
COSC342: Lab 02

Matrices and Vectors in C++

March 14th 2016

1 Introduction

In this lab you will practice using a simple Matrix library in C++. Online
documentation for this library is available at http://www.cs.otago.ac.nz/

cosc342/docs/matrices/index.html. The library provides two classes, Matrix
and Vector, and Vector is a subclass of Matrix.

Each class has a header file, Class.h, and an implementation, Class.cpp.
There is also a sample file, matrixTest.cpp illustrating some basic operations,
and a Makefile which builds the project.

You can get the source code from
/home/cshome/coursework/342/pickup/labs/lab02-Matrices

It is easiest to work from the command line for this lab. Start by making
a directory to store your COSC342 work, if you have not already. Open a
terminal, and enter the following commands

cd ∼/Documents
mkdir cosc342

cd cosc342

If you have already made a directory to store your COSC342 work, change to
that directory. Next we’ll get a copy of the lab files

cp -r /home/cshome/coursework /342/ pickup/labs/lab02 -Matrices .

The -r option copies files recursively, and the dot, ., at the end means copy
to here.

2 Building Projects with CMake

There are a number of different toolchains for C++ on the lab machines. The
two main options are to compile code with Makefiles from the command line
or to use XCode. To support these we’ll be using a tool called CMake, which
creates projects for different platforms.

In your lab02-Matrices directory there is a file called CMakeLists.txt which
describes the project that needs to be made. Lets take a look inside that:

1

http://www.cs.otago.ac.nz/cosc342/docs/matrices/index.html
http://www.cs.otago.ac.nz/cosc342/docs/matrices/index.html


project(Matrices)

add_executable(Matrices

matrixMain.cpp

Matrix.h

Matrix.cpp

Vector.h

Vector.cpp

)

This is a very simple CMake file, which declares that we’re making a project
called Matrices. This is also the name of the executable program we’ll be
building, and that executable depends on the listed .cpp and .h files.

To set up the project, run the program called CMake, which is in the Appli-
cations directory. If you can’t find it press command-space and type “CMake”
to search for it. CMake asks you two simple questions – “Where is the source
code” and “Where to build the binaries”. The source code is where you copied
it to, so browse to that directory, something like
/home/cshome/a/astudent/Documents/cosc342/lab02-Matrices

Where to build the program is up to you, but the conventional thing to do
is to add /build to the source code location, so something like
/home/cshome/a/astudent/Documents/cosc342/lab02-Matrices/build

Press the Configure button. You will probably get a prompt to create the
build directory, click Yes.

You’ll next be prompted to choose a toolchain to build. You can use whatever
is installed on the machine you are using, but for the labs we’ll assume you’re
using either Unix Makefiles or XCode. Choose your preferred environment from
the drop-down, leave the other selection as Use default native compilers, and
press Done.

2



CMake looks for the relevant tools, and checks that they are available, then
updates its settings. You’ll see a number of new settings added, which are
highlighted in red. You can edit these if you need to, but you don’t. So don’t.

Once the program is configured, press Generate to create the Makefiles or
XCode project in the build directory.

2.1 Building with Makefiles

If you are using Unix Makefiles, you’ll need to go back to the terminal. Assuming
you’re in the cosc342 directory you made earlier, you’d go to the build directory

3



and compile the program with

cd lab02 -Matrices/build

make

You can then run the program with

./ Matrices

And should see the following output:

The Matrix A is:

1 0 0

0 0.5 -1

2 2 0

The Vector v is:

1

2

3

u = A*v is:

1

-2

6

2.2 Building with XCode

Open the XCode project file from your build directory.

4



Select the Matrices scheme and press the run button.

3 Working with the Library

This may be your first time working with C++, but the sample file should give
you enough information to get started with the Matrix and Vector classes.
We’ll go through some basics, do some exercises, then you can go back to look
at the classes and their implementations in more detail.

Matrix and Vector objects are most commonly made with constructors that
take the size as parameters:

Matrix A(3,2); // A 3x2 matrix

Vector v(3); // A 3-vector

If no arguments are given then a 1 × 1 Matrix or Vector is made:

Matrix A; // A 1x1 matrix

Vector v; // A 1-vector

You can access the elements of a Matrix or Vector with a function-style
syntax. Following C/C++ convention, indices start from 0 rather than 1.

Matrix A(3,3); // A 3x3 matrix

A(0,0) = 1; // Set top left element to 1

A(1,2) = 2; // Set 3rd element of 2nd row to 2

A(2,2) = 3; // Set bottom right element to 3

C++ uses streams for output, and the standard output stream, std::cout,
is defined in the iostream header. The << operator is used to send information
to the stream, so “Hello World” in C++ looks like this:

5



#include <iostream >

int main () {

std::cout << "Hello , World" << std::endl;

return 0;

}

The special constant std::endl ends a line and flushes the stream. You can
also use << with Matrix and Vector objects:

std::cout << A << std::endl;

Vectors are a single column, so it is often more convenient to output their
transpose:

std::cout << v.transpose () << std::endl;

C++ supports operator overloading, which we’ll discuss in detail later. For
now all you need to know is that this means you can write fairly natural arith-
metic expressions using Matrix and Vector objects:

Matrix A(3,3);

Vector v(3), u(3);

u = A*v;

4 Exercises

These exercises are a subset of last week’s tutorial, so you should be able to
check your answers against them. For each exercise you should write code to
evaluate the required expressions, and display the results in the console with
the std::cout stream.

4.1 Vector Arithmetic

Let u = (1,−3, 2) and v = (3, 2, 0). Evaluate the following:

1. 2u

2. u + v

3. u− v

4. 2u− 3v

4.2 Dot and Cross Products

Vector objects have methods dot and cross which take another Vector as a
parameter and return the appropriate product.

Evaluate the following dot products:

6



1. (1, 2,−2) · (1, 2,−2)

2. (1, 2,−2) · (−2, 2, 1)

3. (1, 2,−2) · (2, 3, 1)

Evaluate the following cross products:

1. (1, 2,−2) × (−2, 2, 1)

2. (1, 2,−2) × (−2,−4, 4)

3. (1, 2,−2) · ((1, 2,−2) × (−2, 2, 1))

4.3 Matrix Arithmetic

Evaluate the following:

1. 2

[
1 −2
3 4

]
−
[
3 2
4 1

]

2.

[
2 1
2 2

] [
1 −2
−4 1

]

3.

[
1 −2
−4 1

] [
2 1
2 2

]

4.4 Matrices and Vectors

These following exercises make use of the matrix A =

[
1 1 0
0 1 2

]
, and the vectors

u = (1, 2,−2) and v = (−2, 2, 1). Compute the following:

1. Au

2. uuT

3. uTv

5 Inside the Library

This may be your first time working with C++, but many of the concepts should
be familiar to you from your C and Java experience. For the most part you
should just be able to follow along for now, but here are some notes that might
help you make sense of things. I’d recommend skimming over these at first,
having a go at writing some code, and then coming back for a closer look. There
are also plenty of comments in the code which should help you get started, as
well as the online documentation.

7



Classes in C++ are defined using a similar syntax to Java (technically Java
borrowed a lot of syntax from C++), and each class typically has two files asso-
ciated with it – a header file (e.g.: Matrix.h) and an implementation file (e.g.:
Matrix.cpp). If you open Matrix.h in a text editor, you will see the definitions
(or signatures) of many methods, but no implementation details. These details
are all in Matrix.cpp, and the header file just gives the interface.

Some of the syntax may be unfamiliar to you, in particular operator over-
loading. A good example is the multiplication method for Matrices:

friend Matrix operator *( const Matrix& lhs ,

const Matrix& rhs);

The short version of what this does, is allow us to write code like

Matrix A(3,3), B(3,4), C(3,4);

// Code to fill A and B with values

C = A*B;

This code creates a 3×3 matrix called A, a 3×4 matrix called B, then multiplies
them together, storing the result in C.

In more detail:

• friend Tells us that even though this function is not exactly a method of
the Matrix class it can access the internal elements of Matrix objects as
if it was.

• Matrix Tells us that the result of multiplying two Matrix objects together
is another Matrix object.

• operator* Tells us that this function provides an implementation for the
multiplication operator. Basically, you can use A*B as a shorthand for
Matrix::operator*(A,B).

• Finally the parameters are Matrix objects. These are passed by reference
(&) to avoid copying complex objects, and the const keyword provides a
guarantee that if you call A*B, A and B will remain unchanged.

• The parameter names, lhs and rhs, are supposed to remind you that they
are on the left hand side and right hand side of the * operator respectively.

Operator overloading is a very powerful tool for providing concise and intu-
itive interfaces to mathematical objects like Matrices and Vectors. It also lets us
provide a few other useful things, such as overloading the assignment operator,
which is also used in the line C = A*B;, above. Another useful pair of overloads
are the stream operators, << and >>, which are used in C++ to provide a pow-
erful syntax for input and output through streams. The classic Hello World

program in C++ is

8



#include <iostream >

int main () {

std::cout << "Hello World" << std::endl;

return 0;

}

The iostream library provides input and output streams, one of which is
std::cout – this is an output stream which goes to the console (unless redi-
rected by the operating system). The std:: part just says that the stream cout

exists in the standard namespace, which prevents cluttering the global names-
pace with lots of stuff. In this context the << operator provides the ability to
send information to the stream. In this case, we are sending a string, and this
gets printed in the console.

Overloading << means that we can just send Matrix operators to these
streams:

std::cout << "Matrix A is:" << std::endl;

std::cout << A << std::endl;

One final way that operator overloading is used is to access elements of
Matrix objects. This is done with the function call operator, operator().
There are two versions of this, and here are their signatures:

double& operator ()( size_t row , size_t col);

const double& operator ()( size_t row , size_t col) const;

These let us write code like

Matrix A(3,3);

double x = A(1,2);

On the first line, the brackets tell us that the parameters to send to the con-
structor are 3 and 3. On the second line, however, the brackets are calls to the
function call operator, which returns the corresponding element of the matrix
(indexed from 0, of course, since this is C++). So the second line gets the value
from the second row and third column of A, and stores it in x.

Note that the function call operators return a reference, this means that you
can also assign values to Matrix elements like this:

A(2,1) = 4.5;

This is also why there are two versions of the function call operator. C++ makes
a lot of use of the idea of const correctness, which is using the keyword const

to tell the compiler when things should not be altered. If A is const, then we
want to allow read access to its elements, but don’t want to be able to write
to them. The second version of the function call operator tells us that if we
call operator() on a const Matrix then we get back a const double&, and
so can’t assign a new value to it.

Have a look at the source code for the Matrix and Vector classes. Notice
that the output of the operators on Vector and Matrix objects might be a

9



Vector, a Matrix or a double (a scalar). This helps to catch errors at com-
pile time, but other errors (such as multiplying Matrix objects whose interior
dimensions don’t agree) are caught at run time with asserts.

Have a look through the code and see how it works. Ask us if you have any
questions.

6 More Advanced Matrix Libraries

This Matrix code is designed to be easy to use and reasonably easy to un-
derstand. More advanced C++ programming methods allow for very efficient
implementations, but they are much harder to understand. One such library is
Eigen, which can be found at http://eigen.tuxfamily.org.

Eigen uses a feature C++ called templates, which are a bit like Java generics
(again, Java stole this from C++) but more powerful. Matrices in Eigen are
declared by giving their size and type as template parameters:

// A 3x4 matrix of doubles

Eigen :: Matrix M<3, 4, double >

The use of templates allows the compiler to do a lot of reasoning about the size
and type of matrices. It means that the compiler can determine automatically
that the result of multiplying a 3× 4 matrix by a 4× 2 matrix is a 3× 2 matrix.
If you try assigning this to an incorrectly sized matrix, then you get an error at
compile time rather than runtime.

Templates also allow for a crazy C++ technique called template metaprogram-
ming. It turns out that the template structure of C++ is Turing complete, so
you can do all sorts of things with it. This lets the compiler realise when it is
dealing with small matrices and unroll loops etc. to make faster code. Other
advanced features of Eigen like lazy evaluation, avoidance of temporary objects,
and vectorisation make the code very fast, while keeping a fairly simple interface.

For our purposes, however, code that you can understand is better than code
which is very fast.

10

http://eigen.tuxfamily.org

	Introduction
	Building Projects with CMake
	Building with Makefiles
	Building with XCode

	Working with the Library
	Exercises
	Vector Arithmetic
	Dot and Cross Products
	Matrix Arithmetic
	Matrices and Vectors

	Inside the Library
	More Advanced Matrix Libraries

