Overview

- Last Lecture
 - DNS and BIND
- This Lecture
 - Address assignment (DHCP)
- Next Lecture
 - Remote Terminal Services (SSH)

Common errors in lab

- Typo of IPv6 addresses, fd6b, fb6d, fb6b
- Typo of MAC addresses
- Use the wrong MAC address from another adapter
- Package failed to install but didn't notice

Address Assignment

- First there was Reverse ARP (RARP)
 - Only IP address, no options for DNS etc.
- Then the Bootstrap Protocol (BOOTP)
 - Included concept of tagged options
 - Useful for software like X-Terminals,
 - Allow direct network booting
 - Like RARP, constrained to single subnet, but perform at UDP/IP, instead of MAC layer

DHCP

- Dynamic Host Configuration Protocol (DHCP)
- Compatible with BOOTP (uses same ports)
- Can efficiently use a shared pool of addresses
- IP addresses can be tied to MAC address, or client IP name
- Ubiquitous (at least in the IPv4 sense!)
- Limited to a single subnet, but routers can incorporate relay agents
- Successor: DHCPv6, less useful in IPv6

Static vs. Dynamic

- Static address is assigned manually by system admin in the DHCP configuration file using the client's MAC address
 - Server machines' addresses should be static
- Dynamically allocated addresses have a lease time period before they are re-assigned
 - Dynamically allocated address can be assigned to the same client as it keeps a table of past IP addresses and their clients MAC addresses.
 - Layer 3 (IP) change breaks existing connections if IP addresses change in a long session such as downloaders, terminal sessions

How DHCP Works

- Client broadcasts UDP request to 255.255.255.255 port 67
 - Routers can relay using a relay agent
- The first DHCP server may send an offering
 - Corollary: there should usually only be one
 DHCP server in a subnet (broadcast zone)
- Offer can contain many types of options.
 - https://tools.ietf.org/html/rfc2132

DHCP client/server source code

- https://github.com/samueldotj/dhcp-client
- https://www.oryx-embedded.com/doc/ dhcp__server_8c_source.html
- https://github.com/isc-projects/dhcp

Manual Assignment vs. DHCP

- Of course, you could do it manually. Why?
 - PRO Protection against multiple/rogue DHCP servers!
 - CON Change management
 - PRO / CON: Better control, but bigger problems when mistakes are made, e.g., IP address clash
- DHCP is still fairly reliable.
 - Short outages are generally unnoticeable

Ad-hoc Assignment

- ZeroConf (Zero Configuration Networking) Link Local Addresses
 - -169.254.0.0/16
 - Single subnet, no routing (no internet)
- Get an address by selecting an address and testing for duplicates
- Useful for ad-hoc networks, and unconfigured network devices
- Similar to the principle of IPv6 link local addresses

Service Offerings

- Network configuration
 - Current offerings like DHCP are suitable
- Service location and configuration
 - Current offerings/support not enough
 - E.g. name resolution service for ad-hoc network
 - How to find a web proxy or email gateway in an institute?
 - Should services should be resolved or searched based on Physical Location? Network Location? User? Class? Device?

Ad-hoc Name Resolution

- IP traditionally lacks this
 - Proprietary LAN-based protocols have supported it for years
 - AppleTalk, NetBIOS
- Useful when infrastructure has no local knowledge (e.g. no DNS)
- In IP world: Multicast DNS (mDNS)

Multicast DNS

- mDNS queries are the same as DNS, except queries are targeted at 224.0.0.251:5353
 - Queries are made under '.local', so '.local' should never be used for traditional DNS
 - <device_name>.local.
 - Client resolvers must recognise .local queries
 - Special treatment: not upstream DNS
- Also Microsoft's LLMNR (Link-Local Multicast Name Resolution)

Service Discovery

- Locate the services we need automatically, or by browsing, searching/filtering or provisioning
 - Indistinct services all behave the same way and can be assigned automatically
 - Distinct services provide different behavior and need to browsed, searched, or provisioned
- Need to consider network context
 - Operates within a specified network scope
- Many protocols were proposed for service discovery
- DNS-SD in Zero Configuration Networking, DHCP options, SLP, Directory Services like LDAP
 COSC301 Lecture 12: DHCP 13

Well known service names

- http://wpad.domain/wpad.dat for Web proxy auto-configuration
- Other common names include smtp (or mail), pop3, imap, ftp, www, ns1, ns2, time
 - These should be aliases, so they can be redirected to other machines easily
- Most useful for human-based configuration

S.D. with DHCP

- DHCP has various, diverse options: Syslog, DNS, LPR, WINS, NTP, LDAP (!)
 - Think carefully about security
- Requires client support, in DHCP client or application
- You can provision based on the machine or subnet, or a single group

S.D. with DNS-SD

- Service (SRV) records specify service type, transport protocol, and the domain.
- _smtp._tcp.domain returns Priority, Weight, Port and Address of mail servers, for browsing.
 - DNS Service Discovery (DNS-SD) allows for browsing service instances.
 - Most commonly used with mDNS.
- Not suitable for very dynamic data in traditional DNS. Why?

DNS-SD Example

- Examples taken from draft DNS-SD standard.
- What services are available on dns-sd.org?
 (provides a discovery starting point)
 dig +short -t any _services._dns-sd._udp.dns-sd.org
 _ftp._tcp.dns-sd.org.
 _ssh._tcp.dns-sd.org. (and others...)
- What FTP services are available on dns-sd.org? dig +short -t any _ftp._tcp.dns-sd.org
 Apple\032QuickTime\032Files._ftp._tcp.dns-sd.org. (and others...)

DNS-SD Example

How do I access "Apple QuickTime Files"?
 host -t any "Apple QuickTime
 Files._ftp._tcp.dns-sd.org"
 Apple\032QuickTime\032Files._ftp._tcp.dns-sd.org SRV 0 0 21 ftp.apple.com.
 Apple\032QuickTime\032Files._ftp._tcp.dns-sd.org text "path=/quicktime"

• ... i.e. FTP to ftp.apple.com/quicktime

SLP for S.D.

- Service Location Protocol enumerates by searching for service type and attributes
- Devices operate within a scope, and have service-agents, which advertise the service to user-agents, which themselves act as a client service on the local machine
 - Directory-agents gather all the information in a scope for fast retrieval on large networks
- Used mostly in Novell's IP offerings, and enterprise-grade (LAN) printers

S.D. w/ Directory Services

- Directory services commonplace in managed networks: Microsoft Active Directory, Novell eDirectory, Apple Open Directory, LDAP
- A directory is represented as a tree; contains objects such as users, servers, print queues, applications and client machines
- Users authenticate to the tree/domain, and can view the objects in them
- Access control is a central subject
 COSC301 Lecture 12: DHCP

Security

- Can give information about network infrastructure to attackers who might otherwise be going in "blind"... do we care?
 - But never rely on blindness (security through obscurity)
- Additional attack vectors
 - Race-conditions with DHCP
 - Can we authenticate DHCP servers?
 - DNS, Gateway, ... LDAP

Summary

- Pros and cons of DHCP compared with manual assignment.
- What is service discovery? What protocols can provide it? e.g. DHCP, LDAP, SLP, DNS-SD