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— Scripting Techniques
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— Linux/Unix file system
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Outline

e Least Privilege Principle
e Unix scripting
 Examples

e (Other solutions
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Least Privilege Principle

* System admins should follow this principle

— No user should be given more privileges than they need
to do their job. Likewise, no process or file should be
given more privileges than it needs to do its job.

 Examples
— Setuid programs: don’t set unless necessary

— Run programs under special user 1d such as www and
nobody if possible

— Some applications such as httpd can change its user id
from root to nobody after opening the privileged port
number 80.

— Temporary files shouldn’t be 1n /tmp
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Scripting

e Scripting uses the language/commands of
command shell

— It is easier, a glue, weakly typed, and interpreted

e Cons of scripting
— 1/0O 1s expensive due to process communications
— Interpretation slower than compiled code
— Interface inconsistency
— Parsing could be troublesome

— Security
e TOCTTOU (time-of-check to time-of-use) attack

e rm /tmp/*/* (find /tmp -not-accessed-recently | xargs rm)
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History of scripting
* Who scripting?

— Admuinistrators, developers, power users, testers,
normal users

e History
— Job Control Language
— 1960s  Unix pipe
— 1993  Applescript
— 2005  Automator
— 2006  Windows PowerShell

e Available shells in Linux

— bash, sh, tcsh, csh

— use cat /etc/shells to find out which shell you use.
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Origin of scripting

e Unix philosophy
— Write programs that do one thing and do 1t well. Write

programs to work together. Write programs to handle
text streams, because that i1s a universal interface.

— Doug Mcllroy, Inventor of the | construct

* Because of this principle, there are many small
utility programs in Unix

e Scripting 1s the glue to integrate them together to
achieve more complex functionalities.
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Simple script
 #!/bin/sh echo “Hello, World!”

e § chmod +x /hello $ /hello Hello,
World! $ sh /hello Hello, World!
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Another example

#!/bin/bash

clear

echo "This is information provided by mysystem.sh. Program starts now."
echo "Hello, SUSER"

echo

echo "Today's date is “date’, this is week “date +"% V" ."
echo

echo "These users are currently connected:"

wlcut-d" " -f 11grep-v USER | sort -u

echo

echo "This is "uname -s* running on a "uname -m_ processor."
echo

echo "This is the uptime information:"

uptime

echo

echo "That's all folks!"
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#! “Sh-Bang”

e First line tells the interpreter
— #!/bin/sh
— #!/usr/bin/perl -wnl
— #!/usr/bin/env python
— Default 1s /bin/sh

e SetUID not honoured

— Can’t run with the owner’s privilege.

e #1s also used for comments
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Good scripts

A sensible name

— don’t clash with existing commands and programs
No errors
Perform the intended task
Have a clear logic
Efficient, no unnecessary work
Informative, notifying users about what it 1s doing
Reusable

In summary, it 1s just like a good program, except
the scripts are written in commands.
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LLinux BASH basics

e A popular command shell

* Files read by bash
— /etc/profile, .bash_profile, .bashrc

— depending on login, interactive, non-interactive, or use
sh directly

* Three types of commands

— built-in, function, executable programs

— Built-in commands like cd and eval, exit, exec, export,
e debugging a script: bash -xv script_{file
e Some self-study required

— Read Bash Beginners Guide
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I/O Channels and Pipe

stdin: standard input from terminal

stdout: standard output to the terminal

stderr: standard error to the terminal

They are created for each process/command
automatically and have file descriptors 0,1,2
respectively

Commands can be joined with pipe |

— The output of the first command becomes the input of the second
command; uses system calls pipe() and dup2().

Example: find 5 biggest dirs in the current directory
— du -xkd 1 | grep -v "M0-9]*[[:space:]]*\.$" | sort -rn | head -5
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Command pipeline patterns

e Commands can be joined with pipe |

— The output of the first command becomes the input of the second
command; uses system calls pipe() and dup2().

* Source: e.g. s

— read from file and write to stdout
e Filter: e.g. sort

— read from stdin and write to stdout
e Sink: e.g. less

— read from stdin and write to file
e “Cantrip”: e.g.rm

— do something but return nothing
e Compiler: e.g. tar

— read from file and write to another file
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I/O Redirection

e Standard input/output/error could be redirected to
other files

o command < fl_in > f2_out 2> f3_err

— Redirect stdin to f1_in, stdout to f2_out, and stderr to
f3 err

— command > f1, overwriting {1
— command >> f2, appending to {1
— command 2> {3, redirect stderr to 13

e Redirect stdout to stderr
— echo “Warning to stderr” >&?2

— echo “To black hole” 2> /dev/null >&2
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Environment variables and files

 Environment variable
— A variable with name and value used by shells and processes
— Use printenv or env to find them

— They can be set by

* Globally, /etc/profile, /etc/bash.bashrc
e Per user, ~/.bash_profile ~/.bashrc, ~/.profile

e /etc/profile, ~/.bash_profile, ~/.bash_logout
— Used by login shells

e /etc/bash.bashrc, ~/.bashrc

— used by interactive, non-login shells

e Shell scripts use non login shell, non interactive shell

e For details https://wiki.archlinux.org/index.php/environment_variables
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Variables in BASH

o varname=value

— Assignment, no spaces around ‘=’
o $varname for deference

* Global and local variables
— Environment variables are global variables.
— Variables by default are global after assignment

— Local variables defined with keyword “local”

e Variables can be seens by subshell/child processes
— export PATH=$HOMZE/bin:$PATH

 Beware white-space 1n string values

€¢d

— Varname="foo bar”’, using “” if there 1s white space
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Interpolation

* A built-in command in a string can be executed
and the execution output will replace the location
of the original command.

— ‘non-interpolated string’

— ~command

— “interp. string $varname ~command
— foo="command \' command\"

— foo=$(command $(command)) (Bash specific)

e Example

— echo -e "This is output from Is:\n"Is™:"
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Conditions —1f

o if [_$#-1t2];then if-less-than-two-
arguments elif [ _\(_“$1”_=_‘foo’ V) _,-a_\
\(_,-r_./etc/foorc_\)_.]; then if-argl-is-foo-
and-foorc-is-readable else if-otherwise fi

e if_ ! ,grep-q...;then if-grep-did-not-
find fi

e Note: man 1 test to find more about if conditions
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Conditionals —case

case “$fo_proc”’in  ‘fop’)
commands; ‘xep’)
commandl;, commandN3; )
default-command >&?2 exit
135 esac
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Loops—for

e for iin foo bar baz do echo $i done

e (...;...;..))is aBash-ism for ((i=128;
i<160; i++)); do  printf
“ip%03d\tA\t192.168.1.%d\n” $1 $i done
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Loops—while

Is | while read filename do do stuff with
“$filename” done

while true do infinite loop body done
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Arithmetic

e expr2\* 8 16
e echo $((2 * 8)) Bash-ism 16
e echo 'scale=2; 1/3' | bc .33

e echo 'tbase=10; obase=2; 192'|
bc 11000000
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Sed and Awk

e Read a book!
e Regular expressions!

e Takes a while to learn

e A few recipes are useful

OREILLY’
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List all system commands

e find /bin /usr/bin /sbin /usr/sbin\  -type {
-perm /111 |\ xargs -L1 basename | \
xargs -LL1 whatis | grep '([18])’
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Applescript example

e [s 10% of disk

available? https://developer.apple.com/library/mac/documentation/app
lescript/conceptual/applescriptlangguide/conceptual/ASLR_lexical_co
nventions.html#//apple_ref/doc/uid/TP40000983-CH214-SW1

tell application "Finder" set the percent_free to — (((the free space of the
startup disk) / = (the capacity of the startup disk)) * 100) div 1 end tell if the
percent_free is less than 10 then tell application (path to frontmost application as text)
display dialog "The startup disk has only " & —
the percent_free & — " percent of its capacity
available." & return & return & - "Should this script
continue?" with icon 1 end tell end if
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PowerShell examples

e This example 1s from Monad Manifesto
* What is filling up my application logs?

— Get-EventLog applicationlGroup sourcelSelect —first

SIFormat-Table counter Property ======
=========== ],269 crypt32 1,234 Msilnstaller
1,062 Ci 280 Userenv 278 SceCli
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Summary
* What is the least privilege principle?

e List a few pros and cons of shell scripting

compared with other programming languages
like C/C++.
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