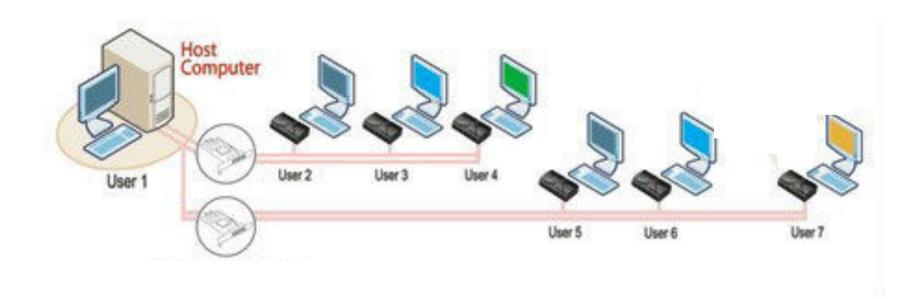
COSC301 Network Management and Security

Lecture 13: Remote Terminal Services

Today's Focus



Remote Terminal Services

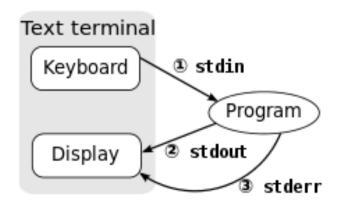
- -- What is a remote terminal?
- -- Secure SHell (SSH)

What is a terminal?

- An electronic device used for entering data into, and displaying data from a computer
 - Dumb terminal (thin client): no local processing ability
 - Smart terminal (fat client): has local processing ability

What is a terminal?

Hard-copy terminals


TeleTYpewriter (TTY)

DEC VT-100 terminal

- Terminal emulator
 - a program that does what a dumb terminal used to do
 - Terminal window

COSC301

Lecture 13: Remote Terminal Services

TTY Remote History

Berkeley 'r'-commands

-rsh remote shell commands

–rlogin remote terminal

-rcp remote copy

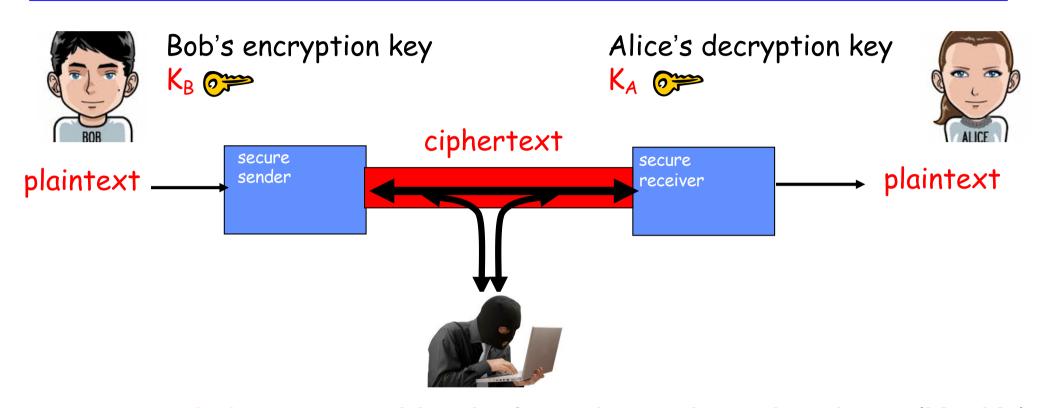
Weak host-based authentication Privileged ports, .rhosts, no password

- Telnet
 - -Remote terminal, similar to rlogin
 - User-based authentication

Past Problems & Solutions

Everything sent in clear-text, no encryption

Encrypt all traffic

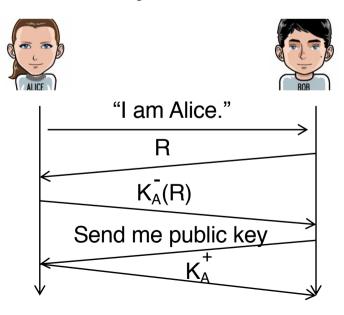

- Weak Host-based authentication
 - Exploitable trust relationships
 - Privileged ports offer little protection

Port forwarding

- Server is not authenticated
 - Potential Man-in-the-middle (MITM) attack

Authenticate both user and server

Principle of Cryptography



symmetric key crypto: identical sender and receiver keys ($K_B = K_A$) public-key crypto: encryption key *public*, decryption key *private*

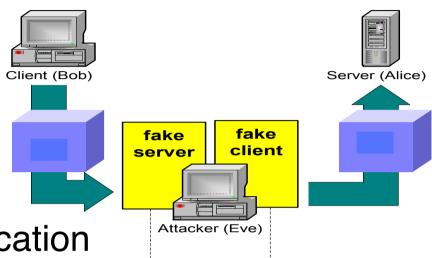
- public key is shared with the sender
- private key should not be known by any except the owner

Principle of Authentication

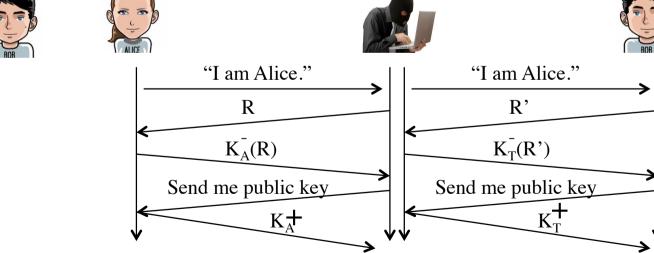
- Purpose: sender and receiver confirm identity of each other.
- Methods
 - Password based authentication
 - The username and password are encrypted before transmission.
 - Inherently vulnerable in that they can be guessed
 - Public key based authentication

Bob computes

$$K_A^+(K_A^-(R)) = R$$


Retrieval of the public key could be a security hole!

Note: K_A^+ means applying RSA algorithm with the key K_A^+ . The rest are similar.


Man-in-the-middle attack (MITM)

What is MITM?

The attacker secretly relays or possibly alters the communication

MITM under public-key authentication

Trudy computes

 $K_A (R) = R$

If Bob doesn't verify the public key sent by Trudy, MITM attack establishes!

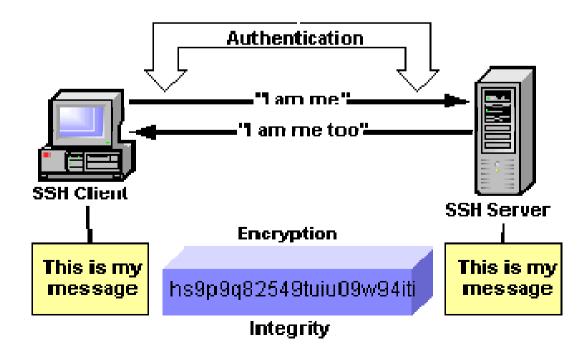
Bob computes

How to prevent MITM

Verify the host/user public key

```
Zhiyi:~ hzy$ ssh hzy@oucs1476.staff.uod.otago.ac.nz
The authenticity of host 'oucs1476.staff.uod.otago.ac.nz (10.96.224.233)' can't be established.
```

ECDSA key fingerprint is SHA256:I4AA47nI2DdhK6iHcUydQWSFoMnpDeKtivdnqrplCUQ. Are you sure you want to continue connecting (yes/no)? yes


 You can use ssh-keygen to find out the fingerprint of a public key

```
(base) hzy@oucs1476:~$ ssh-keygen -lf /etc/ssh/ssh_host_ecdsa_key.pub
256 SHA256:I4AA47nI2DdhK6iHcUydQWSFoMnpDeKtivdnqrplCUQ root@oucs1476 (ECDSA)
(base) hzy@oucs1476:~$ ■
```

 Store the public key of your trusted server into the known_hosts file under .ssh directory

Secure SHell (SSH)

- SSH provides secure versions of the 'r'commands and telnet
- Encrypt all traffic
 - Public/Private Key for authentication
 - Fast block cipher for data transfer
- Authenticate both host and user

Keys, Keys, Keys

User Key

- A persistent, asymmetric key used by clients as proof of a user's identity.
- A single user may have multiple keys

Host Key

- A persistent, asymmetric key used by a server as proof of its identity
- Used by a client when proving its host's identity as part of trustedhost authentication

Server Key

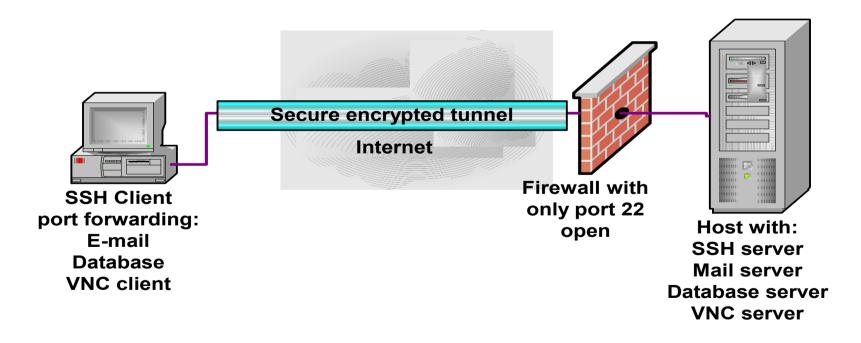
- A temporary, asymmetric key used in the SSH-1 protocol.
- It is regenerated by the server at regular intervals (by default every hour) and protects the session key

Session Key

 A randomly generated, symmetric key for encrypting the communication between an SSH client and server.

Data Encryption/Integrity

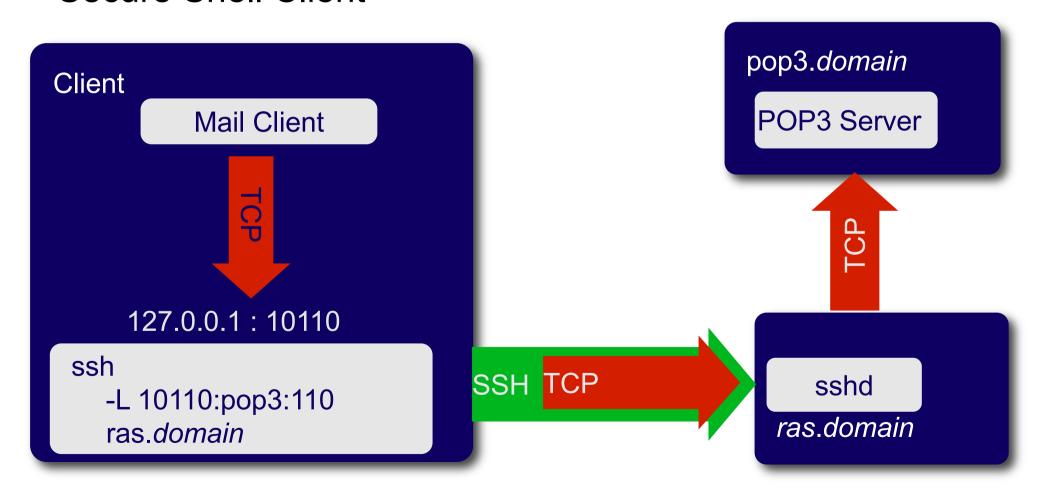
Encryption


- Use ciphers to encrypt and decrypt data being send over the wire
- Block cipher such as DES, 3DES, use a shared key (session key)
- Agree which cipher use during connection setup
- Session keys are randomly generated by both the client and server, after host authentication and before user authentication
- Integrity
 - Simple 32-bit CRC in SSH1
 - Message Authentication Code (MAC) in SSH2

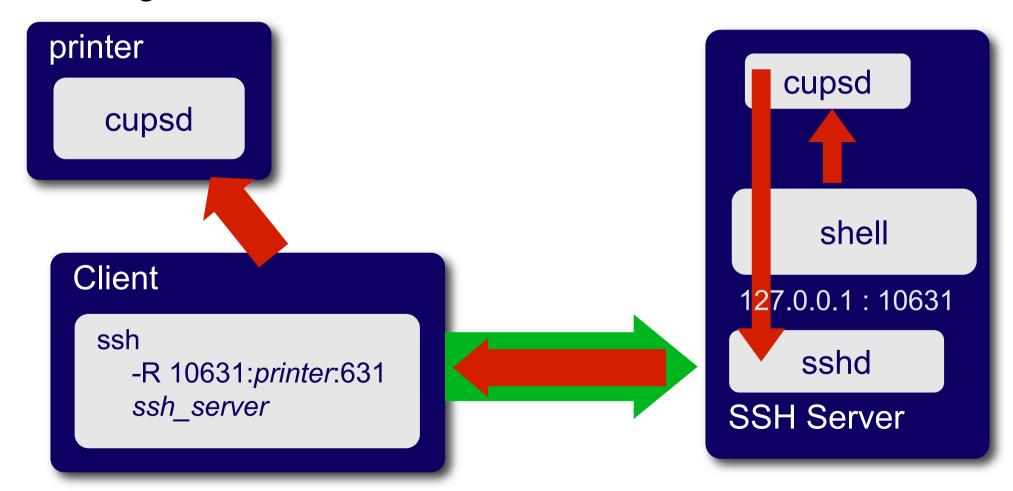
Authentication

- User authentication
 - Password authentication
 - Public key authentication using User Key
- Host authentication using Host key
 - Used by a server to prove its identity to a client
 - Used by a client to verify its "known" host
 - Persistent (change infrequently) and asymmetric
 - Guards against the Man-in-the-Middle attack

Port Forwarding


- Allows data from normally unsecured TCP/IP applications to be securely sent across the encrypted tunnel
- Multiple applications can transmit data over a single multiplexed channel.

Ref: An Overview of the Secure Shell (SSH), Vandyke Software


Port Forwarding

 Local port forwarding: forward data securely from another client application running on the same computer as the Secure Shell Client

Port Forwarding

 Remote port forwarding: enables applications on the server side of a Secure Shell connection to access services residing on the SSH's client side.

Threats Addressed by SSH

- Eavesdropping or Password Sniffing
 - All transmitted data is encrypted
- Man-in-the-middle attack (MITM)
 - Host authentication
 - Can not happen unless the host itself has been compromised
- Insertion and Replay attack
 - Attacker is not only monitoring the SSH session, but is also observing the keystrokes
 - By comparing what is typed with the traffic in the SSH stream, the attacker can deduce the packet containing a particular command, and replay the command at a particularly inappropriate time during the session.
 - Message authentication code prevents such attacks.

Threats Not Addressed by SSH

Password Cracking

 recovering passwords from data that has been stored or transmitted

IP and TCP attacks

- Syn Flood
- IP Fragment Attacks

•

Traffic Analysis

- deduce information from patterns in communication
- can be performed even when the messages are encrypted

Summary

- Remote terminal (pseudo terminal)
- Secure SHell (SSH)
 - Data Encryption
 - Authentication
 - Port forwarding (how and why)
 - Could MIMT happen with SSH?