http://2016.igem.org/Team:Kyoto/Integrated_Practices
https://creativecommons.org/licenses/by/3.0/

