
Binary Search Trees 3
Lecture 14

COSC 242 – Algorithms and Data Structures
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Assignment

The assignment has been released. Details can be found on Blackboard, 
under Assessment (sidebar).  The same information is also on the 242 
department web page.
Due date: 2020-09-14, at 4pm.
Groups of 3
You can choose your own group, but if you don’t tell Iain by end of day 
on Wednesday 19th, you will be assigned group members.
We will group people who have completed similar levels of internal 
assessment.
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http://www.cs.otago.ac.nz/cosc242/assessment.php
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Delete

So far we’ve looked at insertion, searching, and traversal of a binary 
search tree.
Today we’re going to look at delete. This is a more complex operation 
that requires a few helper operations:
• Minimum and maximum
• Successor and predecessor
We’ll look at these helper operations first, then return to look at delete.
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Why more complex?

Think about the operations we’ve looked at so far.
How does delete differ from search and traversal? How does it differ 
from insert?
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Pop quiz 1

Where will you always find the minimum value in a BST?
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1: function BST_find_min(T)
2: if T == NIL then
3: return Not Found
4: else if T→left == NIL then
5: return T→key
6: else
7: return BST_find_min(T→left)
8: end if
9: end function
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Pop quiz 2

Where will you always find the maximum value in a BST?
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Class challenge 1

Sketch out the pseudocode to find the maximum element in a BST.

14



Observations on min, max

Both minimum and maximum run in O(h) time on a tree of height h.
As with search, the sequence of nodes encountered forms a simple 
path downward from the root.
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Successor

Given a node T in a binary tree, sometimes we need to find its 
successor in sorted order determined by an inorder traversal.
If all keys are distinct, the successor of node T is the node with the 
smallest key greater than T→key.
The structure of a binary tree allows us to determine the successor of a 
node without ever comparing keys.
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Successor
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1: function BST_Successor(T)
2: if T→right ≠ NIL then
3: return BST_find_min(T→right)
4: else
5: parent = T→parent
6: while parent ≠ NIL and T→key > parent→key do
7: parent = parent→parent
8: end while
9: return parent
10: end if
11: end function



Pop quiz 3

Who is B’s successor? What path does it follow to get there?
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1: function BST_Successor(T)

2: if T→right ≠ NIL then

3: return BST_find_min(T→right)

4: else

5: parent = T→parent

6: while parent ≠ NIL and T→key > parent→key do

7: parent = parent→parent

8: end while

9: return parent

10: end if

11: end function



Pop quiz 4

Who is H’s successor? 
What path does it follow to get there?
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1: function BST_Successor(T)

2: if T→right ≠ NIL then

3: return BST_find_min(T→right)

4: else

5: parent = T→parent

6: while parent ≠ NIL and T→key > parent→key do

7: parent = parent→parent

8: end while

9: return parent

10: end if

11: end function



Predecessor

If all keys are distinct, the predecessor of node T is the node with the 
smallest key less than T→key.
Pseudocode for BST_Predecessor is left as a tutorial exercise.
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Delete

Let's consider our example BST again.
What do we do if we want to:
1. delete a node with no children? E.g. D?
2. delete a node with one child? E.g. A?
3. delete a node with two children? E.g. C? or E?
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Delete

In the labs, you will develop a delete based on key values (which 
basically incorporates a search into delete). 
Here we are going to assume the node to delete is already found.
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Delete
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1: procedure BST_delete(T)
2: if T→left == NIL and T→right == NIL then
3: T→parent→[left or right] = NIL
4: delete T
5: else if T has one child then // splice out T
6: T→parent→[left or right] = T→[left or right]
7: delete T
8: else if T has two children then
9: BST_replace_with_successor(T)
10: end if
11: end procedure



Splicing out

When T has two children, then we can replace T (or rather its contents) 
by its successor (or predecessor), and recursively delete the successor:
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1: procedure BST_replace_with_succesor(T)
2: successor = BST_Successor(T)
3: successor_key = successor→key
4: BST_delete(successor)
5: T→key = successor_key
6: end procedure



Delete ‘E’ (no children)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure



Delete ‘E’ (no children)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure



Delete ‘I’ (1 child)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure



Delete ‘I’ (1 child)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure



Delete ‘I’ (1 child)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

Visual realignment



Delete ‘I’ (1 child)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure



Delete ‘B’ (2 children)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

1: procedure BST_replace_with_succesor(T)

2: successor = BST_Successor(T)

3: successor_key = successor→key

4: BST_delete(successor)

5: T→key = successor_key

6: end procedure



Delete ‘B’ (2 children)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

1: procedure BST_replace_with_succesor(T)

2: successor = BST_Successor(T)

3: successor_key = successor→key

4: BST_delete(successor)

5: T→key = successor_key

6: end procedure



Delete ‘B’ (2 children)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

1: procedure BST_replace_with_succesor(T)

2: successor = BST_Successor(T)

3: successor_key = successor→key

4: BST_delete(successor)

5: T→key = successor_key

6: end procedure



Delete ‘B’ (2 children)
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1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

1: procedure BST_replace_with_succesor(T)

2: successor = BST_Successor(T)

3: successor_key = successor→key

4: BST_delete(successor)

5: T→key = successor_key

6: end procedure



Today’s outline

1. Assignment
2. Delete
3. Minimum and maximum
4. Successor and predecessor
5. Delete algorithm
6. Delete proof

40



If T has two children then T's successor must be a descendant in the 
right subtree of T:
• If T is a right descendant of some node, A, then T is greater than A, 

and therefore A cannot be a successor;
• If T is a left descendant of some node, A, then T's right descendants 

lie between T and A and therefore A cannot be a successor; 
• Therefore T's successor must be a descendant of T;
• All of T's left descendants are less than T, therefore T's successor 

must be a right descendant.    ∎
41What’s a lemma?

Lemma
If T has two children, then T’s successor must be a right descendent of T.

Proof

https://en.wikipedia.org/wiki/Lemma_(mathematics)


• From the lemma in the previous slide, we know that T's successor is a 
right descendant.

• All of T's right descendants are greater than T.
• By definition, T's successor is the smallest value in T's right subtree. 
• Let's assume that T's successor has a left child. If the successor has a left 

child, then that child's value is smaller than the successor, but since it is in 
T's right subtree, it must be greater than T. In which case we have found a 
node that is greater than T, but smaller than the successor, which is a 
contradiction.

• Therefore we conclude that T's successor has no left child.    ∎
42

Lemma
If T has two children, then T’s successor has no left child.

Proof



• The only loop in BST_delete is via a call to BST_replace_with_successor
which subsequently calls BST_delete with T's successor (call T's successor 
S).

• BST_replace_with_successor is only ever called when T has two children.
• S has at most one child by the lemma on the previous page. 
• Therefore, when BST_delete is called with S, one of the first two branches 

of the if statement are taken and neither of them include a loop.
• Therefore BST_delete will always terminate.    ∎
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Theorem
The algorithm BST_delete will always terminate.

Proof



Suggested reading

Iterative versions of minimum, maximum, and successor are given in 
section 12.2.
Delete is discussed in section 12.3, and although similar in spirit, is 
quite different to the delete algorithm discussed here. It is also 
different to the less complex deletion method used in earlier editions 
of the textbook (1st and 2nd).
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Suggested reading

The two lemmas and theorems at the end of the lecture are not 
discussed in the textbook or anywhere that faculty are aware of. 
The particular knowledge is not that important, but the idea of proving 
something about an algorithm is. 
It is also important to note that not all proofs contain equations!
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Solutions

46



Pop quiz 1

Where will you always find the minimum value in a BST?

Answer
The left-most node.
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Pop quiz 2

Where will you always find the maximum value in a BST?

Answer
The right-most node.
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Pop quiz 3

Who is B’s successor? What path does it follow to get there?

Answer
C
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Pop quiz 4

Who is H’s successor? 
What path does it follow to get there?

Answer
NIL
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4: else

5: parent = T→parent

6: while parent ≠ NIL and T→key > parent→key do

7: parent = parent→parent

8: end while

9: return parent



Class challenge 1
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1: function BST_find_max(T)
2: if T == NIL then
3: return Not Found
4: else if T→right == NIL then
5: return T→key
6: else
7: return BST_find_max(T→right)
8: end if
9: end function
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