
Week 11 Lab - Recap: A Simple Chat System

COSC244

1 Assessment

This lab is worth 0.5%. The marks are awarded for the written answers to the questions.
They should be stored electronically in a plain text �le with a .txt su�x in your ∼/244/11
directory.

Make sure you get your work signed o� by a demonstrator before leaving the lab.

2 A Simple Chat System

The purpose of this lab is to help you understand the code of ChatServer.java. It is one of
the programs you can elect to implement during the practical test in Week 12. Understanding
what is going on will greatly aid you in writing the program from scratch during the practical
test.

In our chat system, whatever is typed on the keyboard of any client is sent to all clients
(including the one that sent it). We do not type on the server's keyboard. Instead the server
receives a line from a client and sends it to all clients. It outputs onto its screen information as
clients connect and disconnect, and status information about what it is sending and to whom.

The code for our chat server is given below.

1 // ChatServer.java

2

3 import java.io.*;

4 import java.net.*;

5 import java.util.*;

6

7 public class ChatServer {

8

9 private static List<ClientHandler> clients = new LinkedList<ClientHandler>();

10

11 public static void main(String[] args) {

12 try {

13 new ChatServer().startServer(Integer.parseInt(args[0]));

14 } catch (Exception e) {

15 e.printStackTrace();

16 System.err.println("\nUsage: java ChatServer <port>");

17 }

18 }

19

1



20 public void startServer(int port) throws Exception {

21 ServerSocket serverSocket = new ServerSocket(port);

22 System.err.println("ChatServer started");

23 while (true) {

24 ClientHandler ch = new ClientHandler(serverSocket.accept());

25 System.err.println("Accepted connection from " + ch);

26 synchronized (clients) {

27 clients.add(ch);

28 }

29 ch.start();

30 }

31 }

32

33 public static void sendAll(String line, ClientHandler sender) {

34 System.err.println("Sending '" + line + "' to : " + clients);

35 synchronized (clients) {

36 for (ClientHandler cl : clients) {

37 cl.send(sender + ": " + line);

38 }

39 }

40 }

41

42 public static class ClientHandler extends Thread {

43

44 private BufferedReader input;

45 private PrintWriter output;

46 private String id;

47 private static int count = 0;

48

49 public ClientHandler(Socket socket) throws Exception {

50 input = new BufferedReader(

51 new InputStreamReader(socket.getInputStream()));

52 output = new PrintWriter(socket.getOutputStream(), true);

53 id = "client_" + ++count;

54 }

55

56 public void send(String line) {

57 output.println(line);

58 }

59

60 public String toString() {

61 return id;

62 }

63

64 public void run() {

65 try {

66 send("Welcome! You are " + this + ".");

67 String line;

68 while ((line = input.readLine()) != null) {

69 sendAll(line, this);

70 }

71 } catch (IOException e) {

72 e.printStackTrace();

73 } finally {

74 synchronized (clients) {

75 clients.remove(this);

76 }

77 System.err.println(this + " closed connection!");

2



78 }

79 }

80 }

81 }

The class for this �le is called ChatServer as given on line 7. There is also code for another
class called ClientHandler declared on line 42. Line 9 creates a LinkedList of ClientHandlers
called clients. This allows us to keep track of the clients.

Lines 11-18 are the main() method for the program. Line 13 creates a new ChatServer and
calls the startServer method passing it the command line argument which is the port number.
The remainder of the method is a try-catch block which you should understand.

Lines 20-31 are the startServer() method. Line 21 creates a new ServerSocket instance and
assigns it to serverSocket. Line 22 prints a message about the server starting so we know
something is going on.

Lines 23-30 form an in�nite while loop. In line 24, we call the accept() method on serverSocket.
The program waits until a client connects to the socket. When a client connects, accept()
returns a Socket instance. That instance is passed to the ClientHandler constructor to create
a new ClientHandler instance and assign it to ch. We'll look at the ClientHandler class soon.

Line 25 prints a message about accepting a connection and gives the client's identi�cation.
Lines 26-28 add the client to the clients list. Since multiple threads can access clients at
unpredictable times, we use the synchronized() keyword to assure exclusive access. Line 27
adds the new client to the list.

Finally, line 29 calls start() to start the new ClientHandler thread executing.

Lines 33-40 are the sendAll() method of ChatServer. This method has two formal parameters:
a String and a ClientHandler. The �rst parameter, line, is the String to be sent. The second,
sender is the client which sent the String to the server.

Line 34 prints a status message on the server's screen about sending a message to the clients.
Refer to your answers from Lab 9 for the form of this message. That will help you understand
the argument to System.err.println().

Lines 36-38 are a for loop on clients which sends the message to each client by calling the
send() method of ClientHandler once for each client. Lines 35 & 39 give the method exclusive
access to clients.

Lines 42-80 are the code for the ClientHandler class. There is an instance of this class for
each client that connects to the server. Private variables are declared in lines 44-47.

Lines 49-54 are the class constructor which is passed a Socket instance. Lines 50 & 51 get
an InputStream on the socket, wrap a InputStreamReader around it, wrap a Bu�eredReader

around that, and �nally assign the whole mess to input. Line 52 gets an OutputStream on the
socket, wraps a PrintWriter around it and assigns the result to output. Line 53 creates an id

String so the client can be identi�ed.

Lines 56-58 are the send() method of ClientHandler. Its purpose should be obvious. Lines
60-62 are the toString() method. Again the purpose should be obvious.

3



Lines 64-79 are the run() method of the class. It is called whenever a ClientHandler thread
is started. It is a try-catch-�nally block.

Line 66 causes a message to be printed in the clients window giving its identity. Lines 68-70
form a while loop that repeatedly reads a line from input and calls the sendAll() method of
ChatServer. In this case, the input is the socket of the thread. The result is that whatever
the connected client sends is printed on the screen of all clients.

The �nally part of the try-catch-�nally block is executed as the thread terminates. For us, this
normally occurs when you type ctrl-C in a client's window. Lines 74-76 remove the terminated
client from the clients list, using exclusive access to clients. Line 77 prints a message stating
which client closed.

3 Test Your Understanding

Test your understanding of ChatServer by answering the following questions. You can do this
either as preparation before the lab or during your lab slot.

Q1 Explain the purpose of the send() method of ClientHandler.

Q2 Where is the line in send() going to?

Q3 Explain the purpose of the toString() method of ClientHandler.

Q4 When a client closes a connection and terminates, and then a new client connects, is the
client number recycled? Why or why not?

Q5 List the lines of code executed when the ChatServer starts up to the point where it is
listening for its �rst connection. The list should be in execution order.

Q6 If 3 clients have connected to ChatServer, how many threads are running assuming no
client has terminated. Include the client threads in your count.

Q7 Describe what each thread from Q6 is doing. For threads which are performing the same
task but for di�erent clients, you should state how many of that particular thread is
running. If you did not correctly answer Q6, complete this question after you get the
correct answer and before you leave the lab. You will not get the mark for this lab until
both questions are answered correctly.

4


	Assessment
	A Simple Chat System
	Test Your Understanding

