
Graphs 1
Lecture 19

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Representations
2. Adjacency list and matrix
3. Breadth-first search
4. Depth-first search

2

Today’s outline

1. Representations
2. Adjacency list and matrix
3. Breadth-first search
4. Depth-first search

3

Definition

A graph, G, consists of a set of vertices, V, and a set of edges, E. This is
often denoted as G	=	(V,	E).
Vertices are specified by unique labels, and an edge is an ordered pair
of vertex labels.
For example:
G	=	(V,	E)
V	=	{a,	b,	c,	d}
E	=	{(b,	a),	(b,	c),	(a,	d),	(d,	c)}

4

Definition

A graph may be directed or undirected. The definition given previously
suffices for both, or we can explicitly define all edges in an undirected
graph:
E	=	{(b,a),	(a,b),	(b,c),	(c,b),	(a,d),	(d,a),	(d,c),	(c,	d)}

5

Visual representation

Graphs are often represented visually. For example, the above graph,
with directed edges on the left, and undirected on the right, looks like:

6

Applications – Just a few

• the web, internet and all computer networks are graphs
• network routing
• web search (e.g. via pagerank)
• a map can be represented as a graph
• shortest path algorithms are graph algorithms
• automatically timetabling classes to minimise clashes
• social networks are graphs
• Neural pathways in the brain can be modelled as a graph.
• molecules can be modelled as graphs and used to simulate physical processes
• biological systems can be modelled as graphs (predator, prey, etc)
• projects can be modelled as graphs. Graph algorithms are used to determine
• critical paths or critical actions in a project

7

Today’s outline

1. Representations
2. Adjacency list and matrix
3. Breadth-first search
4. Depth-first search

8

Adjacency matrix

Let G = (V, E) with V = {a1, a2, …, an}. We assume that vertices are
numbered 1, 2, …, n. Where 𝑛 = 𝑉 is the number of vertices in the
graph.
An adjacency matrix for G is an |V| × |V| Boolean array A = (aij), such
that a[i, j] = 1 if there is a (directed) edge from i to j, else a[i, j] = 0.

𝑎!" = 21 𝑖𝑓 𝑖, 𝑗 ∈ 𝐸,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For each 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉, the matrix will contain 1 at row u and
column v, if the edge (𝑢, 𝑣) ∈ 𝐸, otherwise 0.

9

Examples: Adjacency matrix

10

Undirected

Directed

Class challenge

11

Construct adjacency matrices

Observations

The adjacency matrix of a graph requires 𝚯(V2) memory, independent
of the number of edges in the graph.
In an undirected graph, (u,v) and (v,u) represent the same edge, and so
the adjacency matrix A is its own transpose: A = AT. That is, reflecting
elements along its main diagonal.

13

Adjacency lists

Let G = (V, E) with V = {a1, a2, …, an}.
An adjacency list consists of an array Adj of 𝑉 lists, one for each vertex
in V. For each 𝑢 ∈ 𝑉, 𝐴𝑑𝑗 𝑢 contains all the vertices 𝑣, such that there
is an edge (𝑢, 𝑣) ∈ 𝐸.

14

Adjacency lists

15

Class challenge

Visualise the graph that corresponds to the following adjacency list:

16

Adjacency

If (u, v) is an edge in a graph G = (V, E), we say that vertex v is adjacent
to vertex u.
When the graph is undirected, the adjacency relation is symmetric.
When the graph is directed, the adjacency relation is not necessarily
symmetric.
In (a) and (b) of the Figure, vertex 2
is adjacent to vertex 1, since the edge
(1, 2) belongs to both graphs. Vertex 1 is
not adjacent to vertex 2 Figure (a), since
the edge (2, 1) does not belong to the
graph. That is, we cannot reach 1 from 2.

18

Comparing implementations

Suppose G is a graph with n vertices in V. Which is better, an adjacency
matrix or adjacency list?
The space requirements of the adjacency matrix are high - if the graph
is dense this space is utilised, if the graph is sparse an adjacency list
would be more economical.
Dense means the number of edges in E is close to n2, sparse means n or
fewer edges.

19

Comparing implementations

It also depends on the operations we want to use. Apart from insertion
and deletion, the three most common operations on graphs are:
1. Given two vertices i and j, determine whether there is an edge

connecting them.
2. Given vertex i, find all vertices adjacent to i.
3. Given a vertex i as starting point, traverse the graph.
Discussion
The first operation is supported best by the adjacency matrix, the
second and third by adjacency lists. Why?

20

Today’s outline

1. Representations
2. Adjacency list and matrix
3. Breadth-first search
4. Depth-first search

23

BFS Overview

Given a graph G = (V, E) and a source vertex s, BFS explores the edges
of G to discover every vertex that is reachable from s. It computes the
distance (smallest number of edges) from s to each reachable vertex.
The algorithm works on both directed and undirected graphs.
BFS explores all of the neighbour nodes at the present depth prior to
moving on to nodes at the next depth level.
That is, it discovers all vertices at distance k from s, before discovering
vertices at distance k + 1.

24

BFS Overview

Every vertex starts off coloured white. A vertex is then coloured grey
when it is “discovered” for the first time (adjacent to the current node).
The node is finally coloured black when its adjacency list has been fully
examined (i.e. all the vertices adjacent to it have been coloured grey).
If (u, v) ∈ E and vertex u is black, then vertex v is either grey or black.
That is, all vertices adjacent to black vertices have been “discovered”.
Grey vertices may have some adjacent white vertices, as these
represent the frontier between discovered and undiscovered vertices.

25

BFS Distances

For every vertex u, we compute the distance from the source vertex s,
Initially, the distance from source s to u is set to ∞. We store this in a
variable u.d.
We could simplify the algorithm to do without colours (instead of
testing whether u.c = white we can test whether u.d = 1).
The predecessor of u is stored in u.π. The algorithm uses a first-in, first-
out queue (FIFO).
The results of BFS depends upon the order in which the neighbours of a
given vertex are visited in L12, but the distances d computed will not.

26

27

procedure BFS_Search(G, s)
1: for each vertex 𝑢 ∈ 𝐺. 𝑉 − {𝑠} // Initialise all vertices except source

2: u.colour = WHITE
3: u.d = INF
4: u.π = NIL
5: s.colour = GREY // Initialise source
6: s.d = 0
7: s.π = NIL
8: Q = Ø
9: Enqueue(Q, s) // Add source to queue
10: while Q = Ø // While we have vertices to explore

11: u = Dequeue(Q) // Get next vertex

12: for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // For-each vertex that is adjacent to u

13: if v.colour == WHITE
14: v.colour = GREY
15: v.d = u.d + 1
16: v.π = u
17: Enqueue(Q, v) // Add to queue, to explore later
18 u.colour = BLACK // Explored all adjacent vertices, make self black
end procedure

BFS and binary trees

When applied to a binary tree, BFS gives a new kind of traversal - a
level-order traversal.

28

Example

29
Q = Queue

Start

Next

Example

30

Next
Next

End

Today’s outline

1. Representations
2. Adjacency list and matrix
3. Breadth-first search
4. Depth-first search

31

Depth-First Search

The idea of depth-first search (DFS) is that one goes deeper whenever
possible. That is, we explore the edges from the most recently
discovered vertex v.
Once all of v’s edges have been explored, the search ”backtracks” to
vertex u, (v’s parent from which u was discovered), and continue
exploring edges leaving vertex u.
As in BFS, vertices start off white, are made grey when first discovered,
and are made black when finished, i.e. their adjacency list has been
examined completely.

32

DFS Overview

DFS also timestamps each vertex. Each vertex v has two timestamps:
the first v.d records when v was first discovered (i.e. coloured grey), and
the second timestamp v.f when the search finishes examining v’s
adjacency list (i.e. blackens v).
Timestamps provide important information about tree structure.
Timestamps are integers that range between 1 and 2|V|.
For each vertex, u.d < u.f
The variable time is a global variable for timestamping.

33

34

procedure DFS(G)
1: for each vertex 𝑢 ∈ 𝐺. 𝑉 // Initialise all vertices

2: u.colour = WHITE
3: u.π = NIL
4: time = NIL // Initialise time (global variable)
5: for each vertex 𝑢 ∈ 𝐺. 𝑉
6: if u.colour == WHITE
7: DFS-Visit(G, u) // Visit each white vertex in Graph

procedure DFS-Visit(Q, u)
1: time = time + 1 // Increment global time value
2: u.d = time // Vertex discovered time

3: u.colour = GREY
4: for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // For each vertex v adjacent to vertex u

5: if v.colour == WHITE // if white, then it’s unexplored and we need to visit
6: v.π = u
7: DFS-Visit(Q, v)
8: u.colour = BLACK // Explored all adjacent vertices, make self black
9: time = time + 1 // Increment time (global)
10: u.f = time // Set finish time for self

DFS Example

35

Start

Next

(e) We rediscover vertex v, but it’s not white, so this is a back edge.
(f) We’ve now explored all vertices in x, colour black, and recurse up to (g)

DFS Example

36

Next

(j) Explored all vertices in u, colour black.
(k) Explore next white vertex in Graph (Liens 5-7 of DFS)

End

(l) Rediscover node y, but it’s not white, so cross edge.
(p) All vertices fully explored, colour last vertex black.

Suggested reading

Today’s material on elementary graph algorithms is discussed in Section
22 of the textbook.
A primer on graphs and graph terminology is covered in Appendix B.4
of the textbook.

37

Solutions

38

Class challenge

39

Construct adjacency matrices

𝑎
𝑎 0

𝑏 𝑐
1 0

𝑑
1

𝑏 1
𝑐 0

0 1
1 0

0
1

𝑑 1 0 1 0

𝑎
𝑎 0

𝑏 𝑐
0 0

𝑑
1

𝑏 1
𝑐 0

0 1
0 0

0
0

𝑑 1 0 1 0

Class challenge

Visualise the graph that corresponds to the following adjacency list:

40

Comparing implementations

1. Given two vertices i and j, determine whether there is an edge
connecting them.

In an undirected graph, a matrix allows for a single lookup
operation. In contrast, a list would require traversal of up to d
elements for vertex i. This list is length d (degree of vertex).

2. Given vertex i, find all vertices adjacent to i.
With a list, we need only look at and traverse the list of length d at
vertex i. But for a matrix, we need to look at all |V| in row i.
However, with a dense graph, matrix and list are equivalent.

41

Comparing implementations

3. Given a vertex i as starting point, traverse the graph.
With a list, we only traverse traverse the number of elements =
|E|, the number of edges in graph. For a matrix, we need to
traverse V2 elements (wasted steps due to 0 edge coding).
However, with a dense graph, matrix and list are equivalent.

42

Image attributions

43

This Photo by Unknown Author is licensed under CC0

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

https://freesvg.org/questioning-boy
https://creativecommons.org/publicdomain/zero/1.0/

