
COSC 301 1 Lecture 4: Scripting Techniques

Overview
• Last Lecture

– IPv6 Bootcamp
• This Lecture

– Scripting Techniques
• Next Lecture

– Linux/Unix file system

COSC 301 2 Lecture 4: Scripting Techniques

Outline

• Least Privilege Principle
• Unix scripting
• Examples
• Other solutions

COSC 301 3 Lecture 4: Scripting Techniques

Least Privilege Principle
• System admins should follow this principle

– No user should be given more privileges than they need
to do their job. Likewise, no process or file should be
given more privileges than it needs to do its job.

• Examples
– Setuid programs: don’t set unless necessary
– Run programs under special user id such as www and

nobody if possible
– Some applications such as httpd can change its user id

from root to nobody after opening the privileged port
number 80.

– Temporary files shouldn’t be in /tmp

COSC 301 4 Lecture 4: Scripting Techniques

Scripting
• Scripting uses the language/commands of

command shell
– It is easier, a glue, weakly typed, and interpreted

• Cons of scripting
– I/O is expensive due to process communications
– Interpretation slower than compiled code
– Interface inconsistency
– Parsing could be troublesome
– Security

• TOCTTOU (time-of-check to time-of-use) attack
• rm /tmp/*/* (find /tmp -not-accessed-recently | xargs rm)

COSC 301 5 Lecture 4: Scripting Techniques

History of scripting
• Who scripting?

– Administrators, developers, power users, testers,
normal users

• History
– Job Control Language
– 1960s Unix pipe
– 1993 Applescript
– 2005 Automator
– 2006 Windows PowerShell

• Available shells in Linux
– bash, sh, tcsh, csh
– use cat /etc/shells to find out which shell you use.

COSC 301 6 Lecture 4: Scripting Techniques

Origin of scripting
• Unix philosophy

– Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle
text streams, because that is a universal interface.

– Doug McIlroy, Inventor of the | construct
• Because of this principle, there are many small

utility programs in Unix
• Scripting is the glue to integrate them together to

achieve more complex functionalities.

COSC 301 7 Lecture 4: Scripting Techniques

Simple script

• #!/bin/sh echo “Hello, World!”
• $ chmod +x ./hello $./hello Hello,

World! $ sh ./hello Hello, World!

COSC 301 8 Lecture 4: Scripting Techniques

Another example
• #!/bin/bash
• clear
• echo "This is information provided by mysystem.sh. Program starts now."
• echo "Hello, $USER"
• echo
• echo "Today's date is `date`, this is week `date +"%V"`."
• echo
• echo "These users are currently connected:"
• w | cut -d " " -f 1 | grep -v USER | sort -u
• echo
• echo "This is `uname -s` running on a `uname -m` processor."
• echo
• echo "This is the uptime information:"
• uptime
• echo
• echo "That's all folks!"

COSC 301 9 Lecture 4: Scripting Techniques

#! “Sh-Bang”

• First line tells the interpreter
– #!/bin/sh
– #!/usr/bin/perl -wnl
– #!/usr/bin/env python
– Default is /bin/sh

• SetUID not honoured
– Can’t run with the owner’s privilege.

• # is also used for comments

COSC 301 10 Lecture 4: Scripting Techniques

Good scripts
• A sensible name

– don’t clash with existing commands and programs

• No errors
• Perform the intended task
• Have a clear logic
• Efficient, no unnecessary work
• Informative, notifying users about what it is doing
• Reusable
• In summary, it is just like a good program, except

the scripts are written in commands.

COSC 301 11 Lecture 4: Scripting Techniques

Linux BASH basics
• A popular command shell
• Files read by bash

– /etc/profile, .bash_profile, .bashrc
– depending on login, interactive, non-interactive, or use

sh directly
• Three types of commands

– built-in, function, executable programs
– Built-in commands like cd and eval, exit, exec, export,

• debugging a script: bash -xv script_file
• Some self-study required

– Read Bash Beginners Guide

COSC 301 12 Lecture 4: Scripting Techniques

I/O Channels and Pipe
• stdin: standard input from terminal
• stdout: standard output to the terminal
• stderr: standard error to the terminal
• They are created for each process/command

automatically and have file descriptors 0,1,2
respectively

• Commands can be joined with pipe |
– The output of the first command becomes the input of the second

command; uses system calls pipe() and dup2().
• Example: find 5 biggest dirs in the current directory

– du -xkd 1 | grep -v "^[0-9]*[[:space:]]*\.$" | sort -rn | head -5

COSC 301 13 Lecture 4: Scripting Techniques

Command pipeline patterns
• Commands can be joined with pipe |

– The output of the first command becomes the input of the second
command; uses system calls pipe() and dup2().

• Source: e.g. ls
– read from file and write to stdout

• Filter: e.g. sort
– read from stdin and write to stdout

• Sink: e.g. less
– read from stdin and write to file

• “Cantrip”: e.g. rm
– do something but return nothing

• Compiler: e.g. tar
– read from file and write to another file

COSC 301 14 Lecture 4: Scripting Techniques

I/O Redirection
• Standard input/output/error could be redirected to

other files
• command < f1_in > f2_out 2> f3_err

– Redirect stdin to f1_in, stdout to f2_out, and stderr to
f3_err

– command > f1, overwriting f1
– command >> f2, appending to f1
– command 2> f3, redirect stderr to f3

• Redirect stdout to stderr
– echo “Warning to stderr” >&2

– echo “To black hole” 2> /dev/null >&2

COSC 301 15 Lecture 4: Scripting Techniques

Environment variables and files
• Environment variable

– A variable with name and value used by shells and processes
– Use printenv or env to find them
– They can be set by

• Globally, /etc/profile, /etc/bash.bashrc
• Per user, ~/.bash_profile,~/.bashrc, ~/.profile

• /etc/profile, ~/.bash_profile, ~/.bash_logout
– Used by login shells

• /etc/bash.bashrc, ~/.bashrc
– used by interactive, non-login shells

• Shell scripts use non login shell, non interactive shell
• For details https://wiki.archlinux.org/index.php/environment_variables

COSC 301 16 Lecture 4: Scripting Techniques

Variables in BASH
• varname=value

– Assignment, no spaces around ‘=’

• $varname for deference

• Global and local variables
– Environment variables are global variables.
– Variables by default are global after assignment
– Local variables defined with keyword “local”

• Variables can be seens by subshell/child processes
– export PATH=$HOME/bin:$PATH

• Beware white-space in string values
– Varname=“foo bar”, using “” if there is white space

COSC 301 17 Lecture 4: Scripting Techniques

Interpolation
• A built-in command in a string can be executed

and the execution output will replace the location
of the original command.
– ‘non-interpolated string’
– `command`
– “interp. string $varname `command`”
– foo=`command \`command\``
– foo=$(command $(command)) (Bash specific)

• Example
– echo -e "This is output from ls:\n`ls`:"

COSC 301 18 Lecture 4: Scripting Techniques

Conditions—if
• if␣[␣$# -lt 2]; then if-less-than-two-

arguments elif␣[␣\(␣“$1”␣=␣‘foo’␣\)␣-a␣\
\(␣-r␣/etc/foorc␣\)␣]; then if-arg1-is-foo-
and-foorc-is-readable else if-otherwise fi

• if␣!␣grep -q ...; then if-grep-did-not-
find fi

• Note: man 1 test to find more about if conditions

COSC 301 19 Lecture 4: Scripting Techniques

Conditionals—case
case “$fo_proc” in ‘fop’)

command;; ‘xep’)
command1; commandN;; *)
default-command >&2 exit

1;; esac

COSC 301 20 Lecture 4: Scripting Techniques

Loops—for
• for i in foo bar baz do echo $i done
• ((... ; ... ; ...)) is a Bash-ism for ((i=128;

i<160; i++)); do printf
“ip%03d\tA\t192.168.1.%d\n” $i $i done

COSC 301 21 Lecture 4: Scripting Techniques

Loops—while
ls | while read filename do do stuff with
“$filename” done

while true do infinite loop body done

COSC 301 22 Lecture 4: Scripting Techniques

Arithmetic
• expr 2 * 8 16
• echo $((2 * 8)) Bash-ism 16
• echo 'scale=2; 1/3' | bc .33
• echo 'ibase=10; obase=2; 192' |

bc 11000000

COSC 301 23 Lecture 4: Scripting Techniques

Sed and Awk

• Read a book!
• Regular expressions!
• Takes a while to learn
• A few recipes are useful

COSC 301 24 Lecture 4: Scripting Techniques

List all system commands

• find /bin /usr/bin /sbin /usr/sbin \ -type f
-perm /111 | \ xargs -L1 basename | \

xargs -L1 whatis | grep '([18])'

COSC 301 25 Lecture 4: Scripting Techniques

Applescript example
• Is 10% of disk

available? https://developer.apple.com/library/mac/documentation/app
lescript/conceptual/applescriptlangguide/conceptual/ASLR_lexical_co
nventions.html#//apple_ref/doc/uid/TP40000983-CH214-SW1

tell application "Finder" set the percent_free to ¬ (((the free space of the
startup disk) / ¬ (the capacity of the startup disk)) * 100) div 1 end tell if the
percent_free is less than 10 then tell application (path to frontmost application as text)

display dialog "The startup disk has only " & ¬
the percent_free & ¬ " percent of its capacity

available." & return & return & ¬ "Should this script
continue?" with icon 1 end tell end if

COSC 301 26 Lecture 4: Scripting Techniques

PowerShell examples
• This example is from Monad Manifesto
• What is filling up my application logs?

– Get-EventLog application|Group source|Select –first
5|Format-Table counter Property ======
=========== 1,269 crypt32 1,234 MsiInstaller
1,062 Ci 280 Userenv 278 SceCli

COSC 301 27 Lecture 4: Scripting Techniques

Summary
• What is the least privilege principle?
• List a few pros and cons of shell scripting

compared with other programming languages
like C/C++.

COSC 301 28 Lecture 4: Scripting Techniques

References
• The Art of Unix Programming Eric S. Raymond
• The Unix Hater’s Handbook Simson Garfinkel,

Daniel Weise, and Steven Strassmann
• Monad Manifesto Jeffrey P. Snover
• Scripting: Higher Level Programming for the 21st

Century John K. Ousterhout (father of Tcl)
• Bash Guide for Beginners Machtelt Garrels
• [Reference] bash(1)

