Binary Search Trees 2
Lecture 13

COSC 242 — Algorithms and Data Structures

Practical test announcement pport o1

Practical test is this Tuesday, August 18th.
A resit is also scheduled for this Friday, August 215t

If you feel uncomfortable about at attending face-to-face while
maintaining social distancing, students may optionally attend the 8am

Tuesday stream.

If you choose to attend Tuesday 8am, and this is not your regularly
scheduled lab time, please email your intent to lain today.

Today’s outline

More about BSTs
Search

BST vs Binary search
Depth First Search
Inorder traversal

Preorder traversal

N o U s W

Postorder traversal

Today’s outline

1. More about BSTs

More about BSTs

Like linked lists, BSTs are dynamic data structures that can easily grow
and shrink.

Unlike linked lists, BSTs can be efficient to search, insert, and delete, as
long as they remain balanced.

More about BSTs

BSTs support quite a few useful operations:
* Insert, search, and delete

e (Cansort data

* (Can traverse the data in various orders in O(n)

We've already seen insert. In this lecture and the next, we'll look at the
other operations.

Today’s outline

2. Search

Search portor
1: function BST Search(BST T, KeyType key)
2: if T == NIL then

3: return Not Found

4. else if key == -> key then

5: return T

6: else if key < T -> key then

7: return BST Search(T->left, key)
8: else

9: return BST Search(T->right, key)
10: end if

11: end function

Search complexity

What's the complexity of BST search?

Search complexity

What's the complexity of BST search?

O(h), where h is the height of the tree.
We saw in L12 that for a complete tree, h = |log, n|.
 Therefore, in best case, search should take ®(log n).

 |n worst case, where the tree is a linear chain of n nodes, search
should take @(n).

Search example 1

Trace the search path for Key = 13, indicating
branch points in the pseudocode.

N L)

function BST Search(BST T, KeyType key)

if T == NIL then

return Not Found
else if key == -> key then

return T
else if key < T -> key then

return BST_Search(T->left, key)
else

return BST_Search(T->right, key)
end if

end function

11

Today’s outline

3. BST vs Binary search

BST vs Binary search

In LO6 we looked at the binary search algorithm. Lets explore how the
BST and Binary search algorithm are related.

Refresh: A BST is a data structure that consists of a root node
containing a key field and data fields, a left subtree T, and a right

subtree Tx.

BST vs Binary search

Refresh: Binary search is an efficient algorithm for finding an item in a
sorted list.
Given an array A[0..n-1] of sorted keys, to locate a target value x, find

indexm = [(n — 1)/2] of middle element, then compare x with A[m].
Based on that value, we then divide the array in half, and conquer.

Binary search

Notice how the binary search algorithm works. At each recursion, we
remove half the search space. This is the same behavior that we saw

for BST_Search.

This is because binary search works on an ordered collection. That
collection can be a sorted array, or a BST, which is also sorted.

Comparing BST and BS

Binary_search(A, x, low, high): 1: function BST_Search(BST T, KeyType key)
1. |iflow > high then 2: if T == NIL then
2. report failure and stop 3: return Not Found
3. else 4 else if key == T -> key then
4, mid € (low + high) / 2 c. return T
5. if x = A[mid] then
_ 6: else if key < T -> key then

6. report success and return mid
7 else if x < A[mid] then 7: return BST_Search(T->left, key)
8. return Binary_search(A4, x, low, mid - 1) 8: else
9. else if x > A[mid] then 9: return BST_Search(T->right, key)
10. return Binary_search(A, x, mid+1, high) 10 end if

11: end function

20

Binary search

Binary search was first presented in the context of an ordered array.

But more generally, Binary Search operates on an ordered collection.
That collection can be a sorted array, or a BST, which is also sorted.

In a binary search we need to do three things: get an element, which if
it’s an array is the “middle” element; return the left object/subarray; or
return the right object/subarray.

Binary search

In fact, an array can also be written in tree form.

The array [1 23 456 7] corresponds to the tree:

If we performed a binary search
on our sorted array, the coloured
“middle” elements correspond to
the accordingly coloured nodes
in our binary search tree.

Today’s outline

4. Depth First Search

Traversal

Suppose we want to print the items in a BST in sorted order by key
value.

We need to traverse (walk over) the tree, pausing at the right moment

to print a node, so that we print the nodes in the right order (with
increasing key values).

On each node we’ll perform an operation, which we’ll call Process. In
reality, the process operation could be anything, like print or update.

Traversal

We will three examine three common forms of traversal:
e Pre-order
e |n-order

e Post-order

The prefix term (pre-, in-, post-) is in reference to when the root node is
processed relative to the left and right subtrees.

Depth first search

These three traversal algorithms form part of a more general search
strategy known as depth-first search (DFS).

In a DFS, the tree is deepened as much as possible on each child before
going to the next sibling.

o
Depth first search aport

The general recursive pattern of DFS is:

Go down one level to T, the recursive argument. If T exists (non-empty), then
execute the following operations in a specified order:

(L) Recursively traverse T’s left subtree
(R) Recursively traverse T’s right subtree
(T) Process the current node T
Return by going up one level, arriving at the parent node of T.

Today’s outline

5. Inorder traversal

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node \/ = Element processed Process output:

O
O

29

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node \/ = Element processed Process output:

O
O

30

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node \/ = Element processed Process output:

O
O

31

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: A

O
O

32

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: A B

O
O

33

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: A B

O
O

34

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: AB C

O
O

35

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: ABCD

O
O

36

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: ABCDE

O
O

37

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: ABCDEF

O
O

38

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: ABCDEFG

O
O

39

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: ABCDEFG

O
O

40

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: ABCDEFGH

O
O

41

Inorder traversal

function Inorder traversal(BST T)
if T # NIL then
Inorder_traversal(T->left)
process(T)
Inorder_traversal(T->right)

end if

end procedure

N O vl AW N R

= current node Q = processing (on call stack)

= completed node /= Element processed Process output: ABCDEFGHI

O
O

42

Today’s outline

6. Preorder traversal

Preorder traversal

function Preorder_traversal(BST T)
if T # NIL then
process(T)
Preorder_traversal(T->left)
Preorder_traversal(T->right)

end if

N O vl AW N R

end procedure

What's the output?

Process output:

Preorder traversal

function Preorder_traversal(BST T)
if T # NIL then
process(T)
Preorder_traversal(T->left)
Preorder_traversal(T->right)

end if

N O vl AW N R

end procedure

What's the output?

Process output: FBADCEGIH

Today’s outline

7. Postorder traversal

Postorder traversal

1: function Postorder_traversal(BST T)
2: if T # NIL then

3: Postorder_traversal(T->left)
4. Postorder_traversal(T->right)
5: process(T)

6: end if

/:

end procedure

What's the output?

Process output:

Postorder traversal

1: function Postorder_traversal(BST T)
2: if T # NIL then

3: Postorder_traversal(T->left)
4. Postorder_traversal(T->right)
5: process(T)

6: end if

/:

end procedure

What's the output?

Process output: ACEDBHIGF

Suggested reading

Search is discussed in Section 12.2

Preorder traversal is discussed in Section 12.1 (except they call it
Preorder walk).

Binary search is covered in LO6 and Section 2.3.

Solutions

Search example 1

Trace the search path for Key = 13, indicating
branch points in the pseudocode.

15)

B WY

function BST Search(BST T, KeyType key)

if T == NIL then

return Not Found
else if key == -> key then

return T
else if key < T -> key then

return BST_Search(T->left, key)
else

return BST_Search(T->right, key)
end if

end function

51

Search example 1

Trace the search path for Key = 13, indicating
branch points in the pseudocode.

N N0

function BST Search(BST T, KeyType key)
if T == NIL then
return Not Found
else if key == -> key then
return T
else if key < T -> key then
return BST_Search(T->left, key)

else
return BST_Search(T->right, key)

end if

end function

52

Search example 1

Trace the search path for Key = 13, indicating
branch points in the pseudocode.

N N0

function BST Search(BST T, KeyType key)
if T == NIL then
return Not Found
else if key == -> key then
return T
else if key < T -> key then
return BST_Search(T->left, key)

else
return BST_Search(T->right, key)

end if

end function

53

Search example 1

Trace the search path for Key = 13, indicating
branch points in the pseudocode.

p\w 1%

function BST Search(BST T, KeyType key)
if T == NIL then

return Not Found
{:else if key == -> key then }

return T

else if key < T -> key then

return BST_Search(T->left, key)
else

return BST_Search(T->right, key)
end if

end function

54

