
Graphs 3 – Weighted graphs
Lecture 21

COSC 242 – Algorithms and Data Structures

1 2 3

4 5 6

Today’s outline

1. Weighted graphs
2. Shortest paths
3. Dijkstra’s algorithm
4. Minimum spanning Tree
5. Prim’s algorithm

2

Today’s outline

1. Weighted graphs
2. Shortest paths
3. Dijkstra’s algorithm
4. Minimum spanning Tree
5. Prim’s algorithm

3

Weighted graphs

Graphs become more useful when we can give weights or costs to the
edges. Weighted graphs can be used to model:
• maps with weights representing distances
• water networks with weights representing water capacities of pipes
• electrical circuits with weights representing resistance or maximum

voltage or maximum current
• computer or phone networks with weights representing length of

wires between nodes

4

Weighted graphs

One of the canonical applications for weighted graphs is finding the
shortest path between two nodes. These algorithms are used in Google
Maps for example.

We will focus on single-source shortest paths. These problems have a
particular source vertex, s, and construct shortest paths to all other
vertices in the graph (if they exist).

5

Dijkstra’s algorithm and Prim’s algorithm

Today we will be looking at two closely related algorithms for
determining optimal paths through a graph.
Both approaches are examples of greedy algorithms. We will explore
greedy algorithms in our next lecture, but briefly, a greedy algorithm is
a simple heuristic that makes the locally optimal choice at each stage.
Dijkstra’s algorithm resembles both breadth-first search (BFS) and
Prim’s algorithm. Both use a min-priority queue to find the “lightest”
vertex outside a given set.

6

Today’s outline

1. Weighted graphs
2. Shortest path algorithms
3. Dijkstra’s algorithm
4. Minimum spanning Tree
5. Prim’s algorithm

7

Shortest paths problem

In a shortest paths problem, we have a weighted directed graph
G	=	(V,	E), with a weight function 𝑤 ∶ 𝐸 → ℝ, that maps edges to real-
valued weights.
The weight w(p)	of path 𝑝 = 𝑣!, 𝑣", … , 𝑣# is the sum of the weights

of its constituent edges: ∑$%"# 𝑤 𝑣$&", 𝑣$.

8

Math glossary
You can read 𝑤 ∶ 𝐸 → ℝ as “the function w that maps elements of E to elements of ℝ.
That is, if (a,b) ∈ w, then we write b	=	w(a).
Function arrow notation and textbook Appendix B.3
Set notation

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Set-builder_notation

Shortest paths problem

We define the Shortest path weight 𝛿 𝑢, 𝑣 from u to v as:

𝛿 𝑢, 𝑣 = 7𝑚𝑖𝑛 𝑤 𝑝 : 𝑢 ↝' 𝑣
∞

A shortest path from vertex u to vertex v is therefore any path p with
weight 𝑤 𝑝 = 𝛿 𝑢, 𝑣 .

9

If	there	is	a	path	from	u to	v,
otherwise.

Notation glossary
↝! – See Appendix B.4. We say that if there is a path p from u to v, then v is reachable from
u via p, which can be written as 𝑢 ↝! 𝑣 if G is directed.
See also, Brackets

https://en.wikipedia.org/wiki/List_of_mathematical_symbols

Shortest path algorithms and variants

Dijkstra’s algorithm is a solution for the single-source shortest-paths
problem: given a graph G	=	(V,	E), we want to find the shortest path
from a given source vertex s ∈ V to each vertex v ∈ V.
This algorithm for single-source can solve many other problems
including: single-destination shortest-paths, single-pair shortest-path,
All-pairs shortest-paths. The textbook delves into some of these.
A shortest path algorithm relies on the property that a shortest path
between two vertices contains other shortest paths within it.

10

Today’s outline

1. Weighted graphs
2. Shortest paths
3. Dijkstra’s algorithm
4. Minimum spanning Tree
5. Prim’s algorithm

11

Relaxation

Single-source shortest path algorithms use the technique relaxation.
For each vertex 𝑣 ∈ 𝑉, we maintain v.d, which is an upper bound on
the weight of a shortest path from source s to v.
The value v.d is a shortest path estimate.
We begin by initialising the shortest path estimates:

12

procedure Initialize-Single-Source(G,s)
1: for each vertex 𝑣 ∈ 𝐺. 𝑉 // Initialise all vertices
2: v.d = ∞ // Set all distances to inf
3: v.π = NIL // No predecessor
4: s.d = 0 // Set source distance to 0

Relaxation

Relaxing an edge (u,	v) consists of testing whether we can improve the
shortest path to v found so far by going through u. If we can, update v.d
and v.π.
The process of relaxation may decrease the shortest-path estimate v.d,
and update v’s predecessor v.π.

13

procedure Relax(u,v,w)
1: if v.d > u.d + w(u,v) // Is u’s adj vertex v.d longer than this path?
2: v.d = u.d + w(u,v) // Update v’s distance to shorter value
3: v.π = u // u is v’s new predecessor

Example of relaxation

Here we relax an edge of weight w(u,v) = 2.
a) The value of v.d decreases because 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
b) 𝑣. 𝑑 ! > 𝑢. 𝑑 + 𝑤(𝑢, 𝑣) before relaxation, so relaxation step leaves

v.d unchanged.

14

Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on
a weighted directed graph, for which all edge weights are non-negative.
The algorithm maintains a set S of vertices whose final shortest-path
weights from source vertex s have been calculated.
The algorithm works by repeatedly selecting a vertex 𝑢 ∈ 𝑉 − 𝑆, with
the minimum shortest-path estimate d. It then adds u to S, and relaxes
all edges leaving u.
We use a min-priority queue of Q vertices, keyed by d.

15

Dijkstra’s algorithm

16

procedure Dijkstra(G,w,s)
1: Initialise-Single-Source(G,s) // Initialise all vertices
2: S = Ø // Set of vertices with shortest-paths
3: Q = G.V // Set of unvisited vertices
4: while Q ≠ Ø // While still vertices to explore
5: u = Extract-Min(Q) // Get vertex with min shortest path d
6: S = S ∪ 𝑢 // Add to set with shortest paths
7: for each vertex v ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // For each adjacent vertex
8: Relax(u,v,w) // Update v.d, v.π if new shortest path
end procedure

17

procedure Dijkstra(G,w,s)
1: for each vertex 𝑣 ∈ 𝐺. 𝑉 // Initialise all vertices
2: v.d = ∞
3: v.π = NIL
4: s.d = 0 // Set source distance to 0
5: S = Ø // Set of vertices with shortest-paths
6: Q = G.V // Set of unvisited vertices
7: while Q ≠ Ø // While still vertices to explore
8: u = Extract-Min(Q) // Get vertex with min shortest path d
9: S = S ∪ 𝑢 // Add to set with shortest paths
10: for each vertex v ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // For each adjacent vertex
11: if v.d > u.d + w(u,v) // Is u’s adj vertex v.d longer than this path?
12: v.d = u.d + w(u,v) // Update v’s distance to shorter value
13: v.π = u // u is v’s new predecessor
end procedure

Dijkstra’s algorithm - Single procedure version

Example: Dijkstra’s algorithm

18

s is source vertex. Shortest-path estimates, v.d, appear within vertices. Shaded
edges indicate predecessor values. Black vertices are in set S. White vertices are
in min priority queue Q = V - S.
(a) Just before the while loop (Lines 4-8). Always begin at source s, as s.d = 0,

Line 4.
(b) Add s to S (coloured black), and relax adjacent vertices t and y. y has the

minimum v.d (shaded grey), and will be selected next.
(c) Add y to S, adjacent vertices t, x, and z. Note that t is updated again.

continued

Line numbers from single procedure code

∞ ∞

0

∞ ∞

10

5

1

2

9
6432

10 ∞

0

5 ∞

10

5

1

2

9
6432

10 14

0

5 7

10

5

1

2

9
6432

t

s

x

y z

t

s

x

y z

t

s

x

y z

Example: Dijkstra’s algorithm

19

d) z is selected next. Update adjacent vertex x. t will be selected next.
e) Add t to S, update adjacent and final vertex x.
f) Add x to S. While loop (Line 7) will now terminate s all vertices have

moved from Q to S.

8 13

0

5 7

10

5

1

2

9
6432

8 9

0

5 7

10

5

1

2

9
6432

8 9

0

5 7

10

5

1

2

9
6432

t

s

x

y z

t

s

x

y z

t

s

x

y z

Class challenge

20

Apply Dijkstra’s
algorithm,
beginning at source
vertex Gore.

Today’s outline

1. Weighted graphs
2. Shortest paths
3. Dijkstra’s algorithm
4. Minimum spanning Tree
5. Prim’s algorithm

21

Minimum spanning tree

Hypothetical scenario
You want to wire the campus’ computer network. You need to make
sure that every building is physically connected.
However, fibre cable is expensive. You want minimise the total length of
cable used to connect all the buildings.
How do you know which buildings to connect to form a single
connected network that minimises cable length/cost?

22

Minimum spanning tree

For this problem, the single-source shortest paths algorithm might not
give us the overall minimum length of cable. Why?
Because Dijkstra’s algorithm is concerned with minimising the path
weight from a source vertex to all other vertices.
It does not minimise the total path weight in the graph. Our class
challenge on SL34 will highlight this difference.
We need a different algorithm - a minimum spanning tree algorithm.

23

Trees

A tree is an undirected graph in which any two vertices are connected
by exactly one path. All undirected acyclic graphs are trees.
A spanning tree of an undirected graph, G, is a connected acyclic
subgraph of G that contains all the vertices in G, with a minimum
possible number of edges.
A graph may have more than one spanning tree.

24

Tree Spanning tree
Formed by red edges in Graph

5

1

42

6

3

7

MST definition

A minimum spanning tree of a weighted undirected graph, G, is a
spanning tree of G with minimum total weight. That is, the sum of the
edge weights is a minimum.
Put another way, an MST is a subset of the edges of a weighted
undirected graph that connects all the vertices together, without any
cycles, and with the minimum possible total edge weight.

25

Today’s outline

1. Weighted graphs
2. Shortest paths
3. Dijkstra’s algorithm
4. Minimum spanning Tree
5. Prim’s algorithm

26

MST Algorithm

Prim's algorithm is a classic MST algorithm that works in a similar way
to Dijkstra's algorithm.
We start with an empty spanning tree. We use a min-priority queue to
select the vertex with the lowest edge weight.
These vertices become ‘connected’, growing our spanning tree.

27

MST Algorithm

Unlike with Dijkstra’s, our tree is not stored in an explicit data structure.
Rather, the tree is formed implicitly through our predecessor-child
edges v.π, and the variable v.key, the minimum weight edge connecting
v to a vertex in the MST.
The set S represents vertices in our MST. We now have two sets of
vertices:
• Set S = vertices in our MST
• Set V – S = vertices not in our MST (those in the min-priority queue).

28

Cuts

In graph theory, a cut is a group of edges that connects two sets of
vertices in a graph. An edge crosses the cut if one vertex is in S, the
other is in V – S.
A light edge is an edge crossing a cut with the minimum weight of any
edge crossing the cut. In the figure below, edge (d, c) is a light edge.

29

S = Vertices in MST

V - S = Vertices not in MST

Cuts indicated by edges
connecting black and white
vertices. E.g., (h,a), (c,b).

Light edge = edge (d, c)

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14
S S

V - S V - S

Cuts and Prim’s algorithm

In Prim’s algorithm, at each step we find the light edge – an edge that
crosses the cut that connects set S (in our MST) with set V - S (not in
MST). That edge has the minimum edge weight.
We dequeue this connecting vertex (remove from V - S), adding it to
our MST by setting v.π and setting edge weight in v.key (added to S).

30

31

procedure MST-Prim(G,w,r) // r = root of minimum spanning tree
1: for each vertex 𝑢 ∈ 𝐺. 𝑉 // Initialise graph
2: u.key = ∞
3: u.π = NIL
4: r.key = 0
5: Q = G.V // Set V – S (not in MST)
6: while Q ≠ Ø
7: u = Extract-Min(Q) // Get vertex on light-edge that crosses cut (.key)
8: for each vertex v ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // Update u’s adjacent vertices not in MST
9: if v ∈ 𝑄 and w u, v < v. key // Update non-MST vertices with lower weight edge?
10: v.π = u
11: v.key = w(u,v)
end procedure

Prim’s algorithm

Example: Prim’s algorithm

32

Root = vertex a

a) root (a) always selected first (key = 0), Line 7. Update keys for b, h.
b) b selected next (only b, h < ∞), and add edge (b, a) to tree. Update

key for c. After this, the algorithm could add either (c, b) or (h, a) to
the tree. Both are light edges.

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

Example: Prim’s algorithm

33

Root = vertex a

c) Algorithm chose (c, b). Update keys on d, i, and f.
d) i must be selected next. Update keys for g and h. Now, vertices d, g,

h, and f have keys < ∞. Of these, f is the smallest (with 4) and will
be selected next.

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

Example: Prim’s algorithm

34

Root = vertex a

e) Select f, update keys of e and g. g’s new key (g, f) is lower than the
key from (g, i).

f) All vertices now have keys < ∞. We next select g, as it has the
lowest key (key = 2).

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

Example: Prim’s algorithm

35

Root = vertex a

Finished

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

b c

a

h g

4

8

8

1

d

e

f

i11
7 6

2

7

4

2

9

10

14

Class challenge

To illustrate the difference between Dijkstra’s and Prim’s algorithms,
apply them respectively to the following graphs, starting at ‘x’.

36

x

y

z

2

2

1 x

y

z

2

2

1

Dijkstra’s Prim’s

Class challenge

38

Create an MST using
Clocktower as root.

Suggested reading

Dijkstra’s algorithm is discussed in Section 24.3 of the textbook. A
general introduction to single-source shortest path algorithms, which
forms the basis of Dijkstra’s algorithm, is in Section 24 introduction.
Prim’s algorithm is covered in Section 23.2.
Priority queues are covered in Section 6.5.
Paths are reviewed in Appendix B.4.
Arrow notation in Appendix B.3.

39

Solutions

40

Class challenge

To illustrate the difference between Dijkstra’s and Prim’s algorithms,
apply them respectively to the following graphs.

41

x

y

z

2

2

1 x

y

z

2

2

1

Dijkstra’s Prim’s

