
Overview

• Last Lecture
– Data Transmission

• This Lecture
– Data Compression
– Source: Lecture notes

• Next Lecture
– Data Integrity 1
– Source : Sections 10.1, 10.3

Lecture 4 – Data Compression

Data Compression

Data Compression

• Decreases space, time to transmit, and cost
• Bit rate is limited, can we send fewer bits

and still deliver the data reliably? (Reduce
the number of bits while retaining its
meaning)

• Various approaches for data compression:
Huffman, Run Length, LZW

Huffman code

Huffman coding
-- an algorithm developed by David A. Huffman
while he was a Ph.D. student at MIT

4

Huffman code

• Variable length code based on the frequency of
character use.
– Most frequently used characters -> shortest codes
– Least frequently used characters -> longest codes

• A simple example
– Text – EEEEAEEBFEEE (ASCII 12 * 7 = 84 bits)
– E-0, A-100, B-101, F-110
– Code – 000010000101110000 (18 bits)

Lecture 4 - Data compression

Huffman code: Code formation
-Assign weights to each character
-Merge two lightest weights into one root node
with sum of weights (why binary tree?)
-Repeat until one tree is left
-Traverse the tree from root to the leaf (for each
node, assign 0 to the left, 1 to the right)

Huffman Code (cont.)
https://en.wikipedia.org/wiki/Huffman_coding#/media/File:Huffman_huff_demo.gif

Video: https://www.youtube.com/watch?v=MleGSpPpHXs

Huffman Code (cont.)
Text: ABECADBC….

Lecture 4 – Data compression

Huffman Code (cont.)

• Huffman code: Code Interpretation
– No prefix property (Restriction): The code for

any character never appears as the prefix or start
of the code for any other character. (guarantees
the codes can be translated back)

– Receiver continues to receive bits until it finds a
code and forms the character

– 01110001110110110111 (extract the string)

Lecture 4 – Data compression

Huffman code steps:
•To each character, associate a binary tree consisting of
just one node. To each tree, assign the character’s
frequency, which is called the tree’s weight.
•Look for the two lightest-weight trees. If there are
more than two, choose among them randomly. Merge
the two into a single tree with a new root node whose
left and right sub trees are the two we chose. Assign the
sum of weights of the merged trees as the weight of the
new tree.
•Repeat the previous step until just one tree is left.

Huffman Code (cont.)

Lecture 4 – Data compression

Run Length Encoding
(Character-Level)

• Used for character data only
• Send an alternating set of numbers and

characters.
• Example

– HHHHHHHUFFFFFFFFFFFFFF
– 7H1U14F
Video: https://www.youtube.com/watch?v=ypdNscvym_E

Lecture 4 – Data compression

Run Length Encoding
(Bit-Level)

• Consider a picture of the letter T.

• 70-90% of the space is white space, which means
many continuous zeroes to be transmitted.

• Group the runs of zeroes and send their length
instead.

T

Lecture 4 – Data compression

Run Length Encoding
(Bit-Level cont.)

• Decide the number of bits to represent a run length.
• Encoding algorithm (4 bit lengths)

– Count the number of 0s between two 1s
– If the number is less than 15, write it down in binary form.
– If it is greater than or equal to 15, write down 1111, and a

following binary number to indicate the rest of the 0s. If more
than 30, repeat this process.

– If the data starts with a 1, write down 0000 at the beginning.
– If the data ends with a 1, write down 0000 at the end.
– Send the binary string.

Lecture 4 – Data compression

Run Length Encoding
(Bit-Level cont.)

Decoding algorithm:
Group all the bits into 4-bit groups.
1. For each 4-bit group, write down that number of

0s.
2. If at the end of the bit string, stop.
3. If not at the end of the bit string:

If the 4-bit group was less than 15, write down a 1. Go to
step 1.

If the 4-bit group is 15, go to step 1.

Lecture 4 – Data compression

Run Length Encoding
(Bit-Level cont.)

Lecture 4 – Data compression

Lempel-Ziv Compression

• In text, phrases or entire words are
repeated very often.

• Look for repeated strings. Store them and
a code in a dictionary.

• In the output, replace these repeated
strings with the code.

• zip, unzip, compress command in Unix.

Lecture 4 – Data compression

Lempel-Ziv Compression (cont.)
• From Crichton, M. Jurassic Park.

• Some repetitions:
– the - #
– ro - $
– ing - %
– en - &
– rr - *

The tropical rain fell in drenching sheets, hammering the
corrugated roof of the clinic building, roaring down the metal
gutters, splashing on the ground in a torrent.

Lecture 4 – Data compression

The tropical rain fell in drenching sheets, hammering the
corrugated roof of the clinic building, roaring down the
metal gutters, splashing on the ground in a torrent.

#t$pical rain fell in dr&ch% sheets, hammer% #co*ugated
$of of #clinic build%, $ar% down # metal gutters, splash%
on #g$und in a to*&t.

Lempel-Ziv Compression (cont.)

• Add all possible character codes to the dictionary
• w = "";
• for (every character c in the incoming data) {
• if ((w + c) exists in the dictionary) {
• w = w + c;
• } else {
• add (w + c) to the dictionary;
• add the dictionary code for w to output;
• w = c;
• }
• }
• add the dictionary code for w to output;
• display output;

Lecture 4 – Data Compression

Lempel-Ziv-Welch (LZW)
algorithm (cont.)

Lempel-Ziv-Welch (LZW)
algorithm

• A dictionary is initialized to contain all the single characters.
• Scan through the input string for successively longer

substrings (w+c) that is not in the dictionary.
• When such a string (w+c) is found, the index for the string

less the last character (i.e., the longest substring that is in the
dictionary, w) is sent to output.

• The new string (including the last character, w+c) is added to
the dictionary with the next available code.

• The last input character (c) is then used as the next starting
point to scan for substrings.

Lecture 4 – Data Compression

Lempel-Ziv-Welch (LZW)
algorithm (cont.)

Lecture 4 – Data Compression

• No need to send the dictionary except the
initial encoding for the alphabet letters.

• Need to agree on the initial coding between
the sender and the receiver.

• The dictionary can be reconstructed as
decompression is done.

Lecture 4 – Data Compression

Lempel-Ziv-Welch (LZW)
algorithm (cont.)

Summary

• Huffman encoding
• Run-length encoding
• Lempel-Ziv Compression

