
Week 8 Lab - Introduction to Threads & Multithreaded TCP

COSC244

1 Assessment

This lab is worth 1%. The marks are awarded for the written answers to the preparation
questions (worth 0.5%) and completing two programming exercises (worth 0.5%).

The preparation questions should be answered before coming to the lab. They should be
stored electronically in a plain text �le with a .txt su�x in your ∼/244/08 directory. They
will be checked by the demonstrators at the start of the lab.

Make sure you get your work signed o� by a demonstrator before leaving the lab.

2 Introduction to Threads

In the last lab, you ended up with a program that allowed two-way communication provided
the sender and receiver alternated. Pseudocode for the sender and receiver is shown below.

1 // Sender pseudocode

2

3 while (oceans have waves) {

4 get a line from the keyboard

5 send the line over the socket

6 get a line from the socket

7 display the line

8 }

1 //Receiver pseudocode

2

3 while (oceans have waves) {

4 get a line from the socket

5 display the line

6 get a line from the keyboard

7 send the line over the socket

8 }

As you can see from the pseudocode, the sender �rst waits on a line from the keyboard. Even
if something were to arrive on the socket, nothing would be done with it until a line were typed
on the keyboard and that line sent over the socket. Then the program waits for something
from the socket and displays it on arrival. The program loops forever. The opposite sequence
of events applies to the receiver.

Notice that lines 4 & 5 of the sender code are identical to lines 6 & 7 of the receiver. Lines 6
& 7 of the sender code are identical to lines 4 & 5 of the receiver.

1



That was a good �rst step. However we want to be able to send something to the other end
at any time instead of having the `lock-step' synchronisation between sender and receiver.

The way to accomplish this goal is to use threads. A thread is a unit of program execution.
An application can have multiple threads of execution running concurrently. That is, it can
start several threads. Each thread is independent of the other threads unless they need to
share data.

In our case, we want to be able to read from the keyboard and read from a socket at the same
time. We can do so if we use one thread for reading from the keyboard and outputting to a
socket and a second thread for reading from a socket and printing to the screen.

3 A Thread Example

Let's begin by looking at a simple threaded application that prints out the name of a fruit at
timed intervals. In the lab, you will copy some code which we have provided into your own
directory, and run it to see what is happening. For now, we will examine the code.

Here is the code for the Fruit class that expects to run as a thread.

1 //Fruit.java

2

3 public class Fruit extends Thread {

4

5 private String name;

6 private int pauseSeconds;

7

8 public Fruit (String name, int pauseSeconds) {

9 this.name = name;

10 this.pauseSeconds = pauseSeconds;

11 }

12

13 public void run() {

14 for (int i = 0; i < 10; i++) {

15 try {

16 Thread.sleep(pauseSeconds * 1000); // convert to milliseconds

17 } catch (InterruptedException e) {

18 System.err.println(e);

19 }

20 System.out.printf("%02d ", System.currentTimeMillis() / 1000 % 60);

21 System.out.println(name + " " + i);

22 }

23 }

24 }

Lines 8 - 11 are the constructor for the class. Its parameters are a string and an integer. It
stores the arguments into two variables declared in lines 5 & 6.

Threads need a run() method which is executed when the thread starts. We will see how to
start a thread soon.

Lines 13 - 23 are the run() method for the Fruit class. It is a loop that repeats 10 times.
The sleep() method causes the thread to sleep for the number of seconds speci�ed when the
thread is created. It can throw an InterruptedException so we enclose the call to sleep() in
the try-catch block.

2



Once the thread is done sleeping, lines 20 & 21 output a time value, the name of the fruit
speci�ed when the thread was created, and the current loop number. After 10 iterations the
thread terminates.

Here is the code for a class that will create and start 3 threads. It is called Example1

1 //Example1.java

2

3 public class Example1 {

4

5 public static void main(String[] args) {

6 Fruit f1 = new Fruit("Banana", 3);

7 Fruit f2 = new Fruit("Apple", 2);

8 Fruit f3 = new Fruit("Orange", 4);

9 f1.start();

10 f2.start();

11 f3.start();

12 }

13

14 }

This class has the main() method. Lines 6 - 8 create three instances of a Fruit class, giving
each one a di�erent name and number of seconds to sleep. Lines 9 - 11 call the start()

method which invokes the run() method of the corresponding thread.

When you run this program in the lab, almost always the output will be lines consisting of
a number, a fruit name, and the loop number. The fruits will appear in di�erent orders as
time goes on. Occasionally a line might appear to be jumbled. Another program, called
Example2.java, starts six threads and it usually has several jumbled lines. What is happening
with the jumbled lines is that one thread wakes up and starts printing its line. During the
output, another thread wakes up and pre-empts the �rst thread. The second thread prints its
line (on the same line) and then goes to sleep returning CPU control to the �rst thread which
completes printing its line.

4 Preparation

Let's begin by looking at the Thread class.

4.1 Thread

Open the course web page, click on Resources, click on Java API Documentation, click on
Thread in the package java.lang. Read the introductory material down to where Nested Class

Summary starts.

Q1 What two ways can you use to create a thread? Explain each in a couple of sentences.

Q2 Whichever way you choose to create a thread, what is the name of the method that must
be part of your thread's implementation?

Q3 What method does a program call to start a thread running?

3



4.2 Multithreaded TCPExample

The basic program from Lab 7, TCPExample.java, is given at the end of this document.
We will break it into three classes: Client, Server, and ReadWriteThread. The code for the
ReadWriteThread class is given below.

1 // ReadWriteThread.java

2

3 import java.io.*;

4

5 public class ReadWriteThread extends Thread {

6

7 private BufferedReader input;

8 private PrintWriter output;

9

10 public ReadWriteThread(InputStream input, OutputStream output) {

11 this.input = new BufferedReader(new InputStreamReader(input));

12 this.output = new PrintWriter(output, true);

13 }

14

15 public void run() {

16 try {

17 String line;

18 while ((line = input.readLine()) != null) {

19 output.println(line);

20 }

21 } catch (IOException e) {

22 e.printStackTrace();

23 }

24 }

25 }

The constructor for this class is given an InputStream and an OutputStream as parameters. If
you don't remember what these are, review them from Lab 7's preparation. The constructor
assigns these streams to input and output as a Bu�eredReader and a PrintWriter, respectively.
The input could be either System.in or the InputStream associated with a socket. The output
could be either System.out or the OutputStream associated with a socket.

The run() method basically reads a line as a String from the input and prints it to the output
in an in�nite loop.

The Server code is given below.

1 // Server.java

2

3 import java.net.*;

4

5 public class Server {

6

7 public static void main(String[] args) {

8 try {

9 int port = Integer.parseInt(args[0]);

10 ServerSocket serverSocket = new ServerSocket(port);

11 System.err.println("Waiting for a client to connnect");

12 Socket socket = serverSocket.accept();

13 System.err.println("Accepted connection on port " + port);

4



14 new ReadWriteThread(System.in, socket.getOutputStream()).start();

15 new ReadWriteThread(socket.getInputStream(), System.out).start();

16 } catch (Exception e) {

17 e.printStackTrace();

18 System.err.println("\nUsage: java Server <port>");

19 }

20 }

21

22 }

Compare this code to the code path executed in TCPExample.java when a server is started.

Q4 What lines in Server.java are di�erent?

Q5 Explain what lines 14 & 15 do.

Q6 Would it matter if we reversed lines 14 & 15? Why or why not?

Q7 Write the code for Client.java which will work with Server.java using ReadWriteThread.java.
HINT: Study the code path executed in TCPExample.java when a client is started.

5 Programming Exercises

5.1 Trying out the multi-threaded fruit printing programs

Create and/or change to a directory you wish to work in for this lab. Type the following to
copy �les for this lab.

cp -r /home/cshome/coursework/244/start/08 .

Don't forget the period at the end. Compile Example1.java and Example2.java by typing:

javac Example1.java

javac Example2.java

Run Example1 by typing:

java Example1

Notice how the fruits appear in random order after a period of time. Run Example2 by typing:

java Example2

Notice how several lines appear to be jumbled.

Q8 Why is this happening?

5



5.2 Program 1

Type in the code for Server.java and ReadWriteThread.java (yes, it's a very good idea to type
it in rather than just using copy and paste). Then compile them by typing the command:

javac Server.java

Now type in the Client.java that you created in Question 7 above and compile it.

Start the server �rst by typing:

java Server 7777

It should startup with a message about waiting for a client to connect. Start the client by
typing:

java Client 7777 localhost

You should be able to type into the client and server in random order. The lines you type
should appear on the other side. If not, you need to debug your client code.

You terminate the client and server type typing Ctrl-C in each window.

5.3 Program 2

Copy Server.java to another �le called MultiServer.java. Modify the code so it corresponds
to the following:

1 // MultiServer.java

2

3 import java.io.*;

4 import java.net.*;

5 import java.util.*;

6

7 public class MultiServer extends Thread {

8

9 private static List<PrintWriter> clients = new LinkedList<PrintWriter>();

10

11 public static void main(String[] args) {

12 try {

13 int port = Integer.parseInt(args[0]);

14 ServerSocket serverSocket = new ServerSocket(port);

15 new MultiServer().start();

16 System.err.println("Waiting for a client to connect");

17 while (true) {

18 Socket socket = serverSocket.accept();

19 synchronized(clients) {

20 clients.add(new PrintWriter(socket.getOutputStream(), true));

21 }

22 System.err.println("Accepted connection on port " + port);

23 new ReadWriteThread(socket.getInputStream(), System.out).start();

24 }

6



25 } catch (Exception e) {

26 e.printStackTrace();

27 System.err.println("\nUsage: java MultiServer <port>");

28 }

29 }

30

31 public void run() {

32 Scanner stdin = new Scanner(System.in);

33 while (stdin.hasNextLine()) {

34 String line = stdin.nextLine();

35 synchronized(clients) {

36 for (PrintWriter client : clients) {

37 client.println(line);

38 }

39 }

40 }

41 }

42

43 }

Compile and run the program (starting the server �rst as usual). You should be able to connect
more than one client at a time. You will need a di�erent terminal window for each client.

Each line you type into a client appears in the server's window. Each line you type into the
server appears in each client's window. You terminate the programs by typing Ctrl-C in each
window.

Before leaving the lab, show your programs to a demonstrator.

To be continued next week . . .

Source code for TCPExample.java.

1 import java.io.*;

2 import java.net.*;

3 import java.util.*;

4

5 public class TCPExample {

6

7 private PrintWriter output;

8 private BufferedReader input;

9

10 public TCPExample(Socket socket) throws Exception {

11 output = new PrintWriter(socket.getOutputStream(), true);

12 input =

13 new BufferedReader(new InputStreamReader(socket.getInputStream()));

7



14 }

15

16 public void startReceiving() throws Exception {

17 String line;

18 while ((line = input.readLine()) != null) {

19 System.out.println(line);

20 }

21 }

22

23 public void startSending() {

24 Scanner stdin = new Scanner(System.in);

25 System.err.println("Please enter data here");

26 while (stdin.hasNextLine()) {

27 output.println(stdin.nextLine());

28 }

29 }

30

31 public static void main(String[] args) {

32 Socket socket = null;

33 try {

34 int port = Integer.parseInt(args[0]);

35 if (args.length > 1) {

36 socket = new Socket(args[1], port);

37 System.err.println("Connected to " + args[1] + " on port " + port);

38 TCPExample example = new TCPExample(socket);

39 example.startSending();

40 } else {

41 ServerSocket serverSocket = new ServerSocket(port);

42 System.err.println("Waiting for someone to connect");

43 socket = serverSocket.accept();

44 System.err.println("Accepted connection on port " + port);

45 TCPExample example = new TCPExample(socket);

46 example.startReceiving();

47 }

48 } catch (Exception e) {

49 e.printStackTrace();

50 System.err.println("\nUsage: java TCPExample <port> [host]");

51 }

52 }

53 }

8


	Assessment
	Introduction to Threads
	A Thread Example
	Preparation
	Thread
	Multithreaded TCPExample

	Programming Exercises
	Trying out the multi-threaded fruit printing programs
	Program 1
	Program 2


