
Dynamic programming 1
Lecture 23

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Dynamic programming
2. Assembly line scheduling
3. Fastest path and a recursive solution
4. Example
5. Dynamic programming iterative solution

2

Today’s outline

1. Dynamic programming
2. Assembly line scheduling
3. Fastest path and a recursive solution
4. Example
5. Dynamic programming iterative solution

3

Dynamic programming

The iterative and memoised algorithms for solving the 0-1 knapsack
problem are examples of dynamic programming solutions to problems.
Dynamic programming:
• is used for optimisation problems, where we want to find the “best

way” of doing something;
• is a recursive approach that involves breaking a global problem

down into more local subproblems;

4

List continues…

Dynamic programming

Dynamic programming:
• requires optimal substructure, i.e. a simple way to combine optimal

solutions of smaller problems to get optimal solutions of larger
problems;

• avoids the inefficiency that subproblem overlap causes for
straightforward recursion (the same subproblems occurring often
and thus being solved many times);

• does this by memoisation (i.e. storing the solutions of subproblems
in a table and then looking them up).

5

Dynamic programming vs Greedy

Dynamic programming and greedy algorithms are applied to
optimisation problems. They are related techniques with different
approaches.
Greedy algorithms solve a problem by running forward, and greedily
choosing the locally best item as the next one. Only one path or
solution is ever considered. It’s a top-down approach.
Dynamic programming algorithms solve a problem by considering
multiple paths at each decision point. Dynamic programming solutions
often (but not always) work backwards and define the optimal solution
to a problem as a choice over optimal solutions to sub-problems.

6

Example problems

There are many problems that can be solved efficiently using dynamic
programming including:
• 0-1 knapsack problem
• assembly-line scheduling (we’ll look at this next)
• matrix chain multiplication (in what order to multiply matrices)
• longest common subsequence of two strings (useful for finding

commonalities in genomes)
• constructing optimal binary search trees given a known distribution

of search keys.
7

Today’s outline

1. Dynamic programming
2. Assembly line scheduling
3. Fastest path and a recursive solution
4. Example
5. Dynamic programming iterative solution

8

Assembly line scheduling

Assembly line scheduling solves a manufacturing problem in industry.
The Wolksvagen automotive company produces cars in a factory that
has two assembly lines, denoted as i = 1 or 2.
A vehicle chassis enters each assembly line, and has parts added to it at
n different stations. The finished vehicle exits at the end of the line.

9

Assembly line

10

ei = Entry time for line i
ai,j = Assembly time for Station j, on line i

ti,j = Transfer time away from line i, after station Si,j
xi = Exit time for vehicle to leave line i

Station S1,1 Station S1,2 Station S1,n-1 Station S1,n

Station S2,1 Station S2,2 Station S2,n-1 Station S2,n

Assembly line 1

Assembly line 2

Assembly line scheduling

Each assembly line has n stations, numbered j = 1, 2, …, n.

We denote the jth station on line i as: Si,j
The assembly time taken at station Si,j is ai,j
Each line also has an entry time, ei, the time taken for the chassis to
enter line i, and an exit time, xi, the time taken for the completed
vehicle to leave line i.

11

Assembly line scheduling

Ordinarily, once a chassis enters a line, it will stay on that line until
completion. However, sometimes a rush order comes in, where we
seek to complete a vehicle in the fastest possible time.
For these orders, the vehicle must still pass through n stations, but it
can transfer from one line to the other, after leaving any station.

The time to transfer a chassis between line i after leaving Station Si,j is
ti,j, where i = 1, 2 and j = 1, 2, …, n-1 (since we can’t transfer after the
last station).

12

Brute force

Like the knapsack problem, the brute force approach yields exponential
complexity time.
At each station, we can make two choices: stay on the line, or transfer.
That is, our set of possible decisions doubles at each station. Since we
have n stations, there are 2n possible ways to choose stations.
That is, the complexity of the assembly line scheduling problem with a
brute force method is Ω(2n).

13

Today’s outline

1. Dynamic programming
2. Assembly line scheduling
3. Fastest path and a recursive solution
4. Example
5. Dynamic programming iterative solution

14

Fastest way through the factory

Lets think about the fastest way for a chassis to move from the start, to
station S1,j.
If j = 1, then it can only have come from one place, the vehicle entry
point, and so it is trivial to determine how long it takes to get through
station S1,j.

15

Fastest way through the factory

But for j = 2, 3, …, n, there are two choices:
1. The chassis came from station S1,j-1 and then to S1,j. Here, the time

of moving between j-1 to j is zero, as they are on the same line.
2. The chassis came from S2,j-1, then transferred to S1,j. Here, the

transfer time between lines was t2,j-1.

16

Fastest way through the factory

We will first suppose that the fastest way through S1,j is from S1,j-1.
A crucial observation is that the chassis must’ve taken the fastest time
to station S1,j-1. Why?
If there exists a faster way to S1,j-1, our chassis would’ve taken it. We
could then substitute this faster sub-route into our route to S1,j.
But this would then lead to a faster time for S1,j, which implies that S1,j
was not the fastest way through the plant: a contradiction.
The symmetric argument applies to the fastest time through S2,j

17

Optimal substructure

Thus, our optimal solution (fastest time through Station Si,j) for
assembly line scheduling contains within it, other optimal solutions to
subproblems.
This property is known as optimal substructure, which we also saw in
our knapsack problems.
As noted in L22, this problem property is an essential requirement for a
dynamic programming solution.
Therefore, we can build an optimal solution to the fastest time
problem, by building optimal solutions to subproblems.

18

Developing a recursive solution

Let fi[j] be the fastest time to get a chassis from the start through to
station j on line i: Si,j.
Let f* be the fastest time for the chassis to get all the way through the
factory, arriving at the exit as a finished vehicle.
For the station to reach the exit, it must get all the way to station n on
either line 1 or 2, and then exit the factory. Since one of these must be
the fastest ways, we can define our fastest time solution as:

𝑓∗ = min(𝑓" 𝑛 + 𝑥", 𝑓# 𝑛 + 𝑥#)

19Where x1 and x2 are exit times from lines 1 and 2, respectively

Developing a recursive solution

Let us next define the fastest times through station 1, on lines 1 and 2.
This sub-problem is easy to solve, as it is simply the entry time ei plus
the first station assembly time ai,1:

𝑓" 1 = 𝑒" + 𝑎",",
𝑓# 1 = 𝑒# + 𝑎#,"

20

Developing a recursive solution

Lets now define the fastest time for fi[j] for stations j = 2,…, n
We already established that the fastest time through S1,j is either:
• from S1,j-1 then into S1,j OR
• From S2,j-1, transfer from line 2 to line 1, then through S1,j.
Therefore:

𝑓"[𝑗] = min(𝑓" 𝑗 − 1 + 𝑎",% , 𝑓# 𝑗 − 1 + 𝑡#,%&" + 𝑎",%)
𝑓#[𝑗] = min(𝑓# 𝑗 − 1 + 𝑎#,% , 𝑓" 𝑗 − 1 + 𝑡",%&" + 𝑎#,%)

21

Developing a recursive solution

We can now define our final recursive equations:

𝑓"[𝑗] = 4
𝑒" + 𝑎","
min(𝑓" 𝑗 − 1 + 𝑎",% , 𝑓# 𝑗 − 1 + 𝑡#,%&" + 𝑎",%)

𝑓#[𝑗] = 4
𝑒# + 𝑎#,"
min(𝑓# 𝑗 − 1 + 𝑎#,% , 𝑓" 𝑗 − 1 + 𝑡",%&" + 𝑎#,%)

22

If j = 1,
If j ≥ 2.

If j = 1,
If j ≥ 2.

Tracing our way through the factory

The last thing we need to do is keep track of the stations that we
passed through, which are used in constructing our fastest way
solution.
Let Li[j] be the line number, either 1 or 2, whose station j – 1 is used in
a fastest way through station Si,j.
Let L* be the line whose station n is used in a fastest way through the
entire factory.

23

Today’s outline

1. Dynamic programming
2. Assembly line scheduling
3. Fastest path and a recursive solution
4. Example
5. Dynamic programming iterative solution

24

Example 1

25

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

26

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j]
f2[j]

j 2 3 4 5 6
L1[j]
L2[j]

𝑓![𝑗] = &
𝑒! + 𝑎!,!
min(𝑓! 𝑗 − 1 + 𝑎!,#, 𝑓$ 𝑗 − 1 + 𝑡$,#%! + 𝑎!,#)

𝑓$[𝑗] = &
𝑒$ + 𝑎$,!
min(𝑓$ 𝑗 − 1 + 𝑎$,#, 𝑓! 𝑗 − 1 + 𝑡!,#%! + 𝑎$,#)

If j = 1,
If j ≥ 2.

If j = 1,
If j ≥ 2.

27

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9
f2[j] 12

j 2 3 4 5 6
L1[j]
L2[j]

𝑓![1] = 2 + 7

𝑓$ 1 = 4 + 8

28

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18
f2[j] 12 16

j 2 3 4 5 6
L1[j]
L2[j]

𝑓![2] = min 𝟗 + 𝟗, 12 + 2 + 9 = 18

𝑓$ 2 =

29

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18
f2[j] 12 16

j 2 3 4 5 6
L1[j]
L2[j]

𝑓![2] = min 𝟗 + 𝟗, 12 + 2 + 9 = 18

𝑓$ 2 = min 12 + 5, 𝟗 + 𝟐 + 𝟓 = 16

30

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18
f2[j] 12 16

j 2 3 4 5 6
L1[j] 1
L2[j] 1

𝑓![2] = min 𝟗 + 9, 12 + 2 + 9 = 18

𝑓$ 2 = min 12 + 5, 𝟗 + 2 + 5 = 16
For Li[2], we now record the station Si,j we came in through for our fastest (min) time

31

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18 20
f2[j] 12 16 22

j 2 3 4 5 6
L1[j] 1 2
L2[j] 1 2

𝑓![3] = min 18 + 3, 𝟏𝟔 + 𝟏 + 𝟑 = 20

𝑓$ 3 = min 𝟏𝟔 + 𝟔, 18 + 3 + 6 = 22

32

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18 20 24
f2[j] 12 16 22 25

j 2 3 4 5 6
L1[j] 1 2 1
L2[j] 1 2 1

𝑓![4] = min 𝟐𝟎 + 𝟒, 22 + 2 + 4 = 24

𝑓$ 4 = min 22 + 4, 𝟐𝟎 + 𝟏 + 𝟒 = 25

33

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18 20 24 32
f2[j] 12 16 22 25 30

j 2 3 4 5 6
L1[j] 1 2 1 1
L2[j] 1 2 1 2

𝑓![5] = min 𝟐𝟒 + 𝟖, 22 + 2 + 4 = 32

𝑓$ 5 = min 𝟐𝟓 + 𝟓, 24 + 3 + 5 = 30

34

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18 20 24 32 35
f2[j] 12 16 22 25 30 37

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2

𝑓![6] = min 32 + 4, 𝟑𝟎 + 𝟏 + 𝟒 = 35

𝑓$ 6 = min 𝟑𝟎 + 𝟕, 32 + 4 + 7 = 37

35

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18 20 24 32 35
f2[j] 12 16 22 25 30 37

Finally, we add our exit times and identify solve for f*
𝑓∗ = min(𝑓! 𝑛 + 𝑥!, 𝑓$ 𝑛 + 𝑥$)

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2

36

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18 20 24 32 35
f2[j] 12 16 22 25 30 37

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2

𝑓∗ = min 𝟑𝟓 + 𝟑, 37 + 2 = 38

L* = 1

We set L* to 1, our fastest exit station

37

Now that we have our path, the final step is to work our way
backwards with our L-table, tracing our fastest path.
We start at L* = 1, so we would use station S1,6.
If we look at L1[6], which is 2, so use station S2,5.
Then L2[5] = 2 (use S2,4)

Example: Tracing our path

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2 L* = 1

38

With L2[4] = 1 (use S1,3).
With L1[3] = 2 (use S2,2).
With L2[2] = 1 (use S1,1).
Therefore, our fastest path is:
S1,1, S2,2, S1,3, S2,4, S2,5, S1,6

Example: Tracing our path

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2 L* = 1

39

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

Fastest path: S1,1, S2,2, S1,3, S2,4, S2,5, S1,6

Today’s outline

1. Dynamic programming
2. Assembly line scheduling
3. Fastest path and a recursive solution
4. Example
5. Dynamic programming iterative solution

40

An iterative solution

We will construct our iterative solution using the same logic that
guided our in-class example.
We can avoid exponential running time by referencing previously
calculated values, which we will store in our f-table. This saves us
wasted cycles recomputing the same values.
As noted in L22, dynamic programming uses additional memory to save
computation time. The cached results always take the form a table.

Recall for j ≥ 2, fi[j] depends only on f1[j-1] and f2[j-1]. By computing
fi[j] by increasing station number, j moves left to right, we can compute
our fastest way in 𝚯(n) time.

41

42

procedure Fastest-Way(a, t, e, x, n) // Assembly, trans, entry, exit times, # of stations
1: f1[1] = e1 + a1,1 // Initialise time after station 1
2: f2[1] = e2 + a2,1
3: for j = 2 to n
4: if f1[j-1] + a1,j <= f2[j-1] + t2,j-1 + a1,j // Line 1 finish times
5: f1[j] = f1[j-1] + a1,j; L1[j] = 1 // Stay on line 1
6: else
7: f1[j] = f2[j-1] + t2,j-1 + a1,j; L1[j] = 2 // Move to line 2
8: if f2[j-1] + a2,j <= f1[j-1] + t1,j-1 + a2,j // Line 2 finish times
9: f2[j] = f2[j-1] + a2; L2[j] = 2 // Stay on line 2
10: else
11: f2[j] = f1[j-1] + t1,j-1 + a2,j; L2[j] = 1 // Move to line 1
11: if f1[n] + x1 ≤ f2[n] + x2
12: f* = f1[n] + x1 // Fastest time is exit from Line 1
13: L* = 1 // Line 1 was most recent fastest way
14: else
15: f* = f2[n] + x2 // Fastest time is exit from Line 2
16: L* = 2 // Line 2 was most recent fastest way
17: return fi, f*, Li, L*
end procedure

Printing our path

Having computed our fastest way solution, we need a final helper
method to convert our L* and L-table into a path of stations.

43

procedure Print-Stations(L*, Li, n) // Final line, array of lines, number of stations
1: i = L* // Initialise final exit line
2: print “line ” + i + “, station ” + n // Print last station we exit from
3: for j = n downto 2
4: i = Li[j] // Set line number to print
5: print “line ” + i + “, station ” + j-1 // Prints line, stations j-1 to 1
end procedure

Print output

This procedure outputs stations in reverse order, beginning with our
exit station & line.

44

Print-Stations output:
line 1, station 6
line 2, station 5
line 2, station 4
line 1, station 3
line 2, station 2
line 1, station 1

It’s relatively easy to rework our algorithm to print stations in increasing order,
to do so we would use recursion (left as an exercise).

Tables from our example

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2 L* = 1

Suggested reading

Dynamic programming is discussed in Section 15.
Section 15.3 is particularly relevant to understanding dynamic
programming in general.
Assembly line scheduling is no longer covered in the 3rd edition of the
textbook. It was replaced by rod-cutting in the 3rd edition, a more
straightforward introduction to dynamic programming.
However, assembly line programming is covered in Section 15.1 of the
2nd edition.

45

