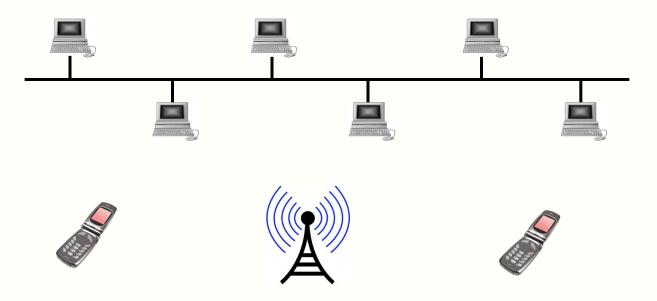
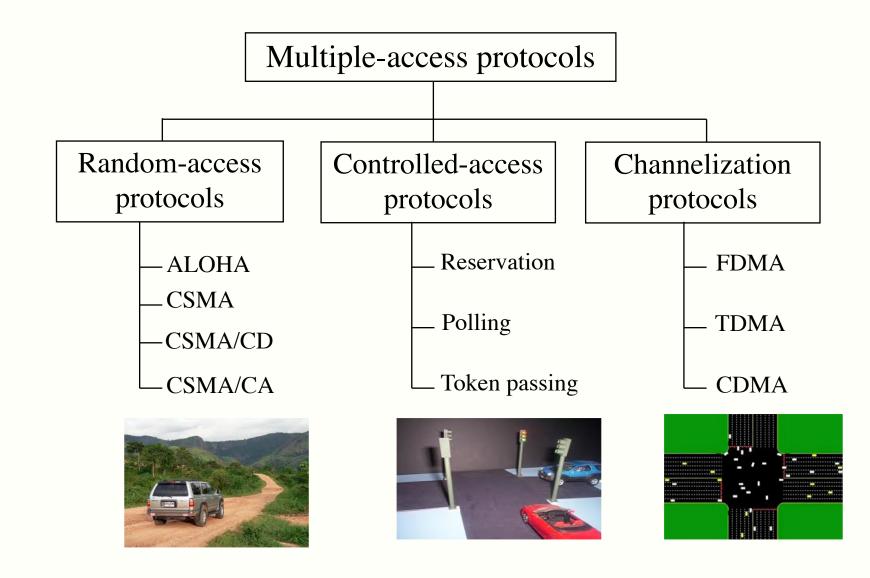
Overview

- Last Lecture
 - Introduction to networks
- This Lecture
 - Medium access control
 - Source: Sections 12
- Next Lecture
 - Flow control & Error control
 - Source: Sections 11.1-11.2, 23.2

Data	link	layer
Dutu		layor


Logical	Link	Control	(LLC)
Logical		Control	(\mathbf{LLC})

Medium Access Control (MAC)


Medium Access Control

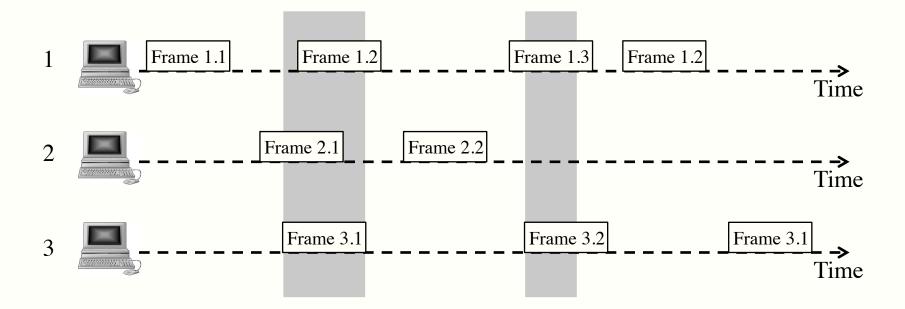
- Why have medium access control?
 - Shared communication medium
 - Multiple stations access the medium

Medium Access Control Methods

Random Access

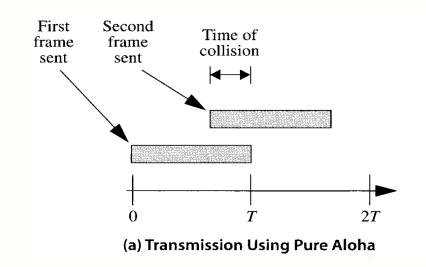
- Random Access/Contention
 - There is no scheduled time for a station to transmit
 - Stations compete with one another to access the medium
- Collision
 - Access conflict: two or more stations access the transmission medium with some overlap.
 - Frames will be either destroyed or modified
- Why do we have contention and collision?
 - Medium sharing
 - Examples in human communication

Contention and Collision (cont.)

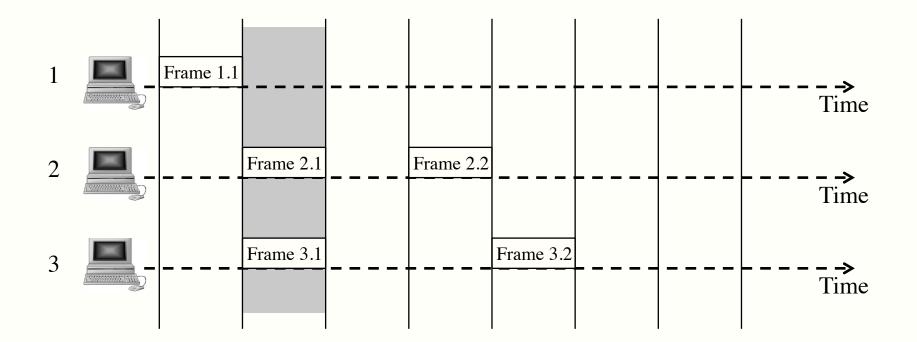

- How to avoid access conflict and resolve it when it happens?
 - When can the station access the medium?
 - What can the station do if the medium is busy?
 - How can the station determine the success or failure of the transmission?
 - What can the station do if there is an access conflict?

Pure Aloha Protocol

- Each station transmits when it has a frame to transmit.
- When the receiver receives a frame, it sends an acknowledgment to the sender.
- If the sender receives an acknowledgment, it knows its data has been received. Otherwise the sender assumes a collision and retransmits.
- If a collision occurs, each collided sender waits a random time before retransmission.


Analysis of Pure Aloha

- A simple but elegant protocol
- The randomness helps avoid more collisions.
- Works fine if there is not much traffic.


Analysis of Pure Aloha (cont.)

- Poor channel utilisation
 - T is time to transmit a packet.
 - Consider an interval 2T
 - One sender's packet begins at the start of the interval; another sender begins at the end of the interval.
 - The collision wastes up to 2T time

Slotted Aloha Protocol

- Divide time into intervals (slots) of T units each.
- Each station sends only at the beginning of a slot.

Comparison of Pure & Slotted Aloha

• Wasted time due to collision is reduced to T

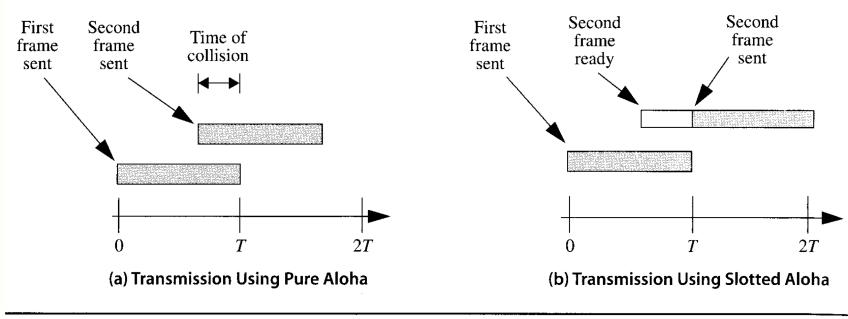


Figure 3.24 Transmission Using Pure Aloha and Slotted Aloha

Comparison of Pure & Slotted Aloha (cont.)

- Success rate for transmission
 - G is the average number of frames generated per slot
 - S is the average number of frames sent successfully per slot

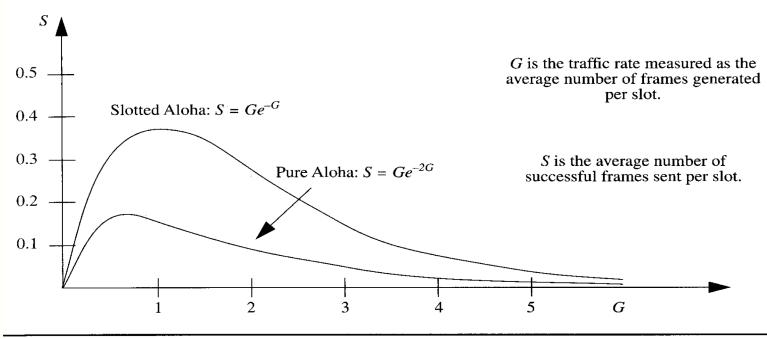
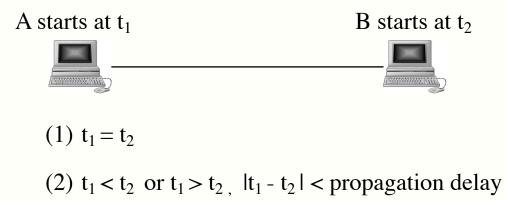
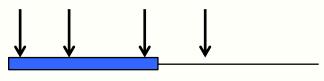



Figure 3.25 Success Rate for Slotted and Pure Aloha Protocols

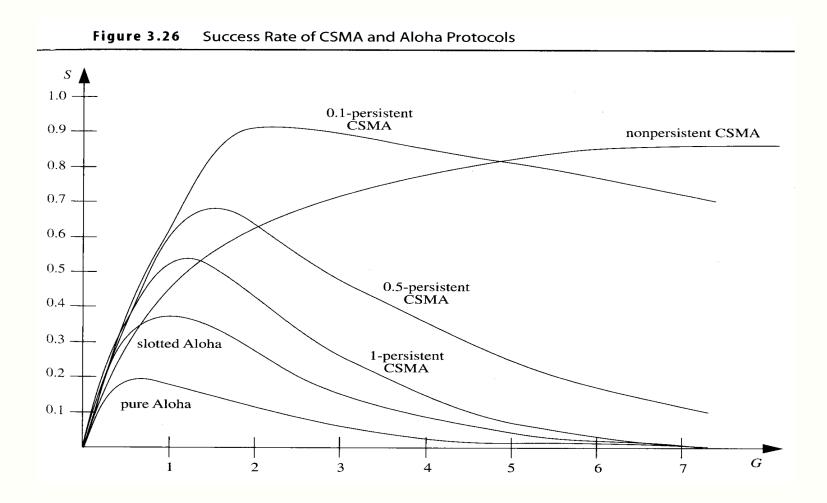

CSMA

- Carrier Sense Multiple Access (CSMA)
 - "Sense before transmit" or "listen before talk"
 - If a station has a frame to send:
 - It first check the status of the medium.
 - If there is no activity, transmit; otherwise, wait.
 - Does it eliminate collisions?

Medium Sensing Methods

- Nonpersistent method
 - If the medium is not idle, wait a random amount time and then senses again
 - Reduce collision, reduce network efficiency

- Persistent method
 - If the medium is not idle, **continuously** sense the medium.
 - p-Persistent method


p-Persistent CSMA

- Method:
 - Listen to the medium
 - If there is no activity, transmit; otherwise, continue to monitor the medium.
 - When the medium becomes idle, transmit with a probability *p*; otherwise wait for the next time slot (probability 1-*p*) and repeat the above steps.
 - If p = 1, we call it **1-persistent CSMA**, which means it always transmits when the medium is quiet.
 - If p = 0, we call it **0-persistent CSMA**, which means it always waits for one time slot.

Collisions with p-Persistent CSMA

- Collisions still occur.
- If p = 0.5 and there are 2 stations, 4 possibilities exist when the medium becomes idle.
 - Both transmit immediately
 - Both wait
 - Station A sends and station B waits
 - Station A waits and station B sends
- Result
 - 0.5 probability one will transmit successfully
 - 0.25 probability medium will not be used
 - 0.25 probability of collision

Success Rate of CSMA and Aloha

Collision Detection

- Can we do better?
- Is there some way to have a station monitor the medium to listen for collisions?

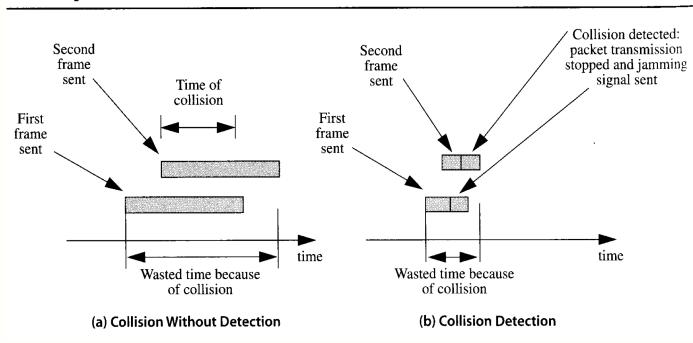
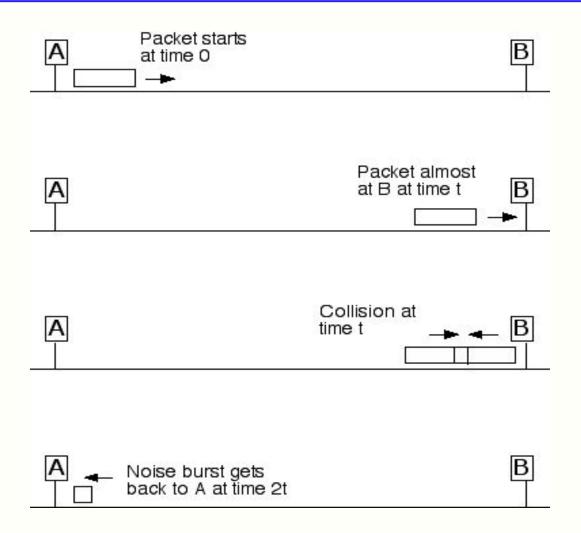


Figure 3.27 Collision with and without Detection

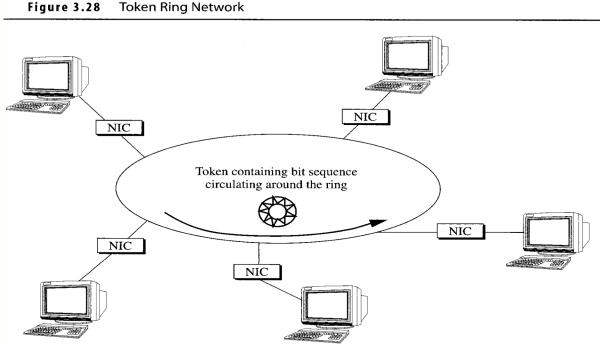
CSMA/CD

- Carrier Sense Multiple Access with Collision Detection
 - To send a frame, listens to the medium to see if it is busy.
 - If the medium is busy, waits per the persistent CSMA.
 - If the station is able to transmit a frame, it listens to the medium for collision while transmitting the frame.
 - If it detects a collision, it immediately stops the transmission and sends a short jamming signal.
 - If it receives a jamming signal, it stops the transmission immediately.
 - After a collision, it waits a random amount of time according to the **Binary Exponential Backoff** algorithm and then repeats the above steps.


Binary Exponential Backoff Algorithm

- Algorithm:
 - If a station's frame collides for the first time, wait 0 or 1 time slot (randomly chosen)
 - If it collides a second time, wait 0, 1, 2, or 3 slots (randomly chosen)
 - After a third collision, wait from 0 to 7 slots.
 - After *n* collisions, wait from 0 to 2^{n} -1 slots if n <= 10. If n > 10, wait from 0 to 1024 (2^{10}) slots
 - After 16 collisions, give up and report an error.

Frame Size and Transmission Distance


- If frames are too large, one station can monopolise the medium; but if a frame is too small, a collision may not be detected.
- Collision detection requires a minimum size frame so a station can detect a collision before it finishes sending its frame. If it detects a collision after the frame is sent, it does not know if its frame was involved.
- How small can a frame be?
 - Example: Assume coax cable with a rate, B=10 Mbps; longest distance, L= 2 km; propagation rate, P=200 m/µsec. Then the minimum frame size required MF=((2*L)/P)*B=200bits=25bytes
- According to IEEE802.3 standard, Ethernet requires a minimum frame size of 512 bits

Frame Size and Transmission Distance (cont.)

Token Passing

- The stations are organized into a logical ring.
- Token a specially frame that circulates the ring
- A station can transmit data only when it has the token frame.

Token-Passing Protocol

- When a station receives the token frame:
 - If it wants to transmit data, it inserts data into the token frame which then becomes a data frame, and passes the frame to the next neighbour.
 - If it does not have data to transmit, it passes the token to the next neighbour.

Token-Passing Protocol (cont.)

- When a station receives a data frame:
 - If the station is the sender of the data frame, it removes the data from the frame, makes the frame a token frame, and passes the token to the next neighbour.
 - If it is the destination of the frame, it copies data from the frame to its memory and passes the frame to the next neighbour.
 - If the station is not the destination or the sender of the frame, it passes the frame to the next neighbour.

Monopoly on a Token Ring

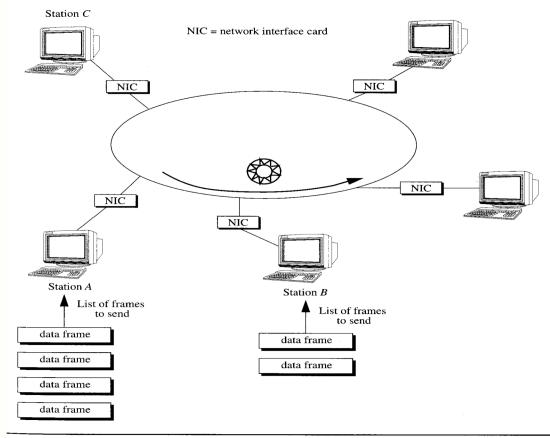


Figure 3.29 One Station Sending Many Frames

Slotted Ring

- Similar to token ring except it contains several rotating tokens or slots.
- A station must wait for a free slot.
- A station cannot send any other frames until the slot that carried its previous data frame returns.

Ring Problems

- A break in a link between any two stations can bring the network down.
- A faulty interface card can result in a "lost" token or an improperly formatted token.
- If a station sends a data frame and fails before removing its data, the frame circulates forever.

Summary

- Concepts
 - Contention
 - Collision
- Contention protocols
 - Aloha protocol
 - Slotted Aloha Protocol
 - Carrier Sense Multiple Access (CSMA)
 - p-persistent CSMA
 - Non-persistent CSMA

Summary (cont.)

- CSMA/CD protocol
 - Binary Exponential Backoff
 - Relationship between frame size and transmission distance in CSMA/CD
- Token method
 - Simple token ring
 - Slotted ring