
Perfect hashing
Lecture 11

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Hashing review
2. Probabilities
3. Perfect hashing
4. Perfect hashing example

2

Today’s outline

1. Hashing review
2. Probabilities
3. Perfect hashing
4. Perfect hashing example

3

Hashing review
The point of hashing is:
• To get fast insert and search. Ideally, O(1) on average.
• To use storage space much smaller than the space of all possible key

values, closer to the optimum of just enough space for the data.
A hash table is essentially an array.
Put the key k into position h(k) if that cell is empty.
If cell h(k) is not empty (a collision) either put it:
• Open addressing: somewhere else, or
• Chaining: Into a linked list at position h(k)

4

Subtleties

For open addressing:
• Need a collision resolution strategy.
• Deletion: need lazy deletion to not disrupt search path (but table

fills up).
• Rehashing required for full tables, which is costly, so suboptimal for

data sets that grow and shrink.

5

Subtleties

For chaining:
• Insertion: (-) overhead of maintaining list, (+) still O(1) to insert.
• Retrieval: (-) O(n) search of list, (+) lists are short for a good hash

function.
• Deletion: (-) O(n) search of list, plus list management overhead,

(+) retrieval speed not impeded by real deletes.

6

Today’s outline

1. Hashing review
2. Probabilities
3. Perfect hashing
4. Perfect hashing example

7

Perfect hashing

Hashing is a good choice for its excellent average-case performance.
Hashing can also provide excellent worst-case performance when the
set of keys is static: once the keys are stored in the table, the set of keys
never changes.
If the set of keys is static (i.e. there will never be any insertions or
deletions), we can design the hash function to get a worst-case search
= O(1). This technique is called perfect hashing.

8

Perfect hashing

Example of static data: consider the set of le names on a CD-ROM. Or:
the set of reserved words in a programming language.
Ideally with perfect hashing there are no collisions. If we can randomly
generate a hash function that gives a collision infrequently, then we can
generate new hash functions until there are no collisions.

9

Universal hashing with a big table

Universal hashing, on average, will produce a collision between two
random keys 1/m of the time, for table size m.
What’s the probability of at least one collision between n keys?
This value has a special name in mathematics, and it’s called the
binomial coefficient[1, 2]:

𝑛
𝑘

This symbol is usually read as “n choose k”, which means there are
𝑛
𝑘

ways to choose an (unordered) subset of k elements from a fixed set of
n elements.

10

Birthday paradox

Our hashing collision problem is similar to a well known problem in
math called the “birthday problem”[3].
In a room of n people, what’s the probability that at least one pair will
have the same birthday?
It’s quite tricky to solve for this probability, which we’ll call P(A).
The key is a simplifying observation: The total probability (1) is equal to
the probability of at least 2 people sharing a birthday, P(A), plus the
probability that no one shares a birthday with anyone else, P(A’).

11

https://en.wikipedia.org/wiki/Birthday_problem

Visualizing probability

12

Probability that no one shares a birthday

Probability that
at least two

people share a
birthday

1 = P(A) + P(A’)

Calculating P(A’)

This can be rewritten then as: P(A) = 1 - P(A’). We do this because
calculating P(A’) is easier.
For the first person, the number of choices they have for a birthday not
to collide with an existing birthday is: !"#

!"#
. The next person now has 1

less dates to choose from: !"$
!"#

. The next has !"!
!"#

, and so on.

The conditional probability for P(A’) is:

𝑃 𝐴% =
365
365

×
364
365

×
363
365

×⋯×
365 − 𝑛 + 1

365

13

Calculating P(A’)

Lets say we have 30 people in our room:

𝑃 𝐴! = "#$
"#$

× "#%
"#$

× "#"
"#$

×… × ""#
"#$

= "#$&"#%&⋯""#
"#$!"

Can we rewrite our numerator as a factorial?
365! = 365×364×⋯×336×335×334×⋯×1
Where:

365!
335×334×⋯×1

= 365×364×⋯×336 =
365!

365 − 30 !

𝑃 𝐴# = $
365!

365 − 30 !
365 $% = 29.37%

14

Calculating P(A’)

Lets say we have 30 people in our room:

𝑃 𝐴! = "#$
"#$

× "#%
"#$

× "#"
"#$

×… × ""#
"#$

= "#$&"#%&⋯""#
"#$!"

Can we rewrite our numerator as a factorial?
365! = 365×364×⋯×336×335×334×⋯×1
Where:

365!
335×334×⋯×1

= 365×364×⋯×336 =
365!

365 − 30 !

𝑃 𝐴# = $
365!

365 − 30 !
365 $% = 29.37%

15

Calculating P(A’)

Lets say we have 30 people in our room:

𝑃 𝐴! = "#$
"#$

× "#%
"#$

× "#"
"#$

×… × ""#
"#$

= "#$&"#%&⋯""#
"#$!"

Can we rewrite our numerator as a factorial?
365! = 365×364×⋯×336×335×334×⋯×1
Where:

365!
335×334×⋯×1

= 365×364×⋯×336 =
365!

365 − 30 !

𝑃 𝐴# = $
365!

365 − 30 !
365 $% = 29.37%

16

Calculating P(A’)

Lets say we have 30 people in our room:

𝑃 𝐴! = "#$
"#$

× "#%
"#$

× "#"
"#$

×… × ""#
"#$

= "#$&"#%&⋯""#
"#$!"

Can we rewrite our numerator as a factorial?
365! = 365×364×⋯×336×335×334×⋯×1
Where:

365!
335×334×⋯×1

= 365×364×⋯×336 =
365!

365 − 30 !

𝑃 𝐴# = $
365!

365 − 30 !
365 $% = 29.37%

17

Therefore, P(A) = 1-.2937 = 0.706

Calculating collisions

Lets return to our hash table. With a table size m, and n keys. What’s the
probability of at least one collision between n keys?
To calculate this, first need to calculate the number of possible key pairs.
We already showed how to do this with the numerator in our birthday
paradox: &!

&() !
.

This formula is for probabilities where the order mattered. In our
hashing example, we don’t care about the order. To handle this, we
further divide by n!

18

How many pairs?

Why divide by n!? Think of it this way: How many triplets of the
numbers 1, 2, 3 can you form?
You can make 6 = ([1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2 ,1]), or 3!
These triplets still involve the same three numbers. For our hashing
example, we don’t care about uniqueness (order).
We only want to count the set of numbers (1, 2, 3) in any order once.
So we divide by k! [4]

19

How many pairs?

The number of possible key pairs is:

20

where 𝑛𝑘 is our binomial coefficient (n choose k)𝑛
𝑘

= 𝑛!
𝑛 − 2 ! 2!

= 𝑛 𝑛 − 1 𝑛 − 2 …1
𝑛 − 2 𝑛 − 3 3 ⋯ 3 1 3 2 3 1

= 𝑛(𝑛 − 1)
2

Universal hashing with a big table

Each pair has a probability of collision = ⁄* +. The probability of at least
one collision for a random universal hash function is:

21

Pr(#collisions ≥ 1) = 1 − Pr(#collisions = 0)

=
1 − 1 −

1
𝑚

!" "#$
%
= 1 − 1 −

1
𝑚

"
&

=
1 −

𝑚 − 1
𝑚

!" "#$
%

Prob of one pair(#=0) (#number of pairs)

How big should we make m if we want the probability of a
collision to be low?

Universal hashing with a big table

22

y = 1-((m-1)/m)^(n*(n-1)/2), and n = 1000

Choosing m

With n = 1000, m = 100000, then Pr((#collisions ≥ 1) = .9932
If we choose 100 random functions, what's the probability that all of
them have a collision?

.9932*,,= .507
If we choose 100 random functions, then there is a 50% chance that
one of them has no collisions. We would need to choose 340 before the
probability dropped below 10%.
And that's for an occupancy rate of 1% - not a great way of choosing a
perfect hashing function.

23

Today’s outline

1. Hashing review
2. Probabilities
3. Perfect hashing
4. Perfect hashing example

24

Hash of hashes

To create a perfect hashing scheme, we use two levels of hashing, with
universal hashing at each level.
Instead of making a linked list of the keys hashing to slot j, however, we
use a small secondary hash table Sj with an associated hash function hj.
By trying several hash functions from a universal class, we can easily
achieve the goal of having no collisions in the secondary tables.

25

Hash of hashes

A similar “try out” principle on the primary hash function will allow us
to choose a primary hash function that doesn't have lots of collisions,
so that our table size for the primary hash table can be m = O(n).
Recall that a member of a universal class of hash functions is fully
specified by p, m, a, b where p is a prime greater than all possible keys,
m is the size of the hash table, and a and b are chosen randomly from
the range 1 up to p - 1.

26

Hash of hashes

27

K = {10, 22, 37, 40, 52, 60, 70, 72, 75}
Outer hash h(k) = ((ak + b) % p) % m
a = 3, b = 42, p = 101, and m = 9

Example: h(75) = 2, and so key 75 hashes to slot 2 of table T. A secondary hash table Sj
stores all keys hashing to slot j. The size of hash table Sj is mj = 𝑛!", and the associated
hash function is ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚!
Since h2(75) = 7, key 75 is stored in slot 7 of secondary hash table S2.

Perfect hashing

Main hash table: choose size m = n where n is the number of data
items, choose prime p > the biggest key value. Choose a and b
randomly to get primary hash function h(k) = ((ak + b)%p)%m.
Test h as follows:
1. For each key k, work out the home cell h(k). Keep a count ni for

each cell i of how many keys hash to i.

2. Check whether space required is too big: is the sum of all the 𝑛7)
giving a total > 2n? Then h is not good enough so repeat the process
with new a, b for a new primary hash function.

28

Perfect hashing

If the primary hash function h is good enough:
1. For each slot i, get the secondary hash function hi by setting pi = p

(i.e. p doesn’t change), setting mi = 𝑛7), and choosing ai and bi
randomly.

2. Check to make sure that the resulting hi doesn't cause any collisions
within the secondary table.

29

Today’s outline

1. Hashing review
2. Probabilities
3. Perfect hashing
4. Perfect hashing example

30

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}

31

0

1

2

3

4

5

6

7

Step 1: Randomly generate values for a and b, select p > K
Step 2: For each key k, work out home cell h(k). Keep a count.
Step 3: Check if ∑'()*#$𝑛'% < 2𝑛
Step 4: Populate sub-tables, calculating new hash functions

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

32

0

1

2

3

4

5

6

7

Step 1: Randomly generate values for a and b, select p > K
Step 2: For each key k, work out home cell h(k). Keep a count.
Step 3: Check if ∑'()*#$𝑛'% < 2𝑛
Step 4: Populate sub-tables, calculating new hash functions

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

33

0

1

2

3

4

5

6

7

Step 1: Randomly generate values for a and b, select p > K
Step 2: For each key k, work out home cell h(k). Keep a count.
Step 3: Check if ∑'()*#$𝑛'% < 2𝑛
Step 4: Populate sub-tables, calculating new hash functions

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

34

0 / 0

1 / 61

2 / 8, 84

3 / 0

4 / 75

5 / 22

6 / 13

7 / 36, 58

Step 1: Randomly generate values for a and b, select p > K
Step 2: For each key k, work out home cell h(k). Keep a count.
Step 3: Check if ∑!#$%&'𝑛!" < 2𝑛
Step 4: Populate sub-tables, calculating new hash functions

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

35

0 / 0 0

1 / 61 1

2 / 8, 84 2

3 / 0 0

4 / 75 1

5 / 22 1

6 / 13 1

7 / 36, 58 2

Step 1: Randomly generate values for a and b, select p > K
Step 2: For each key k, work out home cell h(k). Keep a count.
Step 3: Check if ∑!#$%&'𝑛!" < 2𝑛
Step 4: Populate sub-tables, calculating new hash functions

Count

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

36

0 / 0 0

1 / 61 1

2 / 8, 84 2

3 / 0 0

4 / 75 1

5 / 22 1

6 / 13 1

7 / 36, 58 2

Step 1: Randomly generate values for a and b, select p > K
Step 2: For each key k, work out home cell h(k). Keep a count.
Step 3: Check if ∑!#$%&'𝑛!" < 2𝑛
Step 4: Populate sub-tables, calculating new hash functions

Count

4
!"#

$%&

𝑛!' = 0 + 1 + 4 + 0 + 1 + 1 + 1 + 4 = 12

12 < 2 ∗ 𝑛 = 16

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

37

0 / mj aj bj
1 1 0 0

2 4 82 53

3 /

4 1 0 0

5 1 0 0

6 1 0 0

7 4 10 54

Step 4: Populate sub-tables, calculating new hash functions

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

38

0 / mj aj bj
1 1 0 0 61

2 4 82 53 / 84 / 8

3 /

4 1 0 0 75

5 1 0 0 22

6 1 0 0 13

7 4 10 54 / 58 36 /

Step 4: Populate sub-tables, calculating new hash functions

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

Perfect hashing example

K = {8, 22, 36, 75, 61, 13, 84, 58}
p = 87, a = 64, b = 5

39

0 / mj aj bj
1 1 0 0 61

2 4 82 53 / 84 / 8

3 /

4 1 0 0 75

5 1 0 0 22

6 1 0 0 13

7 4 10 54 / 58 36 /

No Sj keys hash to the same sub-slots. All done!

ℎ 𝑘 = 𝑎𝑘 + 𝑏 %𝑝 %𝑚
ℎ! 𝑘 = 𝑎!𝑘 + 𝑏! %𝑝 %𝑚

References

1. Binomial coefficient factorial formula -
https://en.wikipedia.org/wiki/Binomial_coefficient#Factorial_formula

2. Binomial coefficient derivation - Kahn

3. Birthday paradox - Kahn

4. Derivation of key pair formula -
https://www.mathsisfun.com/combinatorics/combinations-permutations.html

40

https://en.wikipedia.org/wiki/Binomial_coefficient
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:prob-comb/x9e81a4f98389efdf:prob-combinatorics-precalc/v/generalizing-with-binomial-coefficients-bit-advanced
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:prob-comb/x9e81a4f98389efdf:prob-combinatorics-precalc/v/birthday-probability-problem
https://www.mathsisfun.com/combinatorics/combinations-permutations.html

Suggested reading

Perfect hashing is discussed in Section 11.5.
Theorem 11.9 uses a different analysis of the probability of a collision
to show that you need m = n2 for a probability of collision less than 0.5.
The analysis in the textbook looks simpler, but there are some deeper
concepts used.

41

Image attributions

42

This Photo by Unknown Author is licensed under CC BY

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

http://2016.igem.org/Team:Kyoto/Integrated_Practices
https://creativecommons.org/licenses/by/3.0/

