
Week 9 Lab - A Simple Chat System

COSC244

1 Assessment

This lab is worth 0.5%. The marks are awarded for the written answers to the preparation
questions (worth 0.25%) and completing two programming exercises (worth 0.25%).

The preparation questions should be answered before coming to the lab. They should be
stored electronically in a plain text file with a .txt suffix in your ∼/244/09 directory. They
will be checked by the demonstrators at the start of the lab.

Make sure you get your work signed off by a demonstrator before leaving the lab.

2 Handling Multiple Clients

In the last lab, you created MultiServer.java which allowed multiple clients to connect to the
server. Anything typed into the server was sent to all clients. A line typed on any client
was sent to the server. Let’s examine MultiServer’s code which is shown below to see how it
operates.

1 // MultiServer.java
2
3 import java.io.*;
4 import java.net.*;
5 import java.util.*;
6
7 public class MultiServer extends Thread {
8
9 private static List<PrintWriter> clients = new LinkedList<PrintWriter>();

10
11 public static void main(String[] args) {
12 try {
13 int port = Integer.parseInt(args[0]);
14 ServerSocket serverSocket = new ServerSocket(port);
15 new MultiServer().start();
16 System.err.println("Waiting for a client to connect");
17 while (true) {
18 Socket socket = serverSocket.accept();
19 synchronized(clients) {
20 clients.add(new PrintWriter(socket.getOutputStream(), true));
21 }
22 System.err.println("Accepted connection on port " + port);
23 new ReadWriteThread(socket.getInputStream(), System.out).start();
24 }
25 } catch (Exception e) {
26 e.printStackTrace();
27 System.err.println("\nUsage: java MultiServer <port>");

1



28 }
29 }
30
31 public void run() {
32 Scanner stdin = new Scanner(System.in);
33 while (stdin.hasNextLine()) {
34 String line = stdin.nextLine();
35 synchronized(clients) {
36 for (PrintWriter client : clients) {
37 client.println(line);
38 }
39 }
40 }
41 }
42
43 }

Since we can have multiple clients, we need some way to keep track of them. This is provided
by line 9 which creates a LinkedList of PrintWriters called clients.

Lines 13 & 14 are the same as in Server.java. Line 15 starts an instance of MultiServer. This
results in a call to the run() method which is given in lines 31 - 41.

Line 32 assigns stdin to a new Scanner for System.in. Lines 33 - 40 form a while loop which
continues as long as there is input to read from the keyboard. Line 34 reads the line typed
into the String variable line.

Line 35 uses the synchronized keyword. This may be the first time you have seen this
keyword. It is applied to clients which is our list of clients. What this does is give exclusive
access to clients. Until the code in lines 36 - 38 completes, no other thread may access
clients. If we did not do this, it is possible for another thread to modify clients in some
unpredictable way and chaos would result.

Lines 36 & 37 are a for loop on clients which iterates through the list of clients. For each
client, we print the line which the Scanner read. This results in line being sent to each client
via their own socket.

Let’s return to main(). Line 16 prints a line so we know something happened when we started
the server. Lines 17 - 24 form an infinite while loop. Line 18 calls the accept() method and
waits for a client to connect. The accept() method returns a Socket which is assigned to
socket. When a client connects, lines 19 - 21 grant exclusive access to clients. Line 20 gets
an OutputStream on the socket, wraps a PrintWriter around it and adds it to the clients list.

Line 22 prints a message on the server screen about accepting a connection. Line 23 creates a
new ReadWriteThread using the socket for input and System.out for output, and starts the
thread.

In summary, starting the server creates a thread which reads from the keyboard and prints
to all connected clients. When a client connects, a thread is started reading from the client’s
socket and printing to the screen. There is one ReadWriteThread for each connected client.

Q1 Explain in your own words why we must use the synchronized() keyword when we access
clients.

2



Q2 What line of code starts the thread which reads from the keyboard and prints to all
clients?

Q3 What lines of code does this thread execute?

3 A Simple Chat System

Client.java along with ReadWriteThread.java is simple (and short) and is flexible at the same
time. The client prints to a socket whatever it reads from the keyboard and prints to the
screen whatever it reads from a socket.

We can use the client in several ways, some of which you saw in the last lab. Now let’s
implement a simple chat system. We can use Client.java and ReadWriteThread.java without
modification. What we need is a different server.

In our chat system, whatever is typed on the keyboard of any client is sent to all clients
(including the one that sent it). We will not type on the server’s keyboard. Instead the server
receives a line from a client and sends it to all clients. It outputs onto its screen information as
clients connect and disconnect, and status information about what it is sending and to whom.

The code for our chat server is given below.

1 // ChatServer.java
2
3 import java.io.*;
4 import java.net.*;
5 import java.util.*;
6
7 public class ChatServer {
8
9 private static List<ClientHandler> clients = new LinkedList<ClientHandler>();

10
11 public static void main(String[] args) {
12 try {
13 new ChatServer().startServer(Integer.parseInt(args[0]));
14 } catch (Exception e) {
15 e.printStackTrace();
16 System.err.println("\nUsage: java ChatServer <port>");
17 }
18 }
19
20 public void startServer(int port) throws Exception {
21 ServerSocket serverSocket = new ServerSocket(port);
22 System.err.println("ChatServer started");
23 while (true) {
24 ClientHandler ch = new ClientHandler(serverSocket.accept());
25 System.err.println("Accepted connection from " + ch);
26 synchronized (clients) {
27 clients.add(ch);
28 }
29 ch.start();
30 }

3



31 }
32
33 public static void sendAll(String line, ClientHandler sender) {
34 System.err.println("Sending ’" + line + "’ to : " + clients);
35 synchronized (clients) {
36 for (ClientHandler cl : clients) {
37 cl.send(sender + ": " + line);
38 }
39 }
40 }
41
42 public static class ClientHandler extends Thread {
43
44 private BufferedReader input;
45 private PrintWriter output;
46 private String id;
47 private static int count = 0;
48
49 public ClientHandler(Socket socket) throws Exception {
50 input = new BufferedReader(
51 new InputStreamReader(socket.getInputStream()));
52 output = new PrintWriter(socket.getOutputStream(), true);
53 id = "client_" + ++count;
54 }
55
56 public void send(String line) {
57 output.println(line);
58 }
59
60 public String toString() {
61 return id;
62 }
63
64 public void run() {
65 try {
66 send("Welcome! You are " + this + ".");
67 String line;
68 while ((line = input.readLine()) != null) {
69 sendAll(line, this);
70 }
71 } catch (IOException e) {
72 e.printStackTrace();
73 } finally {
74 synchronized (clients) {
75 clients.remove(this);
76 }
77 System.err.println(this + " closed connection!");
78 }
79 }
80 }
81 }

4



4 Lab Exercises

4.1 Get the Provided Code

Create and change to a directory you wish to work in for this lab. Type the following to copy
files for this lab.

cp -r /home/cshome/coursework/244/start/09 .

Don’t forget the period at the end. Compile Client.java and ReadWriteThread.java by typing:

javac Client.java

Client.java and ReadWriteThread.java are our solutions to Lab 8.

4.2 ChatServer.java

Type the ChatServer.java code given above into a file and compile it.

To run these programs and answer the questions below, you will need 4 terminal windows. You
might also want to switch to a different workspace on your Linux desktop. Start 4 terminals
and move them so they occupy the four corners of your screen. I will refer to them as UL,
UR, LL, and LR meaning upper left, upper right, lower left, and lower right, respectively. In
each terminal window cd to the directory you are working in.

In the LR terminal, start the server by typing: java ChatServer 7777

Q4 What is the response when ChatServer starts?

In the LL terminal, start a client by typing: java Client 7777 localhost

Q5 What is the response of the server when this client is started?

Q6 What is the response in the client window as it starts?

In the UL terminal, start another client by typing the same command.

Q7 What is the response of the server when this client is started?

Q8 What is the response in the client window as it starts?

In the UR terminal, start another client by typing the same command. You now have 3 clients
running and connected to the server.

In client_1’s window type: Hello from client 1

5



Q9 What is the response in client_2’s window?

Q10 What is the response in client_3’s window?

Q11 What is the response in the server’s window?

Type something into client_2’s window and into client_3’s window and observe what hap-
pens in the other clients’ windows and in the server window. Notice that what you type in a
particular client appears on its screen as you type. Once you type <Return>, what you have
typed is sent to each client preceeded by the sending client’s ID. This includes the client that
sent the message. Notice the status information printed in the server’s window.

Type ctrl-c in client_3’s window to terminate it. You should get a Unix prompt in that
window.

Q12 What is the response in the server’s window?

Type something in client_1’s window.

Q13 What is the response in client_2’s window?

Q14 What is the response in the server’s window?

Type ctrl-c in client_1’s window and in client_2’s window. Both these programs termi-
nate and you get a Unix prompt. The server outputs messages about each client closing its
connection.

In the UL window, start a new client by typing: java Client 7777 localhost

Q15 What client are you now?

Terminate this client and the server by typing ctrl-c in each window. You will need the answers
to these questions to prepare for the week 11 lab.

Make sure you get your work signed off by a demonstrator before leaving the lab.

6


	Assessment
	Handling Multiple Clients
	A Simple Chat System
	Lab Exercises
	Get the Provided Code
	ChatServer.java


