
Recurrences & mergesort analysis
Lecture 7

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Recurrence equations
2. Demonstration with a simpler equation
3. Solving mergsort with recurrence equations

2

Today’s outline

1. Recurrence equations
2. Demonstration with a simpler equation
3. Solving mergsort with recurrence equations

3

Analysing divide-and-conquer

When an algorithm contains a recursive call to itself, we can often
describe its running time by a recurrence equation or recurrence.
This equation describes the overall running time on a problem of size n
in terms of the running time on smaller inputs
We call these recurrence equations because the function name T
recurs on the righthand side of the equation.

4

Recurrence

T(n) = running time on a problem of size n.
If the problem size is small enough (say, n ≤ c for some constant c), we
have a base case. The brute-force solution takes constant time: 𝚯(1).
The base case is the small subproblem that is solved directly. They
cause the recursion to terminate and “recurse” up to give the solution.
Otherwise, suppose that we divide into a subproblems, each 1/b the
size of the original. (In merge sort, both a = b = 2).
D(n) = The time to divide a size-n problem

5

Recurrence

We have a subproblems to solve, each of size n/b
Each subproblem takes T(n/b) time to solve.
We therefore spend a·T(n/b) time solving all subproblems.
C(n) = time to combine solutions.
Recurrence

𝑇 𝑛 = -Θ 1 𝑖𝑓 𝑛 ≤ 𝑐,
𝑎𝑇 ⁄𝑛 𝑏 + 𝐷 𝑛 + 𝐶 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

6

Recurrence for mergesort

The time complexity function for mergesort is:
𝑇 1 = 1
𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

It would be easier to compare this function to our landmark functions if
we could find a simple non-recurrent formula defining the function T.

Solving is not always possible, but for mergesort we can.

7

Some technicalities

We're going to keep things simple. If we were in a maths class, the
main equation above would be rendered more precisely as:

𝑇 𝑛 = 𝑇 ⁄𝑛 2 + 𝑇 ⁄𝑛 2 + 𝑛

this occurs when n is odd, and so we end up with sub-problems of size
⁄𝑛 2 and ⁄𝑛 2 .

By assuming that n is a power of 2 we can avoid these complications.

8

Solving recurrences - substitution

The substitution method has two steps:
1. Guess the form of the solution using substitution and iteration
2. Use induction to find the constants, and that the guess is true

We substitute the guessed solution for the function when applying the
inductive hypothesis to smaller values; hence the name “substitution
method.”

9

Today’s outline

1. Recurrence equations
2. Demonstration with a simpler equation
3. Solving mergsort with recurrence equations

10

A simpler problem

Let's start with a simpler function:

𝑓 1 = 2
𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

11

Base case
Thing to solve

A simpler problem

Let's start with a simpler function:

𝑓 1 = 2
𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

The problem is that the Right Hand Side (RHS) is defined in terms of the
Left Hand Side (LHS).
To solve, we want to eliminate the f from the RHS of the equation.
To do this, I like to break up my workspace into two halves [1]…

12

Base case
Thing to solve

13

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(𝑛) = 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

14

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 3 + 3 + 3

+ 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1
Lets expand this

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

Solve the recurrence

15

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = Lets take our f(n), and
since we wish to expand
f(n-1), we need to subtract
1 from every n.

= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

Solve the recurrence

16

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = That is, where ever there
is an n in our original
function, lets insert n-1
into that, in our
workspace.

= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

17

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

18

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1

Lets now plug our workspace f(n-1)
expansion back into our solution side

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

19

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

20

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1

k = 2

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

21

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution

k = 1

Lets solve this

k = 2

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

22

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = Where ever there is an n in

our original function, we
now insert n-2

Solution

k = 1

k = 2

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

23

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = 𝑓 (𝑛 − 2) − 1 + 3

? = 𝑓 𝑛 − 3 + 3

Solution

k = 1

k = 2

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

24

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 𝑘 + 3𝑘

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = 𝑓 (𝑛 − 2) − 1 + 3

? = 𝑓 𝑛 − 3 + 3

Solution

k = 1

k = 2

Solve the recurrence

Lets now plug our workspace f(n-2)
expansion back into our solution side

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

25

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 3 + 3 + 6
= 𝑓 𝑛 − 3 + 9

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = 𝑓 (𝑛 − 2) − 1 + 3

? = 𝑓 𝑛 − 3 + 3

Solution

k = 1

k = 2

Solve the recurrence

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

26

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 3 + 3 + 6
= 𝑓 𝑛 − 3 + 9

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = 𝑓 (𝑛 − 2) − 1 + 3

? = 𝑓 𝑛 − 3 + 3

Solution

k = 1

k = 2

Solve the recurrence

k = 3

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

27

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 3 + 3 + 6
= 𝑓 𝑛 − 3 + 9

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = 𝑓 (𝑛 − 2) − 1 + 3

? = 𝑓 𝑛 − 3 + 3
𝑓(n − 3) = 𝑓 (𝑛 − 3) − 1 + 3

𝑓 𝑛 − 4 + 3

Solution

k = 1

k = 2

Solve the recurrence

k = 3

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

28

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 3 + 3 + 6
= 𝑓 𝑛 − 3 + 9
= 𝑓 𝑛 − 4 + 3 + 9
= 𝑓 𝑛 − 4 + 12

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = 𝑓 (𝑛 − 2) − 1 + 3

? = 𝑓 𝑛 − 3 + 3
𝑓(n − 3) = 𝑓 (𝑛 − 3) − 1 + 3

𝑓 𝑛 − 4 + 3

Solution

k = 1

k = 2

Solve the recurrence

k = 3

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

k = 4

29

𝑓(𝑛) = 𝑓 𝑛 − 1 + 3
= 𝑓 𝑛 − 2 + 3 + 3
= 𝑓 𝑛 − 2 + 6

? = 𝑓 𝑛 − 3 + 3 + 6
= 𝑓 𝑛 − 3 + 9
= 𝑓 𝑛 − 4 + 3 + 9
= 𝑓 𝑛 − 4 + 12
…

𝐟(𝐧) = 𝐟 𝐧 − 𝒌 + 𝟑𝐤

𝑓(n − 1) = 𝑓 (𝑛 − 1) − 1 + 3

= 𝑓 𝑛 − 2 + 3
𝑓(n − 2) = 𝑓 (𝑛 − 2) − 1 + 3

? = 𝑓 𝑛 − 3 + 3
𝑓(n − 3) = 𝑓 (𝑛 − 3) − 1 + 3

𝑓 𝑛 − 4 + 3

Solution

k = 1

k = 2

Solve the recurrence

k = 3

Workspace

Base case: 𝑓 1 = 2
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + 3

k = 4

Eliminating f on the right

How do we get rid of the f on the right?

Another way to think about it is: how far do we need to expand until
the process stops? It stops at our base case. That is, f(1) = 2.
In other words, it stops when n - k = 1. That is, when n - 1 = k

30

𝑓(𝑛) = 𝑓 𝑛 − k + 3k
? = 𝑓 𝑛 − (n − 1) + 3(n − 1)
? … 𝑓 1 + 3(𝑛 − 1)
? = 2 + 3 𝑛 − 1
? = 3𝑛 − 1

Eliminating f on the right

How do we get rid of the f on the right?

Another way to think about it is: how far do we need to expand until
the process stops? It stops at our base case. That is, f(1) = 2.
In other words, it stops when n - k = 1. That is, when n - 1 = k

31

𝑓(𝑛) = 𝑓 𝑛 − k + 3k
= 𝑓 𝑛 − (n − 1) + 3(n − 1)

? … 𝑓 1 + 3(𝑛 − 1)
? = 2 + 3 𝑛 − 1
? = 3𝑛 − 1

Eliminating f on the right

How do we get rid of the f on the right?

Another way to think about it is: how far do we need to expand until
the process stops? It stops at our base case. That is, f(1) = 2.
In other words, it stops when n - k = 1. That is, when n - 1 = k

32

𝑓(𝑛) = 𝑓 𝑛 − k + 3k
= 𝑓 𝑛 − (n − 1) + 3(n − 1)

? = 𝑓 1 + 3(𝑛 − 1)
? = 2 + 3 𝑛 − 1
? = 3𝑛 − 1

Eliminating f on the right

How do we get rid of the f on the right?

Another way to think about it is: how far do we need to expand until
the process stops? It stops at our base case. That is, f(1) = 2.
In other words, it stops when n - k = 1. That is, when n - 1 = k

33

𝑓(𝑛) = 𝑓 𝑛 − k + 3k
= 𝑓 𝑛 − (n − 1) + 3(n − 1)

? = 𝑓 1 + 3(𝑛 − 1)
? = 2 + 3 𝑛 − 1
? = 3𝑛 − 1

Here’s our base case, which is = 2

Eliminating f on the right

How do we get rid of the f on the right?

Another way to think about it is: how far do we need to expand until
the process stops? It stops at our base case. That is, f(1) = 2.
In other words, it stops when n - k = 1. That is, when n - 1 = k

34

𝑓(𝑛) = 𝑓 𝑛 − k + 3k
= 𝑓 𝑛 − (n − 1) + 3(n − 1)

? = 𝑓 1 + 3(𝑛 − 1)
? = 2 + 3 𝑛 − 1
? = 3𝑛 − 1

Eliminating f on the right

How do we get rid of the f on the right?

Another way to think about it is: how far do we need to expand until
the process stops? It stops at our base case. That is, f(1) = 2.
In other words, it stops when n - k = 1. That is, when n - 1 = k

35

𝑓(𝑛) = 𝑓 𝑛 − k + 3k
= 𝑓 𝑛 − (n − 1) + 3(n − 1)

? = 𝑓 1 + 3(𝑛 − 1)
? = 2 + 3 𝑛 − 1
? = 3𝑛 − 1 Step 1 complete, we’ve guessed the non-recurrent form

Proving it

At this point we have a hypothesis which we need to prove:

Prove that the function f:

And the function g:

are the same function.

36

𝑓(1) = 2
𝑓(n) = 𝑓(n − 1) + 3

g(n) = 3n − 1

The equation way back on Slide #12

Use induction

Base case: f(1) = 2 = g(1)
Inductive step: assume it's true for n = k. That is assume that f(k) = g(k).
In other words assume that f(k) = 3k - 1.
Show that f(k + 1) = g(k + 1).

37

LHS = 𝑓 k + 1
= 𝑓 k + 3
… 3𝑘 − 1 + 3
= 3 k + 1 − 1
= 𝑔(𝑘 + 1)
= RHS

𝑓(1) = 2
𝑓(n) = 𝑓(n − 1) + 3
g(n) = 3n − 1

n - 1 = k

Use induction

Base case: f(1) = 2 = g(1)
Inductive step: assume it's true for n = k. That is assume that f(k) = g(k).
In other words assume that f(k) = 3k - 1.
Show that f(k + 1) = g(k + 1).

38

LHS = 𝑓 k + 1
= 𝑓 k + 3
… 3𝑘 − 1 + 3
= 3 k + 1 − 1
= 𝑔(𝑘 + 1)
= RHS

𝑓 n = 𝑓 n − 1 + 3

Lets replace ‘n’ with ‘k+1’

𝑓 n = 𝑓 k + 1 − 1 + 3

𝑓(1) = 2
𝑓(n) = 𝑓(n − 1) + 3
g(n) = 3n − 1

n - 1 = k

Use induction

Base case: f(1) = 2 = g(1)
Inductive step: assume it's true for n = k. That is assume that f(k) = g(k).
In other words assume that f(k) = 3k - 1.
Show that f(k + 1) = g(k + 1).

39

LHS = 𝑓 k + 1
= 𝑓 k + 3
= 3𝑘 − 1 + 3
= 3 k + 1 − 1
= 𝑔(𝑘 + 1)
= RHS

Substituting

𝑓(1) = 2
𝑓(n) = 𝑓(n − 1) + 3
g(n) = 3n − 1

Use induction

Base case: f(1) = 2 = g(1)
Inductive step: assume it's true for n = k. That is assume that f(k) = g(k).
In other words assume that f(k) = 3k - 1.
Show that f(k + 1) = g(k + 1).

40

LHS = 𝑓 k + 1
= 𝑓 k + 3
= 3𝑘 − 1 + 3
= 3 k + 1 − 1
= 𝑔(𝑘 + 1)
= RHS

𝑓(1) = 2
𝑓(n) = 𝑓(n − 1) + 3
g(n) = 3n − 1

Use induction

Base case: f(1) = 2 = g(1)
Inductive step: assume it's true for n = k. That is assume that f(k) = g(k).
In other words assume that f(k) = 3k - 1.
Show that f(k + 1) = g(k + 1).

41

LHS = 𝑓 k + 1
= 𝑓 k + 3
= 3𝑘 − 1 + 3
= 3 k + 1 − 1

f(k+1) = 𝑔(𝑘 + 1)
= RHS

𝑓(1) = 2
𝑓(n) = 𝑓(n − 1) + 3
g(n) = 3n − 1

Use induction

Base case: f(1) = 2 = g(1)
Inductive step: assume it's true for n = k. That is assume that f(k) = g(k).
In other words assume that f(k) = 3k - 1.
Show that f(k + 1) = g(k + 1).

42

LHS = 𝑓 k + 1
= 𝑓 k + 3
= 3𝑘 − 1 + 3
= 3 k + 1 − 1

f(k+1) = 𝑔(𝑘 + 1)
LHS = RHS

𝑓(1) = 2
𝑓(n) = 𝑓(n − 1) + 3
g(n) = 3n − 1

Today’s outline

1. Recurrence equations
2. Demonstration with a simpler equation
3. Solving mergsort with recurrence equations

43

Recurrence for mergesort

The time complexity function for mergesort is:
𝑇 1 = 1
𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Lets now solve this recurrent form using the substitution method.
1. Guess the form of the solution using substitution and iteration
2. Use induction to find the constants, and that the guess is true

44

45

T(𝑛) = 2T ⁄𝑛 2 + n T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Lets expand this
Workspace

46

T(𝑛) = 2T ⁄𝑛 2 + n
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

T ⁄𝑛 2 = Lets take our T(n), and since we
wish to expand T(n/2), we need
to divide every n by 2.

= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

47

T(𝑛) = 2T ⁄𝑛 2 + n
= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

T ⁄𝑛 2 = Where ever there is an n in our
original function, lets insert n/2
into that, in our workspace.

= 𝑓 𝑛 − 3 + 3 + 3 + 3
…

? = 𝑓 𝑛 − 𝑘 + 3𝑘

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

48

T(𝑛) = 2T ⁄𝑛 2 + n T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

49

T(𝑛) = 2T ⁄𝑛 2 + n T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Lets now plug our workspace expansion
back into our solution side for T(n/2)

Workspace

50

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

Lets expand this

51

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = Where ever there is an n in our
original function, we now insert
n/4

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

52

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

Lets now plug our workspace T(n/4)
expansion back into our solution side

53

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n
= 4 2𝑇 ⁄𝑛 8 + 𝑛/4 + 2𝑛
= 8T ⁄𝑛 8 + 3n

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

k = 3

54

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n
= 4 2𝑇 ⁄𝑛 8 + 𝑛/4 + 2𝑛
= 8T ⁄𝑛 8 + 3n

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

k = 3
Lets expand this

55

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n
= 4 2𝑇 ⁄𝑛 8 + 𝑛/4 + 2𝑛
= 8T ⁄𝑛 8 + 3n

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

T ⁄𝑛 8 = 2𝑇 ⁄𝑛 2/8 + 𝑛/8
= 2𝑇 ⁄𝑛 16 + 𝑛/8

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

Lets now plug our workspace T(n/8)
expansion back into our solution side

k = 3

56

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n
= 4 2𝑇 ⁄𝑛 8 + 𝑛/4 + 2𝑛
= 8T ⁄𝑛 8 + 3n
= 8 2𝑇 ⁄𝑛 16 + 𝑛/8 + 3𝑛
= 16T ⁄𝑛 16 + 4n

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

T ⁄𝑛 8 = 2𝑇 ⁄𝑛 2/8 + 𝑛/8
= 2𝑇 ⁄𝑛 16 + 𝑛/8

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

k = 3

k = 4

57

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n
= 4 2𝑇 ⁄𝑛 8 + 𝑛/4 + 2𝑛
= 8T ⁄𝑛 8 + 3n
= 8 2𝑇 ⁄𝑛 16 + 𝑛/8 + 3𝑛
= 16T ⁄𝑛 16 + 4n
= 𝐤𝐓 ⁄𝒏 𝒌 + 𝐧 𝐥𝐨𝐠𝒌

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

T ⁄𝑛 8 = 2𝑇 ⁄𝑛 2/8 + 𝑛/8
= 2𝑇 ⁄𝑛 16 + 𝑛/8

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

k = 3

We want to get rid of the T on the right. We know that
T(1) = 1, so what do we need to divide n by to get 1?
And what do we notice about the other constants (16 and 4 in the last equation)?

k = 4

58

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n
= 4 2𝑇 ⁄𝑛 8 + 𝑛/4 + 2𝑛
= 8T ⁄𝑛 8 + 3n
= 8 2𝑇 ⁄𝑛 16 + 𝑛/8 + 3𝑛
= 16T ⁄𝑛 16 + 4n
= 𝐤𝐓 ⁄𝒏 𝒌 + 𝐧 𝐥𝐨𝐠𝒌

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

T ⁄𝑛 8 = 2𝑇 ⁄𝑛 2/8 + 𝑛/8
= 2𝑇 ⁄𝑛 16 + 𝑛/8

Solution
k = 1

Solve the mergesort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

k = 3

We want to get rid of the T on the right. We know that
T(1) = 1, so what do we need to divide n by to get 1?
And what do we notice about the other constants (16 and 4 in the last equation)?

k = 4

Hypothesise a non-recurrent equation

We can now hypothesise that:

and

are the same function for n >= 1 and n is a power of two.

Note: we're going to ignore the in between steps when n is not a power of
two. This means that our next element is not k+1 it is 2k, because n =
{1,2,4,8,…,	k,	2k,	4k,	…}. 59

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n

𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛
Base case T(1) = 1. This is when n/k = 1
Or, n = k. Substituting, when n = k, we get
n*1 + n*log n

Use induction

Base case: T(1) = 1 = g(1)
Inductive step: Assume that T(k) = g(k). That is, assume T(k) = 𝑘 log 𝑘 + 𝑘.
Show that T(2k) = g(2k). That is, show T 2k = (2k) log(2𝑘) + 2𝑘

60

𝐿𝐻𝑆 = T 2𝑘 = 2T(k) + n
= 2(𝑘 log 𝑘 + 𝑘) + 2k
= 2k log 𝑘 + 1 + 2k
= 2k(log 𝑘 + log 2) + 2k
= 2k log 2𝑘 + 2k
= 𝑅𝐻𝑆

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n
𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛

It stops at our base case. That is, f(1) = 1.
This time it’s when T(n/k) = T(1) = 1.
That is, when n/k = 1, which is n = k

Use induction

Base case: T(1) = 1 = g(1)
Inductive step: Assume that T(k) = g(k). That is, assume T(k) = 𝑘 log 𝑘 + 𝑘.
Show that T(2k) = g(2k). That is, show T 2k = (2k) log(2𝑘) + 2𝑘

61

𝐿𝐻𝑆 = T 2𝑘 = 2T(k) + 2k
= 2(𝑘 log 𝑘 + 𝑘) + 2k
= 2k log 𝑘 + 1 + 2k
= 2k(log 𝑘 + log 2) + 2k
= 2k log 2𝑘 + 2k
= 𝑅𝐻𝑆

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n
𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛

Substitute 2k for n

Use induction

Base case: T(1) = 1 = g(1)
Inductive step: Assume that T(k) = g(k). That is, assume T(k) = 𝑘 log 𝑘 + 𝑘.
Show that T(2k) = g(2k). That is, show T 2k = (2k) log(2𝑘) + 2𝑘

62

𝐿𝐻𝑆 = T 2𝑘 = 2T(k) + 2k
= 2(𝑘 log 𝑘 + 𝑘) + 2k
= 2k log 𝑘 + 1 + 2k
= 2k(log 𝑘 + log 2) + 2k
= 2k log 2𝑘 + 2k
= 𝑅𝐻𝑆

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n
𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛

Using our induction hypothesis

Use induction

Base case: T(1) = 1 = g(1)
Inductive step: Assume that T(k) = g(k). That is, assume T(k) = 𝑘 log 𝑘 + 𝑘.
Show that T(2k) = g(2k). That is, show T 2k = (2k) log(2𝑘) + 2𝑘

63

𝐿𝐻𝑆 = T 2𝑘 = 2T(k) + 2k
= 2(𝑘 log 𝑘 + 𝑘) + 2k
= 2k log 𝑘 + 1 + 2k
= 2k(log 𝑘 + log 2) + 2k
= 2k log 2𝑘 + 2k
= 𝑅𝐻𝑆

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n
𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛

Use induction

Base case: T(1) = 1 = g(1)
Inductive step: Assume that T(k) = g(k). That is, assume T(k) = 𝑘 log 𝑘 + 𝑘.
Show that T(2k) = g(2k). That is, show T 2k = (2k) log(2𝑘) + 2𝑘

64

𝐿𝐻𝑆 = T 2𝑘 = 2T(k) + 2k
= 2(𝑘 log 𝑘 + 𝑘) + 2k
= 2k log 𝑘 + 1 + 2k
= 2k(log 𝑘 + log 2) + 2k
= 2k log 2𝑘 + 2k
= 𝑅𝐻𝑆

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n
𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛

Use induction

Base case: T(1) = 1 = g(1)
Inductive step: Assume that T(k) = g(k). That is, assume T(k) = 𝑘 log 𝑘 + 𝑘.
Show that T(2k) = g(2k). That is, show T 2k = (2k) log(2𝑘) + 2𝑘

65

𝐿𝐻𝑆 = T 2𝑘 = 2T(k) + 2k
= 2(𝑘 log 𝑘 + 𝑘) + 2k
= 2k log 𝑘 + 1 + 2k
= 2k(log 𝑘 + log 2) + 2k
= 2k log 2𝑘 + 2k
= 𝑅𝐻𝑆

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n
𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛

Use induction

Base case: T(1) = 1 = g(1)
Inductive step: Assume that T(k) = g(k). That is, assume T(k) = 𝑘 log 𝑘 + 𝑘.
Show that T(2k) = g(2k). That is, show T 2k = (2k) log(2𝑘) + 2𝑘

66

𝐿𝐻𝑆 = T 2𝑘 = 2T(k) + 2k
= 2(𝑘 log 𝑘 + 𝑘) + 2k
= 2k log 𝑘 + 1 + 2k
= 2k(log 𝑘 + log 2) + 2k
= 2k log 2𝑘 + 2k
= 𝑅𝐻𝑆

T(1) = 1
T(n) = 2T ⁄𝑛 2 + n
𝑔 𝑛 = 𝑛 log 𝑛 + 𝑛

Suggested reading

Chapter 4 looks at recurrences in some detail and is worth the read.
The substitution method is dealt with in Section 4.3, although we apply
this method iteratively to develop the method further.
The recursion tree method is dealt with in Section 4.4. You may find
this method helpful when trying to guess the form of the solution in
the substitution method.
Section 4.5 and 4.6 look at the Master Theorem method which
provides exact answers for many cases. But it is rather technical, not
very interesting, and not needed for most cases.

67

References

1. Split workspace method courtesy of Dr. John Bowers, at James
Madison University.

2. You may find Dr Bowers’ walk-through video on solving a recurrence
equation with the substation method helpful.

68

https://www.jmu.edu/cise/cs/people/faculty-staff/bowers-john.shtml
https://www.youtube.com/watch?v=Ob8SM0fz6p0

Image attributions

69

This Photo by Unknown Author is licensed under CC BY

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

http://2016.igem.org/Team:Kyoto/Integrated_Practices
https://creativecommons.org/licenses/by/3.0/

