
Red-Black Trees 2 - Insertion
Lecture 16

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Rotations
2. Insertion
3. Insert Fixup
4. Cases
5. Examples

2

Today’s outline

1. Rotations
2. Insertion
3. Insert Fixup
4. Cases
5. Examples

3

Rotations

The operations insert and delete when run on an RBT with n nodes
takes O(log n) time. Because these operations modify the RBT, the
result may violate the RBT properties.
Rotation provides efficient rebuilding to maintain these properties.

4The letters 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 represent three arbitrary subtrees.

Rotations

Rotations work by updating the pointer structure of the tree. When do
do a right-rotation on node y, we assume that its left child x is not T.nil.
y may be any node in the tree whose left child is not T.nil.
Right-rotation
• “pivots” around the edge from x to y.
• Makes x the new root of the subtree
• y becomes x’s right child
• x’s right child becomes y’s left child.

5

Right rotation

6

1: procedure RBT_Rotate_Right(x)
2: y = x→parent // set y

3: y→left = x→right // turn x’s right subtree β into y’s left subtree

4: x→right = y // set y as x’s right subtree
5: x→parent = y→parent // x’s parent becomes y’s parent

6: if y→parent == NILL then
7: root = x // y was root, make x tree root
8: else
9: y→parent→[left or right] = x // update y’s R or L child to point to x

10: end if
11: y→parent = x // y’s parent is now x
12: end procedure

Rotations

When do do a left-rotation on node x, we assume that its right child y is
not nil. x may be any node in the tree whose right child is not nil.
Left-rotation
• “pivots” around the edge from x to y.
• Makes y the new root of the subtree
• x becomes y’s left child
• y’s left child becomes x’s right child.

7
The pseudocode for left rotate is symmetric: exchange right with left everywhere.

Left rotation

8

1: procedure RBT_Rotate_Left(x)
2: y = x→right // set y

3: x→right = y→left // turn y’s left subtree β into x’s right subtree

4: y→left = x // set x as y’s left subtree
5: y→parent = x→parent // y’s parent becomes x’s parent

6: if x→parent == NILL then
7: root = y // x was root, make y tree root
8: else
9: x→parent→[left or right] = y // update x’s R or L child to point to y

10: end if
11: x→parent = y // x’s parent is now y
12: end procedure

Class challenge

Perform an RBT_Rotate_left(T, x) operation:

9Node colours omitted for convenience.

Today’s outline

1. Rotations
2. Insertion
3. Insert Fixup
4. Cases
5. Examples

11

Insertion

The basic algorithm for inserting a node into an RBT is:

12

1: procedure RBT_Insert(T, x)
2: BST_insert(T, x)
3: x.colour = RED
4: if x→parent == RED then // Violation of property 4

5: RBT_Insert_Fixup(T, x)
6: end if
7: end procedure

Insertion

By colouring x red, we may violate property 4 that says red nodes have
black children. Think of x as the problem node. We call
RBT_Insert_Fixup to restore red-black properties.
All fixups push the problem back up the tree, so RBT_Insert_Fixup
needs to traverse the tree upwards until either there is no problem
anymore, or we reach the root of the tree.
This can be done recursively or iteratively.

13

Today’s outline

1. Rotations
2. Insertion
3. Insert Fixup
4. Cases
5. Examples

14

15

procedure RBT_Insert_Fixup(T, z)
1: while z→parent.colour == RED
2: if z→parent == z→parent→parent→left // z’s parent is a left-child

3: y = z→parent→parent→right // set y to z’s “uncle”

4: if y→colour == RED
5: z→parent.colour = BLACK // case 1
6: y.colour = BLACK // case 1
7: z→parent→parent = RED // case 1
8: z = z→parent→parent // case 1

9: else
10: if z = z→parent→right
11: z = z→parent // case 2

12: RBT_Rotate_Left(T, z) // case 2
13: end if
14: z→parent.colour = BLACK // case 3
15: z→parent→parent = RED // case 3
16: RBT_Rotate_Right(T, z→parent→parent) // case 3
17: else ... (same as then clause, with ”right” and “left” exchanged)
18 T→root.colour = BLACK

Fixup procedure

To understand Fixup, we will break our investigation of the pseudocode
into three major steps:
1. We will examine what violates of RBT properties are introduced by

RBT_Insert.
2. We will consider the overall goal of the while loop lines 1-17.
3. We will explore each of the three cases.

16

Property violations

RBT properties upon entering Fixup
1. Satisfied, as z is red.

2. Violated if z is the root.

3. Satisfied, as both children of new node are T.nil
4. Violated if parent is red, as z is also red.

5. Satisfied, as z replaces black sentinel, and node z is red, with two black sentinel
children.

17

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil/null) is black.

4. If a node is red, then both its children are black*.

5. For each node, all paths from the node to leaves
contain the same number of black nodes.

While loop

The while loop in lines 1–15 maintains the following three-part
invariant at the start of each iteration of the loop:
a) Node z is red
b) If z→parent is the root, then z→parent is black
c) If the tree violates any of the RBT properties, then it violates at

most one of them, which is either property 2 or property 4.

18

Today’s outline

1. Rotations
2. Insertion
3. Insert Fixup
4. Cases
5. Examples

19

20

Example
Insert 4

21

Case 1 violation

procedure RBT_Insert_Fixup(T, z)
1: while z→parent.colour == RED
2: if z→parent == z→parent→parent→left
3: y = z→parent→parent→right
4: if y→colour == RED
5: z→parent.colour = BLACK // case 1
6: y.colour = BLACK // case 1
7: z→parent→parent = RED // case 1
8: z = z→parent→parent // case 1

9: else

Case 1: z’s uncle, y, is red.
• L5-6: Colour z’s parent and uncle black
• L7: Colour z’s grandparent black
• L8: Z now points to z’s grandparent

22

Case 2 violation
9: else
10: if z = z→parent→right
11: z = z→parent // case 2
12: RBT_Rotate_Left(T, z) // case 2
13: end if
14: z→parent.colour = BLACK // case 3
15: z→parent→parent = RED // case 3
16: RBT_Rotate_Right(T, z→parent→parent) // case 3
17: else ...
18 T→root.colour = BLACK

Case 2: z’s uncle y is black and z is a right child.
• L11: z now points to z’s parent
• L12: Left rotate on z (i.e. old z’s parent)

23

Case 3 violation
9: else
10: if z = z→parent→right
11: z = z→parent // case 2
12: RBT_Rotate_Left(T, z) // case 2
13: end if
14: z→parent.colour = BLACK // case 3
15: z→parent→parent = RED // case 3
16: RBT_Rotate_Right(T, z→parent→parent) // case 3
17: else ...
18 T→root.colour = BLACK

Case 3: z’s uncle y is black and z is a left child.
• L14: Colour z’s parent black
• L15: Colour z’s grandparent red
• L16: Right rotate on z’s grandparent Case 3 always falls through from case 2

Valid RBT

Today’s outline

1. Rotations
2. Insertion
3. Insert Fixup
4. Cases
5. Examples

24

Case 1 violation

Insert: 3, 1, 4, 2

25

Case 1 violation

Insert: 3, 1, 4, 2

26

Case 1: z's uncle is red.
It might cause a violation further up the tree.

Case 2 violation

Insert: 3, 1, 2

27

Case 2 violation

Insert: 3, 1, 2

28

Case 2: z’s uncle is black and z is a right child.

Case 3 violation

Following on from case 2 violation…

29

Case 3 violation

Following on from case 2 violation…

30

Case 3: z’s uncle is black and z is a left child.

Example Insertions (9, 8, 6, 3, 5)

31

Example Insertions (9, 8, 6, 3, 5)

32

Example Insertions (9, 8, 6, 3, 5)

33

Example Insertions (9, 8, 6, 3, 5)

34

Example Insertions (9, 8, 6, 3, 5)

35

Example Insertions (9, 8, 6, 3, 5)

36

Example Insertions (9, 8, 6, 3, 5)

37

Example Insertions (9, 8, 6, 3, 5)

38

Example Insertions (9, 8, 6, 3, 5)

39

Suggested reading

Today’s lecture covered sections 13.2 and 13.3.

40

Solutions

41

Class challenge

Perform an RBT_Rotate_left(T, x) operation:

42Node colours omitted for convenience.

