COSC342: Mosaicing in OpenCV

Introduction

As discussed in lectures, OpenCV gives us all the tools we need for creating
image mosaics. You can find out about OpenCV, including extensive online
documentation at opencv.org.

The files you’ll need for this lab are in

/home/cshome/coursework/342/pickup/labs/lab04-Mosaicing/

As usual, you'll need to make a copy of these files in your own space to work
with them.

Similar to the last lab, we will use CMake to prepare our development en-
vironment. You can skip the following instructions if you feel confident with
running CMake to create your project files (Skip to "Run the code”). Again
there are two options supported in the lab. The two main options are to compile
code with Makefiles from the command line or to use XCode.

To set up the project, run the program called CMake, which is in the Appli-
cations directory. If you can’t find it press command-space and type “CMake”
to search for it. Again, in CMake specify the path to the source code and the
path to the building directory.

The source code is where you copied it to, so browse to that directory,
something like
/home/cshome/a/astudent/Documents/cosc342/1ab04-Mosaicing

Where to build the program is up to you, but the conventional thing to do
is to add /build to the source code location, so something like
/home/cshome/a/astudent/Documents/cosc342/1ab04-Mosaicing/build

Press the Configure button. You will probably get a prompt to create the
build directory, click Yes.

ece A CMake 3.6.1 - Pment/COSC342/1ab04

Where s the source code: i 0SC342/lab icing Browse Source...

Where to build the binaries: i 0SC342/1ab04 i B Browse Build...

Search: | Grouped | | Advanced g add emry

Name Value

CMAKE_BUILD TYPE

CMAKE_CONFIGURATION_TYPES Debug;Release;MinSizeRel;RelWithDebinfo
CMAKE_INSTALL_PREFIX fustflocal
CMAKE_OSX_ARCHITECTURES
CMAKE_OSX_DEPLOYMENT_TAR...
CMAKE_OSX_SYSROOT licati pp/Contents/D 0SX.platform/D DKs/MacO8X10.11.sdk

Install path prefix, prepended enta install directories.

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configuring done
Generating done

You’'ll next be prompted to choose a toolchain to build. You can use whatever
is installed on the machine you are using, but for the labs we’ll assume you're
using either Unix Makefiles or XCode. Choose your preferred environment from
the drop-down, leave the other selection as Use default native compilers, and
press Done.

CMake looks for the relevant tools, and checks that they are available, then
updates its settings. You’'ll see a number of new settings added, which are
highlighted in red. You can edit these if you need to, but you don’t. So don’t.

Finally hit the button Generate to generate your project files (either XCode
or Makefile).

1 Building with Makefiles

If you are using Unix Makefiles, you’ll need to go back to the terminal. Assuming
you’re in the cosc342 directory you made earlier, you’d go to the build directory
and compile the program with

cd build
make

Then run the executable you just built and use the path to the images as
command line parameter:

./mosaicing ../images

2 Building with XCode

Open the XCode project file from your build directory. XCode will open and
you can select the source files in the source file explorer on the left hand side.
To run the application, first select the mosaicing scheme.

o0®) B mosaicing
B = aasae

v [B) mosaicing #include <opencv2/opency.hpp>
- #include "opencv2/xfeatures2d.hpp"

My Mac Finished running mesaicing : mosaicing

 Set the active scheme | [mosaicing) [[7] Sources) [[7] mesaicing) [[7] Source Files) ¢ mesaicing.cpp) [3 n

¥ [Sources

¥ [mosaicing :i:ﬂ:g:
v [Source Files #include <string>
Hnetude suector
CMakelists.txt // Difference between times in millisecons

double clockDiff(clock_t tl, clock_t t2) {

» B ALL BUILD return (t2-t1)/(CLOCKS_PER_SEC/1000.8);

» [77] ZERO_CHECK 3}
» [7| Resources
» [7] Products

int main (int argc, char =argv[l) {
const bool displayResults = true;
if(arge<2){

return @;

¥
std:istring folder = argvlll;
const size_t numImages = 5;
const bool filterMatches = true;

if (displayResults) {
\ev; rnamedWindow (" Image") ;

Then edit the arguments that you pass to your program using the menu
Product-Scheme-Edit Scheme.

° B osacing) B vy ac Finished running mosaiing - mosaicing B (=]=H=]

Eo @ Do
W mossicing) B by Mc

dontty ana Type

Name | mosaicingcpp

o Aumenis Options Diagnostics
Type | o Source B
¥ Arguments Passed On Launch Locaton | Relative to Project B
mosaicing.cpp. -
Jofimages Ful ath fromefcshome/sfstfarie]
ocuments Dovalopment]
COSC342/iab0d-Mosaicing)
- mosaicing.cpp. o
5n Demand Resource Tags.
 Environment Variables
-
farget Membership
©ALLBuLD
No
© zzvo.check
. 2 M mosaicing
foxt settings

Text Encoding | Unicodo (UTF-8)

Line Endings | Default - Windows (CRLF)

indent Using | Spaces

No Debug Session o B
Duplicate Scheme Manage Schemes. Shared 0 ingent

Wrap ines.

T
Source Control
Repository ==

Version -
Status No changes
Location

0D0oeo

T sereate();

Cocoa Touch Class - A cocos
11 A teature natching strateay O o
& Baseamatcher mateher]

Ul Test Case Class - Acisss

B impiemerning s unttest
G e
v
Progran ended with exit code: 8
THE | awo S Alouput s 0008 (@0

Then press the run button.

3 Run program

A window will open and show the first image. The program will wait for a key-
press after each image is added to the mosaic. Note that the time for various
stages of the computation is reported in the console.

The Code

The code is in a single source file, mosaicing.cpp and is very similar to that
discussed in lectures. There are a few parameters set at the start of main()
which control the program’s input and output:

const bool displayResults = true;

const std::string folder = "images";
const size_t numImages = 5;
const bool filterMatches = true;

The first line determines whether the program should illustrate its progress, or
just run without creating extra windows. For now it is useful to display the
results, but it will be useful to turn this off later on. When the results are
displayed several windows are created, some of which may be hidden behind
others. The second two lines determine what images will be processed. The
program will (try to) read images from [folder]/image[x].png where [x]
ranges from 1 to numImages. Finally, filterMatches determines whether or
not ambiguous matches will be used when trying to determine the homography.

4 Exercises

We'll start by exploring a few of choices that can be made with the algorithms:
e How do we find matches between features?
e Do we filter the matches to try and remove ambiguous ones?

e How do we deal with outliers when computing the homography?

Computing the Homography

We'll start with how we compute the homography. First find where the homog-
raphy is computed, which is towards the end of the code with the call

cv::findHomography (pointsl, points2, CV_RANSAC, 2.0);

The parameter CV_RANSAC tells OpenCV to use RANSAC when determining the
homography, and the value of 2.0 is the maximum distance (in pixels) between
aligned points for them to be considered inliers. There are two other options
that can replace CV_RANSAC:

e 0, which computes a least-squares fit from all of the matches.
e CV_LMEDS, which uses least median of squares error.

Least median of squares ranks all of the squared distances between the aligned
features and tries to minimise the middle value of this list. Unlike RANSAC it
does not require a threshold to be chosen, but it does require at least 50% of
the matches to be inliers.

1. Try using the least median of squares method for the homography esti-
mation. Are the results still good? Is it faster or slower than RANSAC
in this case?

2. Try using a least squares fit to all of the data. Are the results still good?
Is it faster or slower than RANSAC/least median of squares?

Filtering the Matches

The code currently tries to filter the matches by finding the best two corre-
spondences for each point in the first image. If the distance to the best cor-
respondence is less than 80% of the distance to the second best one, then the
match is considered ambiguous and is rejected. You can turn this off by setting
filterMatches = false at the start of the program.

1. What effect does turning off the filtering have on the RANSAC estimation
of the homography? Does the mosaic still look OK? Is it faster or slower?

2. What effect does filtering have when using least median of squares method
without filtering?

Feature Matching Strategies

The code initially uses the FLANN (Fast Library for Approximate Nearest
Neighbours) based matcher, which is determined by the line

cv::FlannBasedMatcher matcher;

OpenCV also has a cv: :BFMatcher, which does brute-force matching by com-
paring each feature in the first image to all features in the second image.

1. Change the code so that it does brute-force matching. You should make
sure to be filtering your matches, and using RANSAC or least median of
squares to find the Homography.

2. How does the speed of the brute-force matcher compare to the FLANN-
based matcher?

3. Does the brute-force matcher give more or fewer ambiguous matches?

The time to mosaic these images is dominated by the SIFT feature detection,
so the choice of matching strategy or homography estimation algorithm does not
have a large influence on the total time taken. This is not true for larger images.

1. Change the program to use the two images in the large directory.
2. You should also turn off the display of the images.

3. What is the difference between brute-force and FLANN-based matching
on these images?

4. The ‘large’ images are about 2MP, scaled down from the original 18MP
images. How much slower would you expect brute-force matching to be
on the original images? What about FLANN-based matching?

Determining the Mosaic Size

The reason we turned the display off for the large images is that the size of the
mosaic is fixed by the line

cv::Mat mosaic(cv::Size (1250,300), CV_8UC3);

This is large enough to hold the mosaic from the first data set, but is smaller
than the individual images in the ‘large’ data set. A more general mosaicing
program would need to adjust the size of the mosaic to fit the data.

1. Suppose you knew in advance the dimensions of the images and the ho-
mographies between each pair. How could you determine the size of the
mosaic image from this information?

2. If you did not know this information in advance you would not know how
big to make the mosaic. How could you tell if an image was going to
go outside of the current mosaic image? What might you do when this
happens?

