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String similarity applications

Quantifying the similarity of strings has many applications, particularly 
in the realm Biological Sciences.
DNA consists of a string of molecules called nucleobases: Adenine, 
Guanine, Cytosine, and Thymine. These bases are typically
represented by their initial letter.
We can therefore express a strand of DNA as a string over
the finite set: {A,	G,	C,	T}.
One reason to compare two strands of DNA is to determine
how “similar” the strands are. 
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Review: Strings

A String over the finite set S, is a sequence of elements from S.
For example, there are 4 binary strings of length 2:
00, 01, 10, 11
A substring s’ of a string s is an ordered sequence of consecutive 
elements of s.
A string of length k can be called a k-string. A k-substring of a string is a 
substring of length k. 
Example: 00 is a 2-substring of 0100101 (beginning at position 3). But 
11 is not a substring.
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String similarity

Lets consider two strings:
• S1 = ACCGGTCGAGTGCGCGG
• S2 = GTCGTTCGGAATGCC
In this example, neither S1 nor S2 are a substring of the other. Yet they 
are clearly similar to one another.
Can we come up with some notion of how close these two strings are 
when the order of the letters is important?
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Notions of similarity

• the longest substring common to both strings
• the number of changes to convert one string into another (this is 

called edit distance)
• the longest string, S3, such that the characters in S3 occur in both S1

and S2 in the same order, but not necessarily consecutively. This 
measure is called the longest common subsequence (LCS).

A subsequence of a given sequence is just the given sequence with zero 
or more elements left out. This is different to a substring, which 
requires consecutive common characters.
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Class challenge

What is the LCS of the two strings:
• S1 = ACCGGTCGAGTGCGCGG
• S2 = GTCGTTCGGAATGCC

S3 = ?
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Scale of the problem

The class challenge probably took you a while.
Lets consider for a moment the scale of the problem facing biologists.
The human genome is thought to have over 46,000 genes[1]. Each gene 
varies from a few hundred DNA to over 2 million[2]. Overall, there are 
thought to be over 3 billion DNA base pairs[3].
Producing a computationally efficient method for substring similarity is 
an important problem, with profound impacts on human science.
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https://en.wikipedia.org/wiki/Human_genome
https://ghr.nlm.nih.gov/primer/basics/gene
https://www.sciencedaily.com/terms/human_genome.htm


Defining a subsequence

Given two sequences: 𝑋 = 𝑥!, 𝑥", … , 𝑥# , and 𝑍 = 𝑧!, 𝑧", … , 𝑧$ .
We say that Z is a subsequence of X, if there exists a strictly increasing 
sequence 𝑖!, 𝑖", … , 𝑖$ of indices of X, such that for all j = 1, 2, …, k, we 
have 𝑥%! = 𝑧&.

For example, 𝑋 = 𝐴, 𝐺, 𝐶, 𝐺, 𝑇, 𝐴, 𝐺 , then 𝑍 = 𝐺, 𝐶, 𝑇, 𝐺 is a 
subsequence of X, with the index sequence: 2, 3, 5, 7 .

𝑋 = 𝐴, 𝐺, 𝐶, 𝐺, 𝑇, 𝐴, 𝐺
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Defining a common subsequence

Given two sequences X and Y, then Z is a common subsequence of X 
and Y, if Z is a subsequence of both X and Y.
Example: 𝑋 = 𝐴, 𝐺, 𝐶, 𝐺, 𝑇, 𝐴, 𝐺 and 𝑌 = 𝐺, 𝑇, 𝐶, 𝐴, 𝐺, 𝐴 . 
The subsequence 𝐺, 𝐶, 𝐴 is a common subsequence of X and Y. At 
length 3, it is not the longest common subsequence.
The subsequence 𝐺, 𝐶, 𝐺, 𝐴 , which is common to both X and Y, is a 
Longest Common Subsequence (LCS), at length 4. The subsequence 
𝐺, 𝑇, 𝐴, 𝐺 is also an LCS. 𝑋 = 𝐴, 𝐺, 𝐶, 𝐺, 𝑇, 𝐴, 𝐺 and 𝑌 = 𝐺, 𝑇, 𝐶, 𝐴, 𝐺, 𝐴

There is no LCS of length 5 or more. Otherwise these would be, by 
definition, the LCS.
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Longest common subsequence problem

In the Longest Common Subsequence problem, we want to find the 
longest common subsequence of two sequences, 𝑋 and 𝑌.
A brute force approach is to enumerate the set of all subsequences of 
𝑋, and check if they are common to 𝑌. Each subsequence of 𝑋 has the 
subset of indices: {1,2,…,m} of 𝑋.
However as 𝑋 has 2m subsequences, this requires exponential time. 
Just like the 0-1 knapsack and Assembly line scheduling, also 2n, we 
have a binary choice for each element: include or exclude.
As each subsequence then takes 𝚯(n) times to check, this brute force 
approach takes: 𝚯(n2m).
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Optimal substructure

As we will show on our next slide, the LCS problem exhibits optimal 
substructure. The theorem relies on pairs of prefixes that refer to the 
two input sequences.
Given a sequence 𝑋 = 𝑥!, 𝑥", … , 𝑥# , the ith prefix of 𝑋, with i = 
1,2,…,m, corresponds to 𝑋% = 𝑥!, 𝑥", … , 𝑥% .
For example, 𝑋 = 𝐴, 𝐺, 𝐶, 𝐺, 𝑇, 𝐴, 𝐺 , then 𝑋' = 𝐴, 𝐺, 𝐶, 𝐺 , while 𝑋(
is the empty sequence. 𝑋) = 𝐴, 𝐺, 𝐶, 𝐺, 𝑇, 𝐴, 𝐺 where i = m = 7.
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Theorem of Optimal substructure in an LCS

Let 𝑋 = 𝑥!, 𝑥", … , 𝑥# , and 𝑌 = 𝑦!, 𝑦", … , 𝑦* be two strings. 
Let 𝑍 = 𝑧!, 𝑧", … , 𝑧$ be any LCS of 𝑋 and 𝑌. 
Then the following holds:
1. If 𝑥# = 𝑦*, then 𝑧$ = 𝑥# = 𝑦* and 𝑍$+! is an LCS of 𝑋#+! and 𝑌*+!.
2. If 𝑥# ≠ 𝑦*, then:

2.1   𝑧$ ≠ 𝑥# implies 𝑍 is an LCS of 𝑋#+! and 𝑌; or then
2.2   𝑧$ ≠ 𝑦* implies 𝑍 is an LCS of 𝑋 and 𝑌*+!.
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Proof (through contradiction)
Suppose that the last characters 𝑧$ of 𝑍 and 𝑥# of 𝑋 were unequal: 
𝑧$ ≠ 𝑥#. We could then append 𝑥# = 𝑦* to the end of 𝑍, such that 
𝑍, = 𝑧!, … , 𝑧$ , 𝑥# . This would create a subsequence of length k + 1, 
contradicting our statement that 𝑍 is the longest common 
subsequence. Thus, 𝑧$ = 𝑥# = 𝑦*.
Next, assume there exists a common subsequence 𝑊 of 𝑋#+! and 
𝑌*+! that’s longer than 𝑍$+!, i.e. whose length ≥ k. Appending 𝑥# =
𝑦* to the end of 𝑊, to make 𝑊,. This subsequence is a common 
subsequence of 𝑋 and 𝑌, where 𝑊, length ≥ k + 1, contradicting our 
statement that 𝑍 is the longest common subsequence. Thus, 𝑍$+! is an 
LCS of 𝑋#+! and 𝑌*+!.
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Theorem (part 1)
If 𝑥! = 𝑦", then 𝑧# = 𝑥! = 𝑦" and 𝑍#$% is an LCS of 𝑋!$% and 𝑌"$%



Proof (through contradiction)
2.1)  If 𝑧$ ≠ 𝑥#, then 𝑍 is a common subsequence of 𝑋#+! and 𝑌. 
Suppose there exists a common subsequence 𝑊 of 𝑋#+! and 𝑌 whose 
length > k. Then 𝑊 is a common subsequence of 𝑋 and 𝑌, contradicting 
𝑍 being the longest common subsequence. Thus, 𝑍 is an LCS of 𝑋#+!
and 𝑌.
2.2)  The symmetric argument applies to part 2.2.

∎
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Theorem (parts 2.1 and 2.2)
𝑧# ≠ 𝑥! implies 𝑍 is an LCS of 𝑋!$% and 𝑌
𝑧# ≠ 𝑦" implies 𝑍 is an LCS of 𝑋 and 𝑌"$%



Today’s outline

1. Longest common subsequence
2. Brute force LCS algorithm
3. Memoised and iterative implementations
4. Edit Distance

18



Longest common subsequence problem

Our theorem gives us a very clear optimal substructure problem from 
which we can write a naive recursive solution (brute force). 
Let 𝑙[𝑖, 𝑗] be the length of an LCS of the sequences 𝑋% and 𝑌&. If either 
prefix is zero, 𝑖 = 0 𝑜𝑟 𝑗 = 0, then the LCS has length 0. Then:

𝑙[𝑖, 𝑗] N
0,
𝑙[𝑖 − 1, 𝑗 − 1] + 1,
max 𝑙[𝑖, 𝑗 − 1], 𝑙[𝑖 − 1, 𝑗]

19

if 𝑖 = 0 or 𝑗 = 0 ,
If 𝑖, j > 0 and 𝑥% = 𝑦& ,
If 𝑖, j > 0 and 𝑥% ≠ 𝑦& .

1) Empty strings

2) Match char, or

3) Max of:
a) X & Y-1 
b) X-1 and Y



Longest common subsequence problem

Therefore, when 𝑥% = 𝑦&, we should solve the subproblem of finding an 
LCS of 𝑋%+! and 𝑌&+!. That is, our new length 𝑙[𝑖, 𝑗] is just our previous 
length 𝑙[𝑖 − 1, 𝑗 − 1], plus 1.
Otherwise, we should solve the two subproblems of finding an LCS of 𝑋%
and 𝑌&+! and 𝑋%+! and 𝑌&. Whichever is largest, 𝑙[𝑖, 𝑗 − 1] or 𝑙[𝑖 − 1, 𝑗].
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Naïve algorithm
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function RecursiveLCS(X, Y) // String X, String Y
1: if X.length == 0 or Y.length == 0
2: return "" // X or Y are empty strings (1)
3: if X[m] == Y[n]
4: return RecursiveLCS(X[1:m-1], Y[1:n-1]) + X[m] // Chars match (2)
5: lcs1 = RecursiveLCS(X, Y[1:n-1]) // Check LCS on X and Y-1 (3a)
6: lcs2 = RecursiveLCS(X[1:m-1], Y) // Check LCS on X-1 and Y (3b)
7: if lcs1.length > lcs2.length
8: return lcs1
9: else
10: return lcs2
end procedure

where m = X.length and n = Y.length



Naïve algorithm
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function RecursiveLCS(X, Y) // String X, String Y
1: if X.length == 0 or Y.length == 0
2: return "" // X or Y are empty strings (1)
3: if X[m] == Y[n]
4: return RecursiveLCS(X[1:m-1], Y[1:n-1]) + X[m] // Chars match (2)
5: lcs1 = RecursiveLCS(X, Y[1:n-1]) // Check LCS on X and Y-1 (3a)
6: lcs2 = RecursiveLCS(X[1:m-1], Y) // Check LCS on X-1 and Y (3b)
7: if lcs1.length > lcs2.length
8: return lcs1
9: else
10: return lcs2
end procedure

where m = X.length and n = Y.length

We start at the end of the string, and 
work our way backwards

Base case: terminate when we go past 
the start of our string. Then we work 
forwards, assembling our solution.
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Memoised version
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1: initialise global memo[m, n] as 2D array, all cells set to -1
function MemoLCSRecurse(X, Y) // String X, String Y
2: if m == 0 or n == 0
3: return "" // X or Y are empty strings (1)
4: if memo[m, n] != -1 // Previously computed?
5: return memo[m, n] // Yes, return cache
6: if X[m] == Y[n]
7: memo[m, n] = MemoLCSRecurse(X[1:m-1], Y[1:n-1] + X[m] // Chars match (2)
8: else
9: lcs1 = MemoLCSRecurse (X, Y[1:n-1]) // Check LCS on X and Y-1 (3a)
10: lcs2 = RecursiveLCS(X[1:m-1], Y) // Check LCS on X-1 and Y (3b)
11: if lcs1.length > lcs2.length
12: memo[m, n] = lcs1
13: else
14: memo[m, n] = lcs2
15: return memo[m, n] 
end procedure



Iterative version

The memoized recursive version is fairly simple and efficient, but the 
strings do not need to be very long before we will blow the system 
stack. 
If we're comparing DNA for example, then we could expect strings 
millions or billions of characters long. Even with an iterative version, 
billions of characters will cause a problem. Why?
Nevertheless, an iterative version will work for much larger problems 
than a recursive one.
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Iterative version

In previous iterative dynamic programming solutions, we've been able 
to mirror the recursive version and also work backwards. But in this 
case, it makes more sense to run the algorithm forwards.
We could have done the other algorithms forwards too, or this one 
backwards, but it's better to choose the direction that's most natural 
based on the problem at hand.
The disadvantage of the forward algorithm is that all elements of the 
array will be filled, whereas the recursive backwards algorithm only fills 
those elements that are needed.
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Iterative algorithm
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function IterativeLCS(X, Y) // String X, String Y
1: memo = array of strings of size m+1 × n+1
2: for i = 1 to m
3: for j = 1 to n
4: if X[i] == Y[j]
5: memo[i+1, j+1] = memo[i,j] + X[i] // Chars match (2)
6: else
7: if memo[i+1, j].length > memo[i, j+1].length
8: memo[i+1,j+1] = memo[i+1,j]   // LCS on X+1 and Y (3a)
9: else
10: memo[i+1,j+1] = memo[i,j+1]   // LCS on X and Y+1 (3b)
end procedure

We can do better than this in terms of space efficiency. There is no need to keep the whole array in 
memory at one time - we just need to reference the current row and the previous row. That means 
instead of space with O(mn), we can use only O(2n).
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Edit Distance

The UNIX utility diff uses edit distance to find differences between two 
files (or strings). 
This utility, or others like it, are used in all sorts of places, but most 
notably in version control systems such as git or subversion. 
These version control systems are used to track all changes in a 
document or a group of documents and are especially useful for 
tracking changes in source code. 
Edit distance can also be used to fix spelling errors.
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Edit Distance

Edit distance is very similar to LCS. In LCS, we effectively only allow 
deletion from one string or the other in each step. 
In edit distance, we try to transform one string into the other by 
allowing operations: insert, delete, or substitute; just as if we were 
editing the source string. 
We aren't going to worry about the resulting alignment in the 
following, but it can be reconstructed from the edit distance array.
Remember, edit distance refers to the number of changes required to 
transform one string, 𝑋, into another, 𝑌.
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Edit distance recurrence

The recurrence for the edit distance is (transform 𝑋 to 𝑌):

𝑑[𝑖, 𝑗]

𝑑 𝑖 − 1, 𝑗 − 1 ,

𝑚𝑖𝑛 N
𝑑 𝑖 − 1, 𝑗 + 1,
𝑑 𝑖, 𝑗 − 1 + 1,
𝑑 𝑖 − 1, 𝑗 − 1 + 1,
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if 𝑋 𝑖 = 𝑌[𝑗]

delete 𝑋 𝑖
delete 𝑌 𝑗
substitute 𝑌 𝑗 𝑓𝑜𝑟 𝑋[𝑖]

if 𝑋 𝑖 ≠ 𝑌[𝑗]

Where
𝑑 0, 𝑗 = 𝑗: insert all characters up to 𝑌[𝑗]
and
𝑑 𝑖, 0 = 𝑖: delete all characters up to 𝑋[𝑖]

1) Match char, carry over previous distance, or
2) Min of

a) Shortened X
b) Shortened Y
c) Copying Y char into X char



Iterative algorithm
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function EditDistance(X, Y) // String X, String Y
1: if m == 0
2: return n // String X is empty, edit distance is Y.length
3: if n == 0
4: return m // String Y is empty, edit distance is X.length
5: if X[m] == Y[n]
6: return EditDistance(X[1:m-1], Y[1:n-1]) // Chars match (1)
7: del_xi = 1 + EditDistance(X[1:m-1], Y) // Shortened X (2a)
8: ins_yj = 1 + EditDistance(X, Y[1:n-1]) // Shortened y (2b)
9: sub_yj4xi = 1 + EditDistance(X[1:m-1], Y[1:n-1]) // Sub y for x (2c)
10: return min(del_xi, ins_yj, sub_yj4xi)
end procedure



Iterative algorithm
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function EditDistance(X, Y) // String X, String Y
1: if m == 0
2: return n // String X is empty, edit distance is Y.length
3: if n == 0
4: return m // String Y is empty, edit distance is X.length
5: if X[m] == Y[n]
6: return EditDistance(X[1:m-1], Y[1:n-1]) // Chars match (1)
7: del_xi = 1 + EditDistance(X[1:m-1], Y) // Shortened X (2a)
8: ins_yj = 1 + EditDistance(X, Y[1:n-1]) // Shortened y (2b)
9: sub_yj4xi = 1 + EditDistance(X[1:m-1], Y[1:n-1]) // Sub y for x (2c)
10: return min(del_xi, ins_yj, sub_yj4xi)
end procedure

If either string is empty, the edit distance 
must be the remaining length of the other 
string (all substitutions).

Work our way backwards 
from end of string



Suggested reading

Longest common subsequence is discussed in section 15.4 of the 
textbook. 
The edit distance problem is discussed at the end of chapter 5 in the 
Problems section (15.3). 
The essential elements of dynamic programming are discussed in 
Section 15.3.
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Solutions
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Class challenge

What is the LCS of the two strings:
• S1 = ACCGGTCGAGTGCGCGG
• S2 = GTCGTTCGGAATGCC

S3 = GGTCGGTGCC

The length of S3 is 10. While there are many shortest common 
subsequences (e.g., ACC), S3 is the longest common subsequence.
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Image attributions
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This Photo by Unknown Author is licensed under CC BY-SA

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses, 
the attributed parties and/or websites listed above. 

https://en.wikipedia.org/wiki/DNA_base_flipping
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