
Red-Black Trees 3 - Deletion
Lecture 17

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Delete
2. Properties
3. Delete fixup
4. Cases
5. Examples

2

Today’s outline

1. Delete
2. Properties
3. Delete fixup
4. Cases
5. Examples

3

Overview

Like other RBT operations, deletion takes O(log2n) time.
Deleting a node from an RBT is more complicated than insertion.
The procedure for deletion is a modification from BST_delete we saw
in L14. The rebalancing and enforcement of RBT properties will happen
in a new sub-procedure called RBT_Delete_Fixup.
This is the same approach as RBT_Insert, itself an extension of
BST_Insert (L12), which used RBT_Insert_Fixup to maintain RBT
properties.

4

Refresh: BST Delete

To delete a node z, BST_delete recursively searches for z, and then:
1. If z has < 2 children, replace it by a child (possibly nil); or
2. If z has == 2 children, replace it by its successor

Some node, call it y, eventually gets spliced out.
It may be that y	=	z, or y may be z’s successor.

Here z has two
children, so y is z’s
successor, 30. y gets
spliced out.
x replaces y

z

y

x

RBT deletion

To delete a node z in an RBT:
1. Delete z as for a BST
2. Fix any RBT violations

Call the spliced out node y. The spliced out node is the node that is
removed from the tree.
Sometimes y and z point to the same node (e.g., when z has one child).
Sometimes y and z are different, as we saw on the previous slide.

6

7

function RBT_delete(T, z)
1: if z→left == NIL or z→right == NIL then
2: y = z // Only one child
3: else
4: y = BST_RW_Successor(z) // Two children, assign successor
5: if y→left != NIL then // Assign x to y’s left or right child
6: x = y→left
7: else
8: x = y→right
9: x→parent = y→parent
10: if y→parent == NIL then // y is root, so
11: T→root = x // make root x, otherwise
12: else if y == y→parent→left then // Splice out y, assign x to parent subtree
13: y→parent→left = x // left child
14: else // or
15: y→parent→right = x // right child
16: if y != z then
17: z→key = y→key // copy y’s remaining data into z
18: if y.colour == BLACK then
19: RBT_Delete_Fixup(T, x) // If y was black, then fixup is needed
end function

Today’s outline

1. Delete
2. Properties
3. Delete fixup
4. Cases
5. Examples

8

Refresh: RBT Properties
1. Every node is either red or black.
2. The root is black.
3. Every leaf (nil/null) is black.
4. If a node is red, then both its children are black*.
5. For each node, all paths from the node to leaves contain the same

number of black nodes.

Questions
If y is red, can any of those properties be violated?
If y is black, can any of those properties be violated?

9

When y is red

When y is red, the RBT properties still hold when y is spliced out:
• No black-heights in the tree have changed
• No red nodes have been made adjacent (reminder: property 4, all

children of a red node are black)
• Since y could not have been the root if it was red, the root remains

black

10

When y is black

When y is black, three problems may arise:
1. If y was root, and a red child of y becomes the root, we have

violated property 2.
2. If both x and x→parent are red, we have violated property 4.
3. Moving y within the tree causes any simple path that previously

contained y to have one fewer black nodes, violating property 5.

Hence, Line 19 call to RBT_Delete_Fixup is made only if y was black.

11

1. Every node is either red or black.
2. The root is black.
3. Every leaf (nil/null) is black.
4. If a node is red, then both its children are black.
5. For each node, all paths from the node to leaves

contain the same number of black nodes.

Correction

We can correct the violation of P5 by saying that node x, now
occupying y’s original position, has an “extra” black (+1BH).
That is, if we add +1 to the count of black nodes on any simple path
that contains x, then Property 5 will hold.
In essence, when y is removed, we “push” it’s blackness onto node x.

12

1. Every node is either red or black.
2. The root is black.
3. Every leaf (nil/null) is black.
4. If a node is red, then both its children are black.
5. For each node, all paths from the node to leaves

contain the same number of black nodes.

Correction

The problem is that now node x is neither red nor black, thereby
violating property 1.
Instead, x is either “doubly black” or “red-and-black”, and it
contributes either 2 or 1, respectively, to the count of black nodes on
simple paths containing x.

13

1. Every node is either red or black.
2. The root is black.
3. Every leaf (nil/null) is black.
4. If a node is red, then both its children are black.
5. For each node, all paths from the node to leaves

contain the same number of black nodes.

Correction

The colour attribute of x will still be RED (if x is red-black) or BLACK (if x
is double black). Pay attention to this in the pseudocode.
The +1 black on a node is reflected in x’s pointing to the node, rather
than in the colour attribute.
That is, you won’t see “red-black” or “double black” in the code; it’s
what x is pointing to that conveys the +1 black.

14

Today’s outline

1. Delete
2. Properties
3. Delete fixup
4. Cases
5. Examples

15

Labels

Let's start by defining some labels:
• z is the node to be deleted
• y is the node that gets spliced out (sometimes y = z and sometimes
y is z’s successor)

• x is the child that replaced y
• w is the new sibling of x

16

Four cases to handle

1. x's sibling, w, is red. Fix then fall to case 2, 3, or 4.
2. w is black and has two black children. Fix then traverse up the tree.

If fell through from case 1, terminate.
3. w is black and w’s left child (or “inner” child) is red and right child

(“outer”) is black. Fix then fall to case 4.
4. w is black and w’s right child (“outer”) is red. Fix and terminate.

Here, “outer” and “inner” refer to w’s child, and its position with respect to x.

17

18

function RBT_delete_fixup(T, x)
1: while x != root and x.colour == BLACK
2: if x == x→parent→left // Symmetric with right-child, L22 else
3: w = x→parent→right // Set sibling
4: if w.colour == RED // Is x-sibling red?
5: w.colour = BLACK // Case 1
6: x→parent.colour = RED // Case 1
7: Left_rotate(T, x→parent) // Case 1
8: w = x→parent→right // Case 1
9: if w→left.colour == BLACK and w→right.colour == BLACK // Both children black?
10: w.colour = RED // Case 2
11: x = x→parent // Case 2
12: else if w→right.colour == BLACK // Left is red, right is black?
13: w→left.colour = BLACK // Case 3
14: w.colour = RED // Case 3
15: Right_rotate(T, w) // Case 3
16: w = x→parent→right // Case 3
17: w.colour = x→parent.colour // Case 4 (fall through)
18: x→parent.colour = BLACK // Case 4
19: w→right.colour = BLACK // Case 4
20: Left_rotate(T, x→parent) // Case 4
21: x = T→root // Case 4
22: else ... (same as L2 if clause, with “right” and “left” exchanged)
23: x.colour = BLACK
end function

Today’s outline

1. Delete
2. Properties
3. Delete fixup
4. Cases
5. Examples

19

Fixup

The main job of RBT_Delete_Fixup is to restore RBT property 1.
This is achieved through the while loop Lines 1-22 by moving the extra
black up the tree until:
1. x points to a red-and-black node. We colour x (singly) black in L23.

(Recall SL15: the colour attribute of “red-and-black” is red, thus breaking
the while loop); or

2. x points to the root (on L11 or L21). We “remove” the extra black; or
3. Having performed suitable rotations and re-colourings, we exit the loop.
Remember: If x is a right-child, flip all left and rights. You may prefer to think
of w’s children as “outer” and “inner” with respect to x.

20

Notes about fixup

Within the while loop, x always points to a non-root doubly black node.
The code handles 4 cases. The transformation in each case preserves
the number of black nodes (including x’s extra black) from - and
including - the root of the subtree shown to each of the subtrees
𝛼, 𝛽, 𝛾, 𝛿, 𝜀, 𝜁.
Thus, if property 5 held prior to transformation, it continues to hold
afterwards.
In our next set of figures, c an c’ refers to a node that could be either
red or black (either could happen, and neither is required).

21

Case 1 – x’s sibling w is red
Operations

• Switch colours of w and x’s parent (L5, 6)

• Left-rotate on x’s parent (L7)

• x’s new sibling is now black (L8)

Flow

• Doesn’t terminate.

• May fall through to cases 2, 3, or 4.

Children

𝛼, 𝛽 = 3 (B + 2A)

𝛾, 𝛿, 𝜀, 𝜁 = 2 (B + C or E) 22

procedure RBT_delete_fixup(T, x)
1: while x != root and x.colour == BLACK
2: if x == x→parent→left // Symmetric with right-child
3: w = x→parent→right
4: if w.colour == RED // Is x-sibling red?
5: w.colour = BLACK // Case 1
6: x→parent.colour = RED // Case 1
7: Left_rotate(T, x→parent) // Case 1
8: w = x→parent→right // Case 1

Case 2 - w is black, both of w’s children black
Operations
• Make w red (L10)
• Make x-parent the new x (L11). This pushes +1 black up the tree, seeking balance.
Flow
• If entered from Case 1,

terminate (x = red-black)
Children
𝛼, 𝛽 = 2 𝑜𝑟 3 (B? + 2A)
𝛾, 𝛿, 𝜀, 𝜁 = 2 𝑜𝑟 3 (B? + D + C or E)
Colouring
If we entered from Case 1, then B
must be red. But if we didn’t, then
B could be either red or black. 23

// Both children black?
9: if w→left.colour == BLACK and w→right.colour == BLACK
10: w.colour = RED // Case 2
11: x = x→parent // Case 2
12: else if w→right.colour == BLACK

Case 3 - w is black, w’s left child (inner) is red,
and w’s right child (outer) is black

Operations
• Make w’s left (inner) child black (L13)
• Make w red (L14)
• Right-rotate on w (L15)
• Update w (x-sibling) (L16)
Flow
• Will fall into Case 4
Children
𝛼, 𝛽 = 2 𝑜𝑟 3 (B? + 2A)
𝛾, 𝛿 = 1 𝑜𝑟 2 (B? + D)
𝜀, 𝜁 = 2 𝑜𝑟 3 (B? + D + E)
Colouring
If we enter from Case 1, then B must be red.

24

12: else if w→right.colour == BLACK // Left is red, right is black?
13: w→left.colour = BLACK // Case 3
14: w.colour = RED // Case 3
15: Right_rotate(T, w) // Case 3
16: w = x→parent→right // Case 3
17: w.colour = x→parent.colour // Case 4 (fall through)

Case 4 - w is black, w’s right child (outer) is red
Operations
• Make w x-parent colour (L17)
• Make x-parent black (L18)
• Make w’s right (outer) child black (L19)
• Left-rotate x-parent (L20)
• Make x the root (L21)
Flow
• Always terminate
Children
𝛼, 𝛽 = 1 𝑜𝑟 2 (B? + 2A)
𝛾, 𝛿 = 1, 2, 𝑜𝑟 2 (B? + D + C?)
𝜀, 𝜁 = 1 𝑜𝑟 2 (B? + D)
Colouring
If we enter from Case 1, then B must be red.
C can be either black or red, as either is allowed/possible. 25

16: w = x→parent→right // Case 3
17: w.colour = x→parent.colour // Case 4
18: x→parent.colour = BLACK // Case 4
19: w→right.colour = BLACK // Case 4
20: Left_rotate(T, x→parent) // Case 4
21: x = T→root // Case 4
22: else ...

Today’s outline

1. Delete
2. Properties
3. Delete fixup
4. Cases
5. Examples

26

Case 1 - Example

27

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

Case 1 - Example

28

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

Case 1 - Example

29

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

Case 1 - Example

30

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

w

Case 1 – x’s sibling w is red
• Switch colours of w and x’s parent
• Left-rotate on x’s parent

Case 1 - Example

31

1. Identify y and z.
2. Delete z as for a BST
3. Identify w and w’s children
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

w

Case 1 – x’s sibling w is red
• Switch colours of w and x’s parent
• Left-rotate on x’s parent

Case 1 è Case 2, 3, or 4.
In this example, we have Case 2

Case 1 – Example

32

Same tree, without deleting 10, showing fixup actions and only relevant nodes.

Case 2 - Example

33

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

Case 2 - Example

34

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

Case 2 - Example

35

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Delete 10

Case 2 - Example

36

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 2 – w is black, both w’s children are black
• Make w red
• Make x-parent the new x
• If came from case 1 then terminate

Delete 10

Case 2 - Example

37

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 2 – w is black, both w’s children are black
• Make w red
• Make x-parent the new x
• If came from case 1 then terminate

Delete 10

Either we are done, as new-x is now red-black
(seen as “red” by while loop, and exits), or
we head up the tree with new x.

Case 2 - Example

Same tree, without deleting 10, showing fixup actions only.

38Blue means the node could be red or black.

Case 3 - Example

39

Delete 10

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 3 - Example

40

Delete 10

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 3 - Example

41

Delete 10

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 3 - Example

42

Delete 10

Case 3 – w is black, left child (inner) is red
• Make w’s left-child black
• Make w red
• Right-rotate on w
• Update w (x-sibling)

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 3 - Example

43

Delete 10

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 3 – w is black, left child (inner) is red
• Make w’s left-child black
• Make w red
• Right-rotate on w
• Update w (x-sibling)

We now fall into è Case 4

Case 4 - Example

44

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 - Example

45

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 - Example

46

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 - Example

47

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 – w is black, w’s left (outer) child is black
• Make w x-parent colour
• Make x-parent black
• Make w’s left (outer) child black
• Right-rotate x-parent
• Make x the root

Note: here we have x as a right-child. Therefore, we flip
all left and rights. These are shown underlined.

Case 4 - Example

48

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 – w is black, w’s left (outer) child is black
• Make w x-parent colour
• Make x-parent black
• Make w’s left (outer) child black
• Right-rotate x-parent
• Make x the root

x

x is now the tree root è terminate

Case 4 - Example

49

Modified tree, with x now a left child, without deleting 10, showing
fixup actions only. This time x is a left-child.

Blue means the node could be red or black.

Suggested reading

Today’s lecture covered section 13.3.
The code for deletion and fixup won’t be implemented in the labs due
to its high complexity. Pseudocode was included in lectures to make it
easier to see how re-balancing was achieved.

50

