
Week 12 Lab - Practical Test: Implementing Network

Communication in Java

COSC244

Assessment

This lab is worth a maximum of 6% of your total mark for Cosc 244. Each lab stream is

divided into two 50-minute time slots during one of which you will sit the test. The labs are

at 9am, 1pm, and 3pm on Thursday of week 12.

Please make sure you come to the lab, with your ID card, at least �ve minutes before the lab

begins.

Overview

In the previous labs, you could complete the work at any stage before the lab �nished using

whatever resources you wished to. In this lab, you must complete the task during a 50-minute

time slot with minimal resources at your disposal. Using only a terminal window, a blank text-

editor, javac, and java, you must write a program from scratch that meets the speci�cations

given below. This test consists of two separate parts.

1. In the �rst part (worth 2% ), you must write the application which corresponds to

`Program 1' of Lab 8. This code consists of ReadWriteThread.java, Server.java and

Client.java. This application allows the client and server to connect to one another and

send messages without needing any coordination.

We require you to make the following change to the examples covered in labs.

Change the ReadWriteThread (RWT) so that it takes a String pre�x as a third parameter

to the constructor. This pre�x should be added to every line which is output by the

RWT. If you create a RWT with the empty string as a pre�x it should behave exactly

like the examples you looked at in the lab. However, if you create some of your RWTs

with a pre�x of "�-> " then you will get output which matches the sample output on

the last two pages of this document.

Once you have successfully completed the �rst part and had it checked by a demonstrator,

you can move on to the second part.

1



2. In the second part you can choose one of the following two options (we suggest you

choose to implement a server that you fully understand).

(a) (worth 2% ) Write a more advanced server corresponding to `Program 2' of Lab 8.

This version should be called MultiServer.java. It allows multiple clients to connect

to the server. A line typed into any client is sent to the server. A line typed into

the server is sent to all clients.

(b) (worth 4% ) Write a more advanced server corresponding to the one in Lab 9. This

version is called ChatServer.java. It allows multiple clients to connect to the server.

A line typed into any client is sent to all clients including the originator. The

server's window prints status messages but you don't type in the server's window.

You are allowed to have a maximum of two attempts at this practical test. In addition to

sitting the test during your own lab stream, you may �nd another empty slot during your

own, or another lab. If you are not con�dent of your ability to pass, it is recommended that

you come to the early stream so that, if necessary, you will have a gap between your �rst and

second attempt.

Some points to note

� You are not permitted to access your home directory or any other �les or computers.

You may NOT use the internet during this lab.

� You must successfully complete the simplest program before attempting to write one of

the more complex ones.

� You must write three Java classes (ReadWriteThread, Client, and Server) for the �rst

program. However you only need to write a new server class (MultiServer or ChatServer)

when writing one of the more complex programs.

� In order to make marking a smooth and simple process, please write code which matches

the sample code as closely as possible. Sensible variable names should be used.

� For the servers which require synchronization you must use the synchronized() keyword

in all of the required places. You are not allowed to just use, for example, a Collec-

tions.synchronizedList instead.

If you are using Emacs, you may �nd it useful to use its dynamic completion feature. Type the

�rst part of a word and then press TAB to get Emacs to cycle through each word in currently

open bu�ers which start with what you have typed. Using this feature will considerably reduce

the amount of typing you have to do.

A sample of the output which you could expect from each of the three programs is given on

the next two pages. The text pre�xed by --> represents lines which have been received from

the other end of the connection.

If you have any questions or concerns about this lab and the way it will be assessed please see

Iain Hewson or email ihewson@cs.otago.ac.nz.

2



Program 1 (two-way communication)

(Server)

Waiting for a client to connect

Accepted connection on port 7775

Hi

I'm the server

--> Hello

--> I'm the client

(Client)

Connected to localhost on port 7775

--> Hi

--> I'm the server

Hello

I'm the client

Program 2 (multiple connections)

(MultiServer)

Waiting for a client to connect

Accepted connection on port 7775

You are the first client

--> Hello

Accepted connection on port 7775

I have two clients now

--> I must be the second client

--> I have to go now

Goodbye

--> I'm still here

(Client 1)

Connected to localhost on port 7775

--> You are the first client

Hello

--> I have two clients now

I have to go now

--> Goodbye

(Client 1 disconnects at this point)

(Client 2)

Connected to localhost on port 7775

--> I have two clients now

I must be the second client

--> Goodbye

I'm still here

3



Program 3 (communication between clients)

(ChatServer)

ChatServer started

Accepted connection from client_1

Accepted connection from client_2

Sending 'Hello' to : [client_1, client_2]

Sending 'How are you?' to : [client_1, client_2]

Accepted connection from client_3

Sending 'I'm fine' to : [client_1, client_2, client_3]

client_1 closed connection!

Sending 'Who are you talking to?' to : [client_2, client_3]

(Client 1)

Connected to localhost on port 7775

--> Welcome! You are client_1.

Hello

--> client_1: Hello

--> client_2: How are you?

I'm fine

--> client_1: I'm fine

(Client 1 disconnects at this point)

(Client 2)

Connected to localhost on port 7775

--> Welcome! You are client_2.

--> client_1: Hello

How are you?

--> client_2: How are you?

--> client_1: I'm fine

--> client_3: Who are you talking to?

(Client 3)

Connected to localhost on port 7775

--> Welcome! You are client_3.

--> client_1: I'm fine

Who are you talking to?

--> client_3: Who are you talking to?

4


