
Hashing
Lecture 10

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Double hashing
2. Chaining
3. Universal hashing

2

Today’s outline

1. Double hashing
2. Chaining
3. Universal hashing

3

Issues with linear probing

Linear probing suffers from primary clustering. This is the situation of
long runs of occupied sequences.

4

… 48

18 84

19

20

21 452

22 452

23 75

24 945

…

Initial probe

Issues with quadratic probing

Quadratic probing suffers from a milder form of clustering, called
secondary clustering. Rather than probing sequential positions, it
attempts to probe successively further away locations from the
previous collision.
But, if two keys contain the same hash address, they will follow the
same path (see example at end of L09). Secondary clustering has a
lower performance cost than primary clustering, but still not ideal.

5

Secondary clustering

6

…

18 23

19 19

20

21 452

22 452

23 75

24 945

481

…

Initial probe
1

4

9

Double hashing

The drawback of linear and quadratic probing is that collision
resolution strategies follow the same path from a collision point
regardless of key value.
A better solution is double hashing:

ℎ 𝑘, 𝑖 = ℎ! 𝑘 + 𝑖 ' ℎ" 𝑘 %𝑚

• i = the number of collisions so far

• h1 = division hashing

• m = table size
• h2 = a secondary hash function

7

Double hashing

Double hashing offers one of the best methods available for open
addressing, as the permutations have many of the characteristics of
randomly chosen permutations.
Notice that the initial probe goes to position T[h1(k)], as i = 0.
h2 is often something like h2(k) = 1 + k%(m - 1).

8

ℎ 𝑘, 𝑖 = ℎ! 𝑘 + 𝑖 ' ℎ" 𝑘 %𝑚

Pop quiz 1

Why is it helpful to have m as a prime number?

9

ℎ 𝑘, 𝑖 = ℎ* 𝑘 + 𝑖 ' ℎ+ 𝑘 %𝑚

Another question

h2(k) is often of the form: 1 + k%(m - 1).
Why don’t we just use h2(k) = k%(m - 1)?

11

ℎ 𝑘, 𝑖 = ℎ! 𝑘 + 𝑖 ' ℎ" 𝑘 %𝑚

Another question

h2(k) is often of the form: 1 + k%(m - 1).
Why don’t we just use h2(k) = k%(m - 1)?
Example
• m = 33, k = 7

12

(h1(k) + i*(k % m-1)) % m (h1(k) + i*(1 + k % m-1)) % m
7 14 21 28 2 9 16 23 30 4 11 18 25 32 … 7 15 23 31 6 14 22 30 5 13 21 29 4 12 …

ith slot is a multiple of k ith slot not a multiple of k

ℎ 𝑘, 𝑖 = ℎ! 𝑘 + 𝑖 ' ℎ" 𝑘 %𝑚

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

13

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

quadratic double

H(k, i) = (k%m + i2) % m H(k, i) = (k%m + i(1+k%(m-1)) % m

Total collisions = 0 Total collisions = 0

Linear vs quadratic vs double

28*Note, in our example m=10 for simpler calculations, but performance is better when m is prime.

Today’s outline

1. Double hashing
2. Chaining
3. Universal hashing

29

Full tables

What happens as a hash table gets full?
As clusters get large, gaps become fewer and the number of collisions
for insertion and for search becomes larger, breaking down the O(1)
property.
What if you want to get rid of an item? Beware of deleting a key on a
search path that has possible collisions. We have to use lazy deletion.

30

Lazy deletion

Deletion from an open-address hash table is difficult. When we delete
a key from slot i, we cannot simply mark that slot as empty by storing
NIL in it.
If we did, we might be unable to retrieve any key k during whose
insertion we had probed slot i and found it occupied.
With lazy deletion, we mark the slot by storing the special value
DELETED instead of NIL.

31

Full tables

Suggestion: hash tables implemented as arrays are good if you know
roughly the size of your data set before loading and it stays that size.
Or, if you are willing to accept a single costly operation, you can re-hash
everything into a different table size.
Alternative: Allow the hash table to maintain “chains” at each location.
This is called “hashing with chaining”; as opposed to what we have
already seen, which is called “open addressing”.

32

Reminder: Collisions

Two keys may hash to the same slot. We call this situation a collision.
We’ve looked at open addressing, lets now look at chaining.

33

Chaining

In chaining, we place all the elements that hash to the same slot into
the same linked list.

34

Chaining

Inserting at the head of a linked list is O(1). Searching a linked list is
O(n), which is fine for small n, but not as good if n is large.
If table has m slots and m keys, and our hash function spreads the keys
fairly evenly over the table, then we can expect our chains to be short.
In fact, it is not unusual for the table size to be chosen to be m = n/3,
where n is the size of the collection of data items, provided one is sure
that your hash function will spread the keys evenly.

35

Universal hashing

This scheme is vulnerable to any adversary who is able to select data
that creates long lists, making search more time-consuming.
If you use chaining, an adversary who knows your hash function could
devise a set of keys that all hash to the same position, creating a list for
the whole collection of data items (search and insert become O(n)).

36

Universal hashing

This scheme is vulnerable to any adversary who is able to select data
that creates long lists, making search more time-consuming.
If you use chaining, an adversary who knows your hash function could
devise a set of keys that all hash to the same position, creating a list for
the whole collection of data items (search and insert become O(n)).
Solution: choose the hash function randomly before creating the hash
table, that is independent of keys to be stored. This is universal hashing.
Assumes hash table will not be persistent. Use different hash function
on each execution.

37

Today’s outline

1. Double hashing
2. Chaining
3. Universal hashing

38

Universal hashing

A universal set of hash functions H is a set of hash functions such that if
you pick keys k and j at random, and choose a hash function h
randomly from H, then the chance of h(k) = h(j) is no more than 1/m
(where m is the size of the hash table).
So how does one get a universal set of hash functions?

39

A universal set of hash functions

Choose a prime number p big enough that every possible key k is < p,
and choose your table size m < p.

Now make ℎ#,% 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚
The parameters a and b may take on integer values up to p - 1, but you
must choose a > 0.
a and b are chosen randomly at program start up.

40

Example: Universal hashing

Let p = 17 (prime), m = 6 (table size), a and b chosen randomly:

Choosing a and b at random as the program starts denies an adversary
the ability to choose input that generates the worst case.

41

ℎ#,% 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚

ℎ3,4 8 = 3 ∙ 8 + 4 %17 %6
= (28%17)%6
= 11%6
= 5

Class Challenge 1

Try h4,5(8) and h4,5(8), with p = 18, and m = 7.

42

ℎ#,% 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚

Suggested reading

Double hashing is discussed in section 11.4.
Chaining is discussed in section 11.2.
Universal hashing is discussed in section 11.3.3.

44

Solutions

45

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

46

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

quadratic double

H(k, i) = (k%m + i2) % m H(k, i) = (k%m + i(1+k%(m-1)) % m

Total collisions = 0 Total collisions = 0

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

47

0

1

2 12

3

4

5

6

7

8

9

0

1

2 12

3

4

5

6

7

8

9

quadratic double

H(12, 0) = (k%m + i2) % m
= 2

H(12, 0) = (k%m + i(1+k%(m-1)) % m
= 2

Total collisions = 0 Total collisions = 0

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

48

0

1

2 12

3 13

4

5

6

7

8

9

0

1

2 12

3 13

4

5

6

7

8

9

quadratic double

H(13, 0) = (k%m + i2) % m
= 3

H(13, 0) = (k%m + i(1+k%(m-1)) % m
= 3

Total collisions = 0 Total collisions = 0

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

49

0

1

2 12

3 13

4

5

6

7

8

9

0

1

2 12

3 13

4

5

6

7

8

9

quadratic double

H(43, 0) = (k%m + i2) % m
= 3

H(43, 0) = (k%m + i(1+k%(m-1)) % m
= 3

Total collisions = 1 Total collisions = 1

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

50

0

1

2 12

3 13

4 43

5

6

7

8

9

0

1 43

2 12

3 13

4

5

6

7

8

9

quadratic double

H(43, 1) = (k%m + i2) % m
= 4

H(43, 1) = (k%m + i(1+k%(m-1)) % m
= 1

Total collisions = 1 Total collisions = 1

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

51

0

1

2 12

3 13

4 43

5

6

7

8

9

0

1 43

2 12

3 13

4

5

6

7

8

9

quadratic double

H(52, 0) = (k%m + i2) % m
= 2

H(52, 0) = (k%m + i(1+k%(m-1)) % m
= 2

Total collisions = 2 Total collisions = 2

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

52

0

1

2 12

3 13

4 43

5

6

7

8

9

0 52

1 43

2 12

3 13

4

5

6

7

8

9

quadratic double

H(52, 1) = (k%m + i2) % m
= 3

H(52, 1) = (k%m + i(1+k%(m-1)) % m
= 0

Total collisions = 3 Total collisions = 2

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

53

0

1

2 12

3 13

4 43

5

6 52

7

8

9

0 52

1 43

2 12

3 13

4

5

6

7

8

9

quadratic double

H(52, 2) = (k%m + i2) % m
= 6

H(52, 1) = (k%m + i(1+k%(m-1)) % m
= 0

Total collisions = 3 Total collisions = 2

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

54

0

1

2 12

3 13

4 43

5

6 52

7

8

9

0 52

1 43

2 12

3 13

4

5

6

7

8

9

quadratic double

H(72, 0) = (k%m + i2) % m
= 2

H(72, 0) = (k%m + i(1+k%(m-1)) % m
= 2

Total collisions = 4 Total collisions = 3

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

55

0

1

2 12

3 13

4 43

5

6 52

7

8

9

0 52

1 43

2 12

3 13

4

5

6

7

8

9

quadratic double

H(72, 1) = (k%m + i2) % m
= 3

H(72, 1) = (k%m + i(1+k%(m-1)) % m
= 3

Total collisions = 5 Total collisions = 4

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

56

0

1

2 12

3 13

4 43

5

6 52

7

8

9

0 52

1 43

2 12

3 13

4 72

5

6

7

8

9

quadratic double

H(72, 2) = (k%m + i2) % m
= 6

H(72, 2) = (k%m + i(1+k%(m-1)) % m
= 4

Total collisions = 6 Total collisions = 4

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

57

0

1

2 12

3 13

4 43

5 72

6 52

7

8

9

0 52

1 43

2 12

3 13

4 72

5

6

7

8

9

quadratic double

H(72, 3) = (k%m + i2) % m
= 5

H(72, 2) = (k%m + i(1+k%(m-1)) % m
= 4

Total collisions = 6 Total collisions = 4

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

58

0

1

2 12

3 13

4 43

5 72

6 52

7

8

9

0 52

1 43

2 12

3 13

4 72

5

6

7

8

9

quadratic double

H(63, 0) = (k%m + i2) % m
= 3

H(63, 0) = (k%m + i(1+k%(m-1)) % m
= 3

Total collisions = 6 Total collisions = 4

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

59

0

1

2 12

3 13

4 43

5 72

6 52

7

8

9

0 52

1 43

2 12

3 13

4 72

5

6

7

8

9

quadratic double

H(63, 1) = (k%m + i2) % m
= 4

H(63, 1) = (k%m + i(1+k%(m-1)) % m
= 4

Total collisions = 6 Total collisions = 4

Quadratic vs double hashing

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

60

0

1

2 12

3 13

4 43

5 72

6 52

7 63

8

9

0 52

1 43

2 12

3 13

4 72

5 63

6

7

8

9

quadratic double

H(63, 2) = (k%m + i2) % m
= 7

H(63, 2) = (k%m + i(1+k%(m-1)) % m
= 5

Total collisions = 6 Total collisions = 4

Class Challenge 1

Try h4,5(8) and h3,18(8), with p = 18, and m = 7.

h4,5(8) = ((4*8 + 5) % 18) % 7

= (37 % 18) % 7

= 1 % 7

= 1

h3,18(8) = ((3*8 + 18) % 18) % 7

= (42 % 18) % 7

= 6%7

= 6 61

ℎ#,% 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚

Image attributions

62

This Photo by Jorge Stolfi is licensed under CC-BY-SA-3.0

This Photo by Unknown Author is licensed under CC0

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Hash_table_3_1_1_0_1_0_0_SP.svg/1200px-Hash_table_3_1_1_0_1_0_0_SP.svg.png
https://commons.wikimedia.org/wiki/Category:CC-BY-SA-3.0
https://freesvg.org/questioning-boy
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

