
COSC342: OpenGL Lab 2

Materials, Model loading, Render to textures

Objectives

• Load a model file and render a textured model.

• Implement basic shading using the Phong reflection model.

• Render a scene into a texture

Introduction

In the last lab, we got started with OpenGL, we created a first output window
and rendered primitives, such as triangles, quads and cubes. We also started to
use textures. In this lab, we will go further and load more complex model files
and apply the Phong shading model.

Make sure that you copy the source files from the
/home/cshome/coursework/342/pickup/labs/lab09-OpenGLContinuation

directory into a directory within your home directory. Otherwise you may not
be able to compile the code. The process of generating the project build files is
the same as for the last lab using CMake.

The first step is to create the development project files. Open CMake.app
from the Applications folder. Put the source code folder location for lab09-
OpenGLContinuation into source directory and add a location to where CMake
should build the project files (e.g. lab09-OpenGLContinuation/build). Click
Configure and allow to create a new directory if the directory did not exist
before.

Select the IDE you want to use, e.g. XCode and wait until configuring is
finished. CMake will show settings and path relevant to project (we will leave
them to the default values). Press Generate to create the project files.
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In the following we will explain how to compile the project with XCode, but
you can also go to the Terminal and use make to compile the project. However,
please note that now the project files are getting more complex with multiple
applications and several header and source files to edit during the lab, so XCode
is recommended.

XCode Use Finder navigate to the build directory (e.g /build). Open XCode
project file: COSC Lab OpenGL2.xcodeproj. In XCode click on ”project navi-
gator” and navigate to Part04. Have a look at the source files. To compile and
execute the code, go to ”Product” and ”Scheme” and select Part04 as scheme
in the list. Then go to ”Product” and click on ”Build”. Finally run the app by
selecting ”Product” - ”Run”.

MAKE (advanced) Change into the lab09-OpenGLContinuation/build di-
rectory and type “make” to build the code. Part04, Part05 and Part06 require
shaders and textures from the corresponding subfolders, so you need to navigate
to the subfolder (e.g. Part04) and call ../build/Part04 from there. If you want
to avoid that, you can also use the shell scripts within the build directory (e.g.
launch-Part04.sh. This script sets the correct working directories automatically.
To run the shell script use “./launch-Part04.sh”.

Part 04: Model Loading

Go to the source code for Part04. The first part of the application will load a
model (stored in suzanne.obj) and put all the corresponding indices, vertices,
texture coordinates and normals into std::vectors for later usage. For loading
models we use an external library called assimp. Have a look into the function
loadAssImp in SimpleObjectLoader.cpp and see how the assimp reads the data
from the obj file.

1 std : : vector<unsigned short> i n d i c e s ;
std : : vector<glm : : vec3> i n d e x ed v e r t i c e s ;

3 std : : vector<glm : : vec2> indexed uvs ;
std : : vector<glm : : vec3> indexed normals ;

5 // Read our . obj f i l e
bool r e s = loadAssImp ( ” suzanne . obj ” , i nd i c e s , i nd exed ve r t i c e s ,

indexed uvs , indexed normals ) ;

Similar like creating our cube geometry in the last lab, we create a geometry
and set the vertices, the uv coordinates and the normals using the respective
methods.

1 // c r ea t e geometry
Mesh∗ myGeom = new Mesh ( ) ;

3 myGeom−>s e tVe r t i c e s ( i nd e x ed v e r t i c e s ) ;
myGeom−>setUVs ( indexed uvs ) ;

5 myGeom−>setNormals ( indexed normals ) ;

We also want to texture this model so the last step is to create again a
TextureShader, load a texture, pass it to the shader and finally attach the
shader to our geometry.
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1 TextureShader∗ shader = new TextureShader ( ” textureShader ” ) ;
Texture∗ t ex ture = new Texture ( ”uvmap .DDS” ) ;

3 shader−>setTexture ( t ex ture ) ;
myGeom−>setShader ( shader ) ;

5 myScene−>addObject (myGeom) ;

Run the application and the results should look like this:

In the render loop we will then again call the render method on our scene.

1 //Render loop
whi le ( glfwGetKey (window , GLFW KEY ESCAPE ) != GLFW PRESS &&

glfwWindowShouldClose (window) == 0 ){
3 // Clear the sc r e en

g lC l ea r (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ; // Also c l e a r
the depth bu f f e r ! ! !

5 // update camera c on t r o l s with mouse input
myControls−>update ( ) ;

7 myScene−>render (myCamera) ;
// Swap bu f f e r s

9 gl fwSwapBuffers (window) ;
g l fwPol lEvents ( ) ;

11 }

You will notice a difference compared to last lab. We now also call an update
method on controls. The controls receive mouse and keyboard input and allow
us to navigate within the scene. You can use the arrow keys for moving around
and the mouse input for changing the orientation of the camera.

Exercise

• Change the fragment shader (textureShader.frag) in such a way that it
outputs the texture coordinates as colour values instead of the colour of
the texture (Red showing UV.x and green showing UV.y).
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• Create a simple animation by adding 0.01 units to x coordinate of the posi-
tion of the model in each render step (hint using the method setTranslate).

Part 5: Basic shading

So far we did not take lighting and illumination into account. In this part of the
lab, we will integrate diffuse, ambient and specular lighting for implementing the
Phong reflection model. We will compute the illumination on a per-fragment ba-
sis to implement the Phong shading. If you look into Part05/basicShading.cpp,
you will see that there is a lot of similarity to the last examples, but there is
also a new Shader used, the BasicMaterialShader.

1 Geometry∗ myGeom = new Geometry ( ) ;
myGeom−>s e tVe r t i c e s ( i nd e x ed v e r t i c e s ) ;

3 myGeom−>setUVs ( indexed uvs ) ;
myGeom−>setNormals ( indexed normals ) ;

5 myGeom−>s e t I n d i c e s ( i n d i c e s ) ;
Bas icMater ia lShader ∗ shader = new Bas icMater ia lShader ( ”

bas i cMater ia lShader ” ) ;
7 Texture∗ t ex ture = new Texture ( ”uvmap .DDS” ) ;

shader−>setTexture ( t ex ture ) ;
9 myGeom−>setShader ( shader ) ;

myScene−>addObject (myGeom) ;

The rest of the code is basically the same. So let’s have a look into the
BasicMaterialShader class.

pr i va t e :
2 Texture∗ m texture ;

GLuint m lightPosID ;

Here we have additional member variables describing a light source position
and the location of a uniform variable that will be used to pass the light’s
position to the shader. This will be set up in the init method of the shader
using glGetUniformLocation.

1 void i n i t ( ) {
glUseProgram ( programID ) ;

3 m lightPos = glm : : vec3 (4 , 4 , 4 ) ;
m lightPosID = glGetUniformLocation ( programID , ”

l ightPosWorldspace ” ) ;
5 glUni form3f ( m lightPosID , m l ightPos . x , m l ightPos . y , m l ightPos

. z ) ;
m TextureID = glGetUniformLocation ( programID , ”myTextureSampler

” ) ;
7 }

We use the vertex shader and the fragment shader (basicMaterialShader.vert
and basicMaterialShader.frag) for computing the illumination. At first, we will
have a look into the vertex shader. If we compare it to the previous vertex
shader, we see that there is much more computation happening. In addition
to the texture coordinates and the vertex position in clip space, the normal of
the vertex, the eye direction, and the light direction in camera space will be
passed to the fragment shader. For computation, we use the model matrix (M),
the view matrix (V) and the model-view-projection matrix (MVP) to transform
into camera space and clip space.
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1 // Output po s i t i o n o f the vertex , in c l i p space : MVP ∗ po s i t i o n
g l P o s i t i o n = MVP ∗ vec4 ( ver texPos i t ion mode l space , 1 ) ;

3

// Pos i t i on o f the vertex , in worldspace : M ∗ po s i t i o n
5 posWorldspace = (M ∗ vec4 ( ver texPos i t ion mode l space , 1 ) ) . xyz ;

// Vector that goes from the vertex to the camera , in camera space .
7 // In camera space , the camera i s at the o r i g i n (0 , 0 , 0 ) .

vec3 vertexPosCameraspace = ( V ∗ M ∗ vec4 ( ver texPos i t ion mode l space
, 1 ) ) . xyz ;

9 eyeDirect ionCameraspace = vec3 (0 , 0 , 0 ) − vertexPosCameraspace ;

11 // Vector that goes from the vertex to the l i gh t , in camera space . M
i s ommited because i t ’ s i d e n t i t y .

vec3 l ightPos i t ionCameraspace = ( V ∗ vec4 ( l ightPosWorldspace , 1 ) ) . xyz ;
13 l i ghtDirect ionCameraspace = l ightPos i t ionCameraspace +

eyeDirect ionCameraspace ;

15 // Normal o f the the vertex , in camera space
normalCameraspace = ( V ∗ M ∗ vec4 ( vertexNormal modelspace , 0 ) ) . xyz ;

17

// UV of the ver tex . No s p e c i a l space f o r t h i s one .
19 UV = vertexUV ;

The fragment shader computes the Phong reflection model (explained in the
lecture) describing the reflection of light from a surface as a combination of
diffuse reflection, ambient reflection and specular reflection.

Diffuse Component

The diffuse component describes all the light that is reflected in all directions
when light hits a surface. The reflected light depends on the angle θ between
the incoming light ray (L) and the surface normal (N), as well as on the diffuse
material colour (kd), the diffuse texture map and the colour of the light (Id).
When computing the angle between the light direction and the normal, we have
to clamp the angle to 0, to avoid light that comes from behind the surface.

1 // Cosine o f the ang le between the normal n and the l i g h t d i r e c t i o n l ,
// clamped above 0

3 f l o a t cosTheta = clamp ( dot ( N,L ) , 0 . 0 , 1 . 0 ) ;
vec3 dif fuseComponent = d i f f u s eL i gh tCo l o r ∗ di f fuseMatColor ∗

textureVal ∗ cosTheta ;
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Ambient Component

The ambient component of the phong reflection model defines a minimum
brightness and prevents the surface from being completely black. It creates
an effect that let the surface simply emit light. We multiply the color value
from the texture as well.

vec3 ambientComponent = ambientLightColor∗ambientMatColor∗ textureVal ;

Specular Component

The specular component is used to describe the behaviour of shiny surfaces. In
contrast to the diffuse component where light is reflected in all directions, the
specular component describes the amount of light that is reflected from a surface
in the direction of the reflection vector. According to the law of reflection, the
reflection vector has the same angle to the surface normal as the incident ray.
An example for an ideal reflection surface is a mirror reflecting all light in the
direction of reflection vector.

To compute the specular component we use the angle between the eye vec-
tor and the reflected ray to create the effect that for small angles between the
reflected ray and the eye direction the specular component will be larger. In
addition we use the specular exponent to adjust the focus of the specular high-
light. A high exponent creates a concentrated highlight. Values of ns range
between 0-1000.

1 // Eye vector ( towards the camera )
vec3 E = normal ize ( eyeDirect ionCameraspace ) ;

3 // Di r e c t i on in which the t r i a n g l e r e f l e c t s the l i g h t
vec3 R = r e f l e c t (−L ,N) ;

5 // Cosine o f the ang le between the Eye vec tor and the Re f l e c t vector ,
// clamped to 0

7 f l o a t cosAlpha = clamp ( dot ( E,R ) , 0 ,1 ) ;
vec3 specularComponent = specu la rL ightCo lo r ∗ specularMatColor ∗ pow(

cosAlpha , ns ) ;
9
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Result

Finally, the combination of all three components will create the following output:

1 c o l o r =
// Ambient : s imu la t e s i n d i r e c t l i g h t i n g

3 ambientComponent +
// D i f f u s e : ” c o l o r ” o f the ob j e c t

5 diffuseComponent +
// Specular : r e f l e c t i v e h i gh l i gh t , l i k e a mirror

7 specularComponent ;

Exercise

• Create a setLightColour method in BasicMaterialShader that sets a new
diffuse light colour using glm::vec3. Add a new uniform to the fragment
shader to pass that light colour and use it.

• Use glfwGetKey in the rendering loop to capture keyboard input of 1,2,3
and create three different light colours and switch between different light
colours using keyboard input.

Part 6: Render to Texture (RTT)

The basic idea of RTT is to render the scene into a texture and to apply a
specific effect on this texture afterwards. This allows us to create different
post-processing effects on a rendered scene (e.g. image filters, blur or edges),
but also for implementing shadows mapping. In Part06, we will use RTT to
create a time-dependent dynamic glass effect to our rendering. Have a look in
to Part06/renderToTexture.cpp.
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RTT consists of 3 main steps:

1. The creation of a texture to render to (the render target),

2. Rendering something into the texture.

3. Using the created texture and apply a certain post-processing step to it.

Creating the Render Target

The OpenGL rendering pipeline uses geometry data and textures to render
output as 2D pixels to the screen. The final output destination for the render
output is specified framebuffer. By default, OpenGL renders to a framebuffer
that is set up by the window system. For RTT, we want to create a specific
framebuffer to capture the rendering output for later usage. For this purpose
we use the method glGenFramebuffers.

GLuint FramebufferName = 0 ;
2 glGenFramebuffers (1 , &FramebufferName ) ;

glBindFramebuffer (GL FRAMEBUFFER, FramebufferName ) ;

In order to access the content of the famebuffer, we need to attach a texture.
For this purpose, we create a texture object and use the method glFramebufferTexture
that attaches the texture object as a buffer to the currently bound framebuffer
object.

1 // The texture we ’ re going to render to
GLuint renderedTexture ;

3 glGenTextures (1 , &renderedTexture ) ;
// Set ” renderedTexture ” as our co lour attachement #0

5 glFramebuf ferTexture (GL FRAMEBUFFER, GL COLORATTACHMENT0,
renderedTexture , 0) ;

Render to the texture

For rendering our scene into the textures, we use glBindFramebuffer to bind
our framebuffer and then render just as in the previous examples using the
scene’s render function.

1 // Render to our f ramebu f f e r
glBindFramebuffer (GL FRAMEBUFFER, FramebufferName ) ;

3 . . .
myScene−>render (myCamera) ;

Using the render texture

In order to apply the post-processing steps to our render texture, we will render
it to the screen using a simple quad and our postprocessing shaders.
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// the quad that we use to render the f ramebu f f e r t ex ture to the
sc r e en

2 Quad∗ outputQuad = new Quad ( ) ;
PostProcess ingShader ∗ passThroughShader = new PostProcess ingShader ( ”

Passthrough . ve r t ” , ” Pos tE f f e c t . f r a g ” ) ;
4

For the actual rendering to screen, we need to set the output framebuffer back
to default:

1 // Render to the sc r e en
glBindFramebuffer (GL FRAMEBUFFER, 0) ;

3

And render the quad with the render texture to the screen using the postpro-
cessing shaders (Passthrough.vert and PostEffect.frag).

// Use our shader
2 postEf fectShader−>bind ( ) ;

// Bind our t ex ture in Texture Unit 0
4 // the one from the famebuf f e r = render t ex ture the one used in the

shader t ex id
g lAct iveTexture (GL TEXTURE0) ;

6 glBindTexture (GL TEXTURE 2D, renderedTexture ) ;
// Set our ” renderedTexture ” sampler to user Texture Unit 0

8 postEf fectShader−>bindTexture ( ) ;
postEf fectShader−>setTime ( ( f l o a t ) ( glfwGetTime ( ) ∗10.0 f ) ) ; // s e t time to

get animated e f f e c t in shader
10 outputQuad−>directRender ( ) ; // c a l l render d i r e c t l y to render quad only

without t rans fo rmat ions

To create the dynamic glass effect, we use the time in the fragment shader
and offset the pixels depending on the time.

c o l o r = texture ( renderedTexture , UV + 0.005∗ vec2 ( s i n ( time+1024.0∗
UV. x ) , cos ( time+768.0∗UV. y ) ) ) . xyz ;

9



Exercise

• Change the PostEffectShader.frag so that it creates a box blur effect (using
a 9x9 window) as output:

The result should like this:
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• Change the PostEffectShader.frag so that the post effect extracts the edges

of the rendered scene using the Sobel operator: S =
√
S2
x + S2

y

The result should like this:
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