Overview

e [.ast Lecture
— [Pv6 Bootcamp

 This Lecture
— Scripting Techniques
* Next Lecture

— Linux/Unix file system

COSC 301 1 Lecture 4: Scripting Techniques

Outline

e Least Privilege Principle
e Unix scripting
 Examples

e (Other solutions

COSC 301 2 Lecture 4: Scripting Techniques

Least Privilege Principle

* System admins should follow this principle

— No user should be given more privileges than they need
to do their job. Likewise, no process or file should be
given more privileges than it needs to do its job.

 Examples
— Setuid programs: don’t set unless necessary

— Run programs under special user 1d such as www and
nobody if possible

— Some applications such as httpd can change its user id
from root to nobody after opening the privileged port
number 80.

— Temporary files shouldn’t be 1n /tmp
COSC 301 3 Lecture 4: Scripting Techniques

Scripting

e Scripting uses the language/commands of
command shell

— It is easier, a glue, weakly typed, and interpreted

e Cons of scripting
— 1/0O 1s expensive due to process communications
— Interpretation slower than compiled code
— Interface inconsistency
— Parsing could be troublesome

— Security
e TOCTTOU (time-of-check to time-of-use) attack

e rm /tmp/*/* (find /tmp -not-accessed-recently | xargs rm)

COSC 301 4 Lecture 4: Scripting Techniques

History of scripting
* Who scripting?

— Admuinistrators, developers, power users, testers,
normal users

e History
— Job Control Language
— 1960s Unix pipe
— 1993 Applescript
— 2005 Automator
— 2006 Windows PowerShell

e Available shells in Linux

— bash, sh, tcsh, csh

— use cat /etc/shells to find out which shell you use.
COSC 301 5 Lecture 4: Scripting Techniques

Origin of scripting

e Unix philosophy
— Write programs that do one thing and do 1t well. Write

programs to work together. Write programs to handle
text streams, because that i1s a universal interface.

— Doug Mcllroy, Inventor of the | construct

* Because of this principle, there are many small
utility programs in Unix

e Scripting 1s the glue to integrate them together to
achieve more complex functionalities.

COSC 301 6 Lecture 4: Scripting Techniques

Simple script
 #!/bin/sh echo “Hello, World!”

e § chmod +x /hello $ /hello Hello,
World! $ sh /hello Hello, World!

COSC 301 7 Lecture 4: Scripting Techniques

Another example

#!/bin/bash

clear

echo "This is information provided by mysystem.sh. Program starts now."
echo "Hello, SUSER"

echo

echo "Today's date is “date’, this is week “date +"% V" ."
echo

echo "These users are currently connected:"

wlcut-d" " -f 11grep-v USER | sort -u

echo

echo "This is "uname -s* running on a "uname -m_ processor."
echo

echo "This is the uptime information:"

uptime

echo

echo "That's all folks!"

COSC 301 8 Lecture 4: Scripting Techniques

#! “Sh-Bang”

e First line tells the interpreter
— #!/bin/sh
— #!/usr/bin/perl -wnl
— #!/usr/bin/env python
— Default 1s /bin/sh

e SetUID not honoured

— Can’t run with the owner’s privilege.

e #1s also used for comments

COSC 301 9 Lecture 4: Scripting Techniques

Good scripts

A sensible name

— don’t clash with existing commands and programs
No errors
Perform the intended task
Have a clear logic
Efficient, no unnecessary work
Informative, notifying users about what it 1s doing
Reusable

In summary, it 1s just like a good program, except
the scripts are written in commands.

COSC 301 10 Lecture 4: Scripting Techniques

LLinux BASH basics

e A popular command shell

* Files read by bash
— /etc/profile, .bash_profile, .bashrc

— depending on login, interactive, non-interactive, or use
sh directly

* Three types of commands

— built-in, function, executable programs

— Built-in commands like cd and eval, exit, exec, export,
e debugging a script: bash -xv script_{file
e Some self-study required

— Read Bash Beginners Guide
COSC 301 11 Lecture 4: Scripting Techniques

I/O Channels and Pipe

stdin: standard input from terminal

stdout: standard output to the terminal

stderr: standard error to the terminal

They are created for each process/command
automatically and have file descriptors 0,1,2
respectively

Commands can be joined with pipe |

— The output of the first command becomes the input of the second
command; uses system calls pipe() and dup2().

Example: find 5 biggest dirs in the current directory
— du -xkd 1 | grep -v "M0-9]*[[:space:]]*\.$" | sort -rn | head -5

COSC 301 12 Lecture 4: Scripting Techniques

Command pipeline patterns

e Commands can be joined with pipe |

— The output of the first command becomes the input of the second
command; uses system calls pipe() and dup2().

* Source: e.g. s

— read from file and write to stdout
e Filter: e.g. sort

— read from stdin and write to stdout
e Sink: e.g. less

— read from stdin and write to file
e “Cantrip”: e.g.rm

— do something but return nothing
e Compiler: e.g. tar

— read from file and write to another file

COSC 301 13 Lecture 4: Scripting Techniques

I/O Redirection

e Standard input/output/error could be redirected to
other files

o command < fl_in > f2_out 2> f3_err

— Redirect stdin to f1_in, stdout to f2_out, and stderr to
f3 err

— command > f1, overwriting {1
— command >> f2, appending to {1
— command 2> {3, redirect stderr to 13

e Redirect stdout to stderr
— echo “Warning to stderr” >&?2

— echo “To black hole” 2> /dev/null >&2

COSC 301 14 Lecture 4: Scripting Techniques

Environment variables and files

 Environment variable
— A variable with name and value used by shells and processes
— Use printenv or env to find them

— They can be set by

* Globally, /etc/profile, /etc/bash.bashrc
e Per user, ~/.bash_profile ~/.bashrc, ~/.profile

e /etc/profile, ~/.bash_profile, ~/.bash_logout
— Used by login shells

e /etc/bash.bashrc, ~/.bashrc

— used by interactive, non-login shells

e Shell scripts use non login shell, non interactive shell

e For details https://wiki.archlinux.org/index.php/environment_variables

COSC 301 15 Lecture 4: Scripting Techniques

Variables in BASH

o varname=value

— Assignment, no spaces around ‘=’
o $varname for deference

* Global and local variables
— Environment variables are global variables.
— Variables by default are global after assignment

— Local variables defined with keyword “local”

e Variables can be seens by subshell/child processes
— export PATH=$HOMZE/bin:$PATH

 Beware white-space 1n string values

€¢d

— Varname="foo bar”’, using “” if there 1s white space
COSC 301 16 Lecture 4: Scripting Techniques

Interpolation

* A built-in command in a string can be executed
and the execution output will replace the location
of the original command.

— ‘non-interpolated string’

— ~command

— “interp. string $varname ~command
— foo="command \' command\"

— foo=$(command $(command)) (Bash specific)

e Example

— echo -e "This is output from Is:\n"Is™:"

COSC 301 17 Lecture 4: Scripting Techniques

Conditions —1f

o if [_$#-1t2];then if-less-than-two-
arguments elif [_\(_“$1”_=_‘foo’ V) _,-a_\
\(_,-r_./etc/foorc_\)_.]; then if-argl-is-foo-
and-foorc-is-readable else if-otherwise fi

e if_ ! ,grep-q...;then if-grep-did-not-
find fi

e Note: man 1 test to find more about if conditions

COSC 301 18 Lecture 4: Scripting Techniques

Conditionals —case

case “$fo_proc”’in ‘fop’)
commands; ‘xep’)
commandl;, commandN3;)
default-command >&?2 exit
135 esac

COSC 301 19 Lecture 4: Scripting Techniques

Loops—for

e for iin foo bar baz do echo $i done

e (...;...;..))is aBash-ism for ((i=128;
i<160; i++)); do printf
“ip%03d\tA\t192.168.1.%d\n” $1 $i done

COSC 301 20 Lecture 4: Scripting Techniques

Loops—while

Is | while read filename do do stuff with
“$filename” done

while true do infinite loop body done

COSC 301 21 Lecture 4: Scripting Techniques

Arithmetic

e expr2* 8 16
e echo $((2 * 8)) Bash-ism 16
e echo 'scale=2; 1/3' | bc .33

e echo 'tbase=10; obase=2; 192'|
bc 11000000

COSC 301 22 Lecture 4: Scripting Techniques

Sed and Awk

e Read a book!
e Regular expressions!

e Takes a while to learn

e A few recipes are useful

OREILLY’

COSC 301 23 Lecture 4: Scripting Techniques

List all system commands

e find /bin /usr/bin /sbin /usr/sbin\ -type {
-perm /111 |\ xargs -L1 basename | \
xargs -LL1 whatis | grep '([18])’

COSC 301 24 Lecture 4: Scripting Techniques

Applescript example

e [s 10% of disk

available? https://developer.apple.com/library/mac/documentation/app
lescript/conceptual/applescriptlangguide/conceptual/ASLR_lexical_co
nventions.html#//apple_ref/doc/uid/TP40000983-CH214-SW1

tell application "Finder" set the percent_free to — (((the free space of the
startup disk) / = (the capacity of the startup disk)) * 100) div 1 end tell if the
percent_free is less than 10 then tell application (path to frontmost application as text)
display dialog "The startup disk has only " & —
the percent_free & — " percent of its capacity
available." & return & return & - "Should this script
continue?" with icon 1 end tell end if

COSC 301 25 Lecture 4: Scripting Techniques

PowerShell examples

e This example 1s from Monad Manifesto
* What is filling up my application logs?

— Get-EventLog applicationlGroup sourcelSelect —first

SIFormat-Table counter Property ======
===========],269 crypt32 1,234 Msilnstaller
1,062 Ci 280 Userenv 278 SceCli

COSC 301 26 Lecture 4: Scripting Techniques

Summary
* What is the least privilege principle?

e List a few pros and cons of shell scripting

compared with other programming languages
like C/C++.

COSC 301 27 Lecture 4: Scripting Techniques

References

o The Art of Unix Programming Eric S. Raymond

e The Unix Hater’s Handbook Simson Garfinkel,
Daniel Weise, and Steven Strassmann

e Monad Manifesto Jeffrey P. Snover

o Scripting: Higher Level Programming for the 21st
Century John K. Ousterhout (father of Tcl)

 Bash Guide for Beginners Machtelt Garrels
e [Reference] bash(1)

COSC 301 28 Lecture 4: Scripting Techniques

