
Quicksort
Lecture 8

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Introduction to Quicksort
2. Partition
3. Worst case
4. Best case
5. Balanced partitioning

2

Today’s outline

1. Introduction to Quicksort
2. Partition
3. Worst case
4. Best case
5. Balanced partitioning

3

Mergsort limitations

Mergesort divides the input array A[low..high] into two pieces of
similar size without looking at the contents.
We get pieces A[low..mid] and A[(mid+1)..high] by using the location
𝑚𝑖𝑑 ← ⁄𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ 2.
After sorting the two pieces, we have to merge them, costing us an
extra n operations.
Can we arrange it so that we don't have to merge at the end? This is
the strategy that Quicksort uses.

4

Key features of Quicksort

Key features
• Worst-case running time: 𝜃 𝑛!

• Expected running time: 𝜃 𝑛 log! 𝑛
• Constants hidden in 𝜃 𝑛 log! 𝑛 are small.
• Sorts in place.

Quicksort is an efficient and widely used sorting algorithm.

5

Divide and conquer approach

Quicksort is based on a three-step process that uses divide-and-
conquer.
Recall: divide-and-conquer splits a task into smaller pieces, and uses
recursion to solve the smaller sub-problems. Once the base case is
reached, it then recurses up, combining the mini-solutions.

6

Quicksort process

To sort the subarray A[p..r]:
Divide: Partition (rearrange) A[p..r] into two (possibly empty)
subarrays: A[p..q-1] and A[q+1..r]. Each element of the first subarray
A[p..q-1] <= A[q]. Each element of the second subarray A[q+1..r] >
A[q]. As part of this partitioning process, identify index q. We call this
the “pivot”.
Conquer: Sort A[p..q-1] and A[q+1..r] by recursive calls to quicksort.
Combine: Combine the two subarrays. Since both are now sorted, no
work is done.

7

Quicksort implementation

QUICKSORT (A, p, r):
1 if p < r
2 q = PARTITION(A, p, r)
3 QUICKSORT(A, p, q-1) // First half, from p up to partition point q

4 QUICKSORT(A, q+1, r) // Second half, from q+1 up to end r

Initial call is QUICKSORT(A, 1, n)

8

Recall
A[p .. r]
p = first index
r = last index

Need more help?

If at the end of today’s notes you need some extra help, check out this
Kahn academy class, co-written by the textbook’s first author [1].

9

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/overview-of-quicksort

Today’s outline

1. Introduction to Quicksort
2. Partition
3. Worst case
4. Best case
5. Balanced partitioning

10

Partitioning
The quicksort algorithm is deceptively simple. However, the key insight lies in
the partitioning process.

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1

if A[j] ≤ x
i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

11

PARTITION always selects an element
x = A[r] as a pivot element around
which to partition the subarray A[p..r].

Visualising quicksort

12

A[p..i] ≤ pivot A[i+1..j-1] > pivot
A[j..r-1] are unexamined

A[r]: pivot

Lightly shaded: First partition ≤ x, that is, ≤ A[r]
Heavily shaded: Second partition > x
Unshaded: Elements not yet put in a partition
Unshaded r: The pivot x

Partition in action

13

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

…

Partition in action

14

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

…

Partition example 1

15

If A[j] > x, then:
1. j is incremented

That is, the heavily shaded region grows by 1.

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

Partition example 2

16

If A[j] ≤ x, then:
1. index i is incremented
2. A[i] and A[j] are swapped
3. j is incremented

That is, the heavily shaded region grows by 1.

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

Class challenge 1

Apply partition to the following array:

17

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

Partition analysis

To analyse Partition, we can use a simple
counting argument as we did for Merge:
• i starts at p-1
• j starts at p
• Each time through the for loop (line 3), j is

incremented at least once (line 3).
• Only if our element is less than our pivot do we

increment i (line 5), and swap elements (line 6).
• We then do our final swap of our pivot (line 7), and

return the index of our pivot (line 8).

20

PARTITION(A, p, r)
1. x = A[r]
2. i = p - 1
3. for j = p to r - 1
4. if A[j] ≤ x
5. i = i + 1
6. swap A[i] with A[j]
7. swap A[i+1] with A[r]
8. return i + 1

Partition analysis

The for loop body (starts line 3) executes r−1−p = Θ(n) times.
Why? In the worst case, every time the body of the if is executed, it
takes constant time, or O(1). Lines 1, 2, and 7 are also constant time.
However, this is the same running time if the array is already sorted.
Thus the running time is Θ(n).

21

PARTITION(A, p, r)
1. x = A[r]
2. i = p - 1
3. for j = p to r - 1
4. if A[j] ≤ x
5. i = i + 1
6. swap A[i] with A[j]
7. swap A[i+1] with A[r]
8. return i + 1

O(n)

Overview of quicksort analysis

The running time of quicksort depends on the partitioning of the
subarrays:
• If the subarrays are balanced, then quicksort can run as fast as

mergesort, 𝚯(n·logn).
• If they are unbalanced, then quicksort can run as slowly as insertion

sort, 𝚯(n2).

22

Today’s outline

1. Introduction to Quicksort
2. Partition
3. Worst case
4. Best case
5. Balanced partitioning

23

Quicksort: worst case analysis
For the worst case, suppose that we were really unlucky, and the
subarray partitions are maximally unbalanced.
Specifically, the pivot is always either the largest or smallest element in
the array.
Then one subarray will have 0 elements, while the other will contain n-
1 elements; that is, all element except the pivot (hence n-1).
The two quicksort recursive calls will be on subarrays of size = 0 and
size = n-1.

24

QUICKSORT (A, p, r):
1 if p < r
2 q = PARTITION(A, p, r)
3 QUICKSORT(A, p, q-1)
4 QUICKSORT(A, q+1, r)

Quicksort: worst case analysis

The time for partitioning is 𝚯(n).
A recursive call on the empty subarray just returns, so T(0) = 𝚯(1).
A recursive call on the full subarray is T(n-1).

Recurrence for running time:

25

QUICKSORT (A, p, r):
1 if p < r
2 q = PARTITION(A, p, r)
3 QUICKSORT(A, p, q-1)
4 QUICKSORT(A, q+1, r)

T(n) = T(n-1) + T(0) + 𝚯(n)
= T(n-1) + 𝚯(n)

Solve the recurrence

Lets state our function:
Base case: 𝑇 1 = 1
Thing to solve: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

26

27

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

28

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = Lets take our f(n), and
since we wish to expand
f(n-1), we need to
subtract 1 from every n.

𝑓(𝑛 − 2) =
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

Lets expand this

29

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

30

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

Lets now plug our workspace f(n-1)
expansion back into our solution side

31

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

32

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

k = 2

33

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

k = 2

Lets expand this

34

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

k = 2

Lets now plug our workspace f(n-2)
expansion back into our solution side

35

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

k = 2

k = 3

36

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

k = 2

k = 3

Lets expand this

37

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

k = 2

k = 3

Lets now plug our workspace f(n-3)
expansion back into our solution side

38

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓 𝑛 − 2
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2
+ 𝑛 − 3 + 𝑓(𝑛 − 4)

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3
+ 𝑓(𝑛 − 4)

𝑓(𝑛 − 1) = 𝑓 (𝑛 − 1) − 1 + n − 1
= 𝑓 𝑛 − 2 + 𝑛 − 1

𝑓(𝑛 − 2) = 𝑓 (𝑛 − 2) − 1 + n − 2
= 𝑓 𝑛 − 3 + 𝑛 − 2

𝑓(𝑛 − 3) = 𝑓 (𝑛 − 3) − 1 + n − 3
𝑓 𝑛 − 4 + 𝑛 − 3

Solution Workspace

k = 1

Solve the recurrence
Base case: 𝑓 1 =1
Function: 𝑓 𝑛 = 𝑓 𝑛 − 1 + n

k = 2

k = 3

k = 4

Solve the recurrence

39

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + 𝑓(𝑛 − 4)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 𝑓(1)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 1 − 1

Solve the recurrence

40

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + 𝑓(𝑛 − 4)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 𝑓(1)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 1 − 1

With 1 element subarray,
cost is 0

0

Solve the recurrence

41

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + 𝑓(𝑛 − 4)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 0
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 1 − 1

Lets rewrite that 0 as 1 - 1

Solve the recurrence

42

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + 𝑓(𝑛 − 4)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 0
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 1 − 1

Hmm, doesn’t this look like the sum of an arithmetic series?

Solve the recurrence

43

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + 𝑓(𝑛 − 4)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 0
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 1 − 1
= ⁄𝑛 𝑛 + 1 2 − 1
≈ 𝑂 𝑛! Replaced with the closed-form solution

Solve the recurrence

44

𝑓(𝑛) = 𝑛 + 𝑓 𝑛 − 1
= 𝑛 + 𝑛 − 1 + 𝑓(𝑛 − 2)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑓(𝑛 − 3)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + 𝑓(𝑛 − 4)
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 0
= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 + …+ 3 + 2 + 1 − 1
= ⁄𝑛 𝑛 + 1 2 − 1
≈ 𝑂 𝑛!

Worst case

So in the worst case Quicksort is O(n2). That's not good.
The worst case occurs exactly when Quicksort is run on an already
sorted array. But insertion sort takes only O(n) in this case.
We can avoid the worst case by choosing a better pivot. The most
common choices are: choose a random element as the pivot, or choose
the median of 3 elements (e.g. first, middle, last) as the pivot.

45

Today’s outline

1. Introduction to Quicksort
2. Partition
3. Worst case
4. Best case
5. Balanced partitioning

46

Quicksort: best case analysis

The best case occurs when partition produces two subarrays, each of
which is no more than ⁄𝑛 2. That is, completely balanced subarrays
every time. Our function here is:
Base case: 𝑇 1 = 1
Thing to solve: 𝑇 𝑛 = 𝑇 ⁄𝑛 2 + 𝑇 ⁄𝑛 2

This is the same equation as mergesort (phew!)
In the best case, Quicksort is 𝑂 𝑛 log! 𝑛 + 𝑛

47

Today’s outline

1. Introduction to Quicksort
2. Partition
3. Worst case
4. Best case
5. Balanced partitioning

48

Balanced partitioning

That’s the worst case and best case. But what about the average case?
The average-case running time of quicksort is much closer to the best
case than to the worst case.
Consider a pivot that always gives us a 9-to-1 (90%/10%) split of the
data (hmm, that sounds bad…). In that case, the function is:

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝜃(𝑛)
This is tricky to solve with the substitution method, so we will use a
recursion tree instead.

49

Recursion tree

We use a recursion tree to help solve a recurrence equation.
This visual technique is analogous to using the substitution method, as
the basic idea is the same:
Intuition
1. Keep expanding the recursive sub-calls until we reach a base case.
2. Identify the depth of our recursion tree
3. Identify the number of operations done at each level
4. Sum up the work across all levels

50

Our equations

Lets start by restating our equations:

Base case: T(1) = 1
Recurrence: 𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐 = 𝑛

Here we’ve explicitly included the constant hidden in our 𝚯(n) term. As
you will see, this is important in a recursion tree.

51

52

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree depth Tree

n

𝑇 1 = 1

At the first level of recursion, our algorithm does n work plus two recursive calls.

Those calls operate on arrays of size 9/10n and 1/10n of the original (size n).

That is, we will split the job into two parts, giving 90% to one recursive call, and
10% to the other. Each split will in turn take some amount of c·n.

Just like the substitution method, we now move to the next level of our
recursion.

Row sumRecursive 1 Recursive 2 Constant

T(9/10) T(1/10)

0

53

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

T(9/10) T(1/10)

The work done at this level

Each each tree depth, it’s helpful to track the depth of our tree, and importantly,
the amount of work done at that level.

The amount of work is just the sum of the n operations at each level.

For level 0, it’s just c·n

0

Tree depth

54

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree depth Tree

n

𝑇 1 = 1

At depth 1, we calculated our recurrences by expanding n for ‘n’ in our equation.

Row sumRecursive 1 Recursive 2 Constant

T(9/10) T(1/10)

0

To determine the size of each recursive call, we inserted T(9n/10) and T(1n/10)
for n into our equation.

55

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1

2

Calculate the work at depth 1

56

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1

2

c·n+

For our recurrences at depth 2, we now expand T(9n/10) for the left side.

57

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1

T(92/102) T(9/102)2

c·n

And T(1n/10) for our right side.

58

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1

T(92/102) T(9/102) T(9/102) T(12/102)2

c·n

59

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

Insert each of our recurrences into our constant work at each level.
Calculate the work at this depth.

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
1
10!

𝑛+ ++ c·n2 9
10!

𝑛

60

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

T(93/103) T(92/103) T(92/103) T(9/103) T(92/103) T(9/103) T(9/103) T(1/103)

61

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
9!

10" 𝑛
9
10" 𝑛

9!

10" 𝑛
9
10"

𝑛
9
10"

𝑛 1
10" 𝑛

c·n3

We’ve now expanded 3 levels of our recursion tree.
This allows us to see a pattern forming.

62

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
9!

10" 𝑛
9
10" 𝑛

9!

10" 𝑛
9
10"

𝑛
9
10"

𝑛 1
10" 𝑛

c·n3

…

𝑇
9#𝑛
10#

…

𝑇
1#𝑛
10#

…

i

63

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
9!

10" 𝑛
9
10" 𝑛

9!

10" 𝑛
9
10"

𝑛
9
10"

𝑛 1
10" 𝑛

c·n3

…

𝑇
9#𝑛
10#

Great! So when do we stop? When we reach our base case
T(1) = 1

Important Note: why do we have two conditions here?
Because we’re always splitting into 90% and 10%. Crucially,
our 10% will reach “base case” much sooner than our 90%.

…

𝑇
1#𝑛
10#

…

i

64

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
9!

10" 𝑛
9
10" 𝑛

9!

10" 𝑛
9
10"

𝑛
9
10"

𝑛 1
10" 𝑛

c·n3

…

𝑇
9#𝑛
10#

…

𝑇
1#𝑛
10#

1 =
9#𝑛
10#

1 =
1#𝑛
10#

Lets now solve

…

i

65

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
c·n3

10#

9#
= 𝑛

10#

1#
= 𝑛

…

i

66

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
c·n3

10#

9#
= 𝑛

10#

1#
= 𝑛

10
9

#
= 𝑛

10
1

#
= 𝑛

…

i

67

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
c·n3

10#

9#
= 𝑛

10#

1#
= 𝑛

10
9

#
= 𝑛

10
1

#
= 𝑛

log$%
&
𝑛 = 𝑖 log$% 𝑛 = 𝑖

…

i

68

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9"

10" 𝑛
9!

10" 𝑛
c·n3

…

i
For our 90% splits, we reach base case at depth log!"

#
𝑛 = 𝑖

For our 10% splits, we reach base case at depth log$% 𝑛 = 𝑖

Lets update our tree to show these relationships…

69

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

729
1000𝑛

3

…

i

log$%
&
𝑛

log$% 𝑛 = 𝑖

81
1000

𝑛 1

1

c·n

≤ c·n

…

≤ c·n

…

70

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

729
1000𝑛

c·n3

…

i

log$%
&
𝑛

log$% 𝑛 = 𝑖

81
1000

𝑛 1

1 ≤ c·n

…

For the first log$% 𝑛 levels, we always do at least, and at most,
c·n work. Or, 𝚯(n).

But once we reach our first base case, we have fewer nodes to
process, so we only have at most c·n work. Or, O(n).

≤ c·n

…

71

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

729
1000𝑛

c·n3

…

i

log$%
&
𝑛

log$% 𝑛 = 𝑖

81
1000

𝑛 1

1 ≤ c·n

…

Finally, we can now calculate the work done by summing up all
of our work, done at each depth of our tree.

≤ c·n

……

Calculating our total work

We now sum all the work done at each tree depth to get the total cost
of quicksort average case.
Since we have log!"

#
𝑛 levels, each doing ‘n’ work, we have:

O 𝑛 × log!"
#
𝑛 work.

But the base of our log is messy for asymptotic notation. Let use the
following mathematical fact: log+ 𝑛 =

,-.$ /
,-.$ +

72

Calculating our total work

Using this fact, our equation can be rewritten as:

log!"
#
𝑛 =

log$ 𝑛

log$
10
9
= 𝑐 * log$ 𝑛

Since @1 log!
01
2

is a constant, we replace it with c. As long as this value
is a constant, the log doesn’t matter in asymptotic notation.
Again, we do ‘n’ work per level, so rewriting O 𝑛 × log!"

#
𝑛 we get:

𝑇 𝑛 = 𝑂 𝑛 log! 𝑛

73

Intuition for average case

Splits in the recursion tree will not always be constant.
What about alternating a perfect split with a bad split?
In this case, the tree is at most twice as high as for all perfect splits, so
still O(n log n + n)
Both figures result in O(n log2n) time, though the constant for the
figure on the left is higher than that of the figure on the right.

74

Suggested reading

Chapter 7 covers quicksort. Today’s material is covered in sections 7.1
and 7.2, and are a “must read”.
Recurrence trees[2] are covered in section 4.4.

75

https://www.youtube.com/watch?v=sLNPd_nPGIc

References

1. The first author of the text has a gentle introduction to quicksort on
Kahn academy.

2. Dr Bower’s video of solving recurrence trees is also helpful.

76

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/overview-of-quicksort
https://www.youtube.com/watch?v=sLNPd_nPGIc

Solutions

77

Class challenge 1

78

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

…

Class challenge 1

79

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

…

For loop exits, no need for index j

Image attributions

80

This Photo by Unknown Author is licensed under CC BY-SA

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses, the
attributed parties and/or websites listed above.

https://en.wikipedia.org/wiki/Quicksort
https://creativecommons.org/licenses/by-sa/3.0/

